And now for something completely different:

Quantum Support Vector Machines

but this time without quantum databases, or quantum-linear-systems-HHL quantum linear algebra tricks

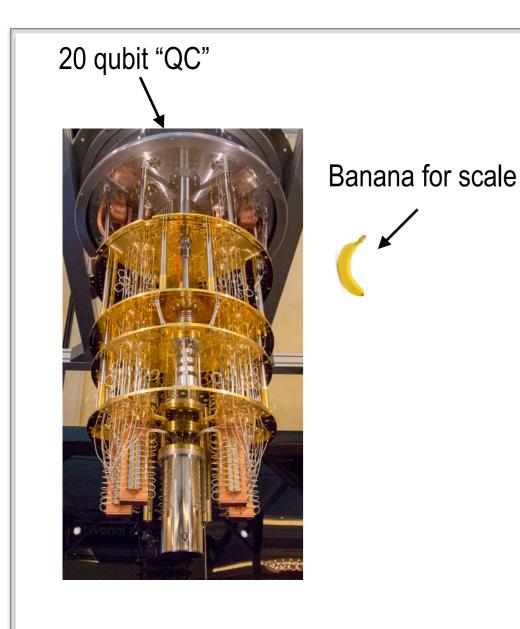
this one could work on near-term quantum computers

Supervised learning with quantum enhanced feature spaces Havlicek, Córcoles, Temme, Harrow, Kandala, Chow, Gambetta Nature. vol. 567, pp. 209-212 (2019)

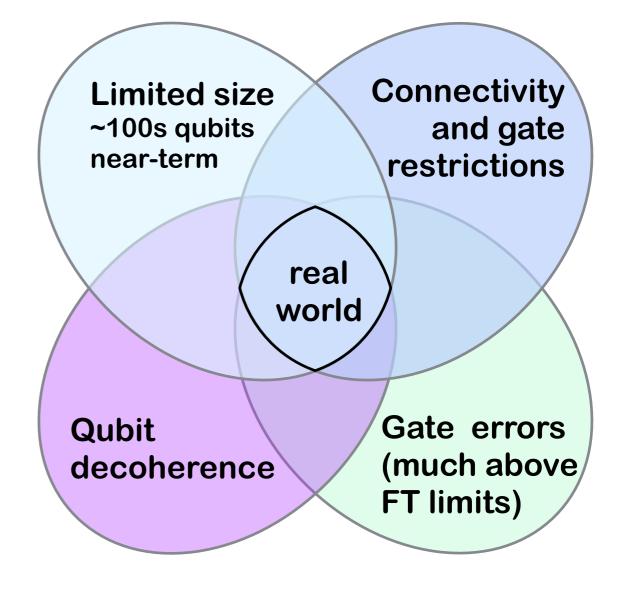
& a bunch of other literature...

- 1) Background
 - limitations of QCs
 - Support Vector Machines, QSVM (1) and the kernel trick
 - Variational (parametrized) quantum circuits
- 2) Support Vector Machine with quantum kernels
 - 1) version 1: "quantum-assisted"
 - 2) version 2: "full quantum"

3) Some results

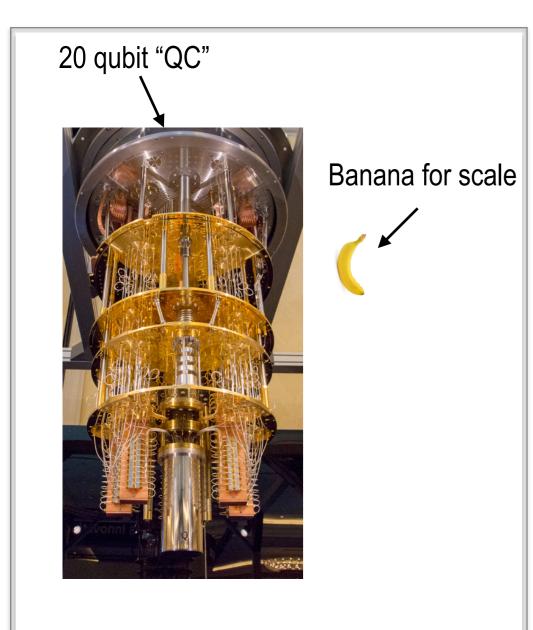


Also one qubit is *much* more expensive than a banana...

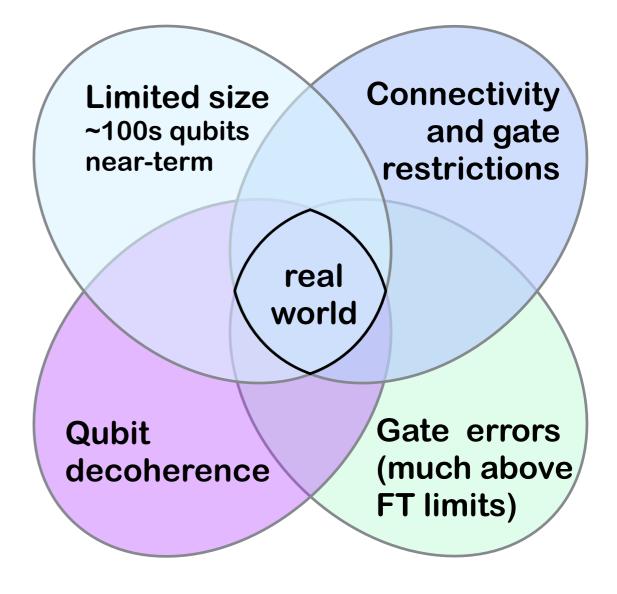


Decoherence: effects leading to degradation of qubit(s) state usually from "coupling to environment" and *relaxation*

- dephasing (environment "measures" qubit)
- · de-polarization (gets noisy)
- relaxation (collapses to "ground state")
- dissipation

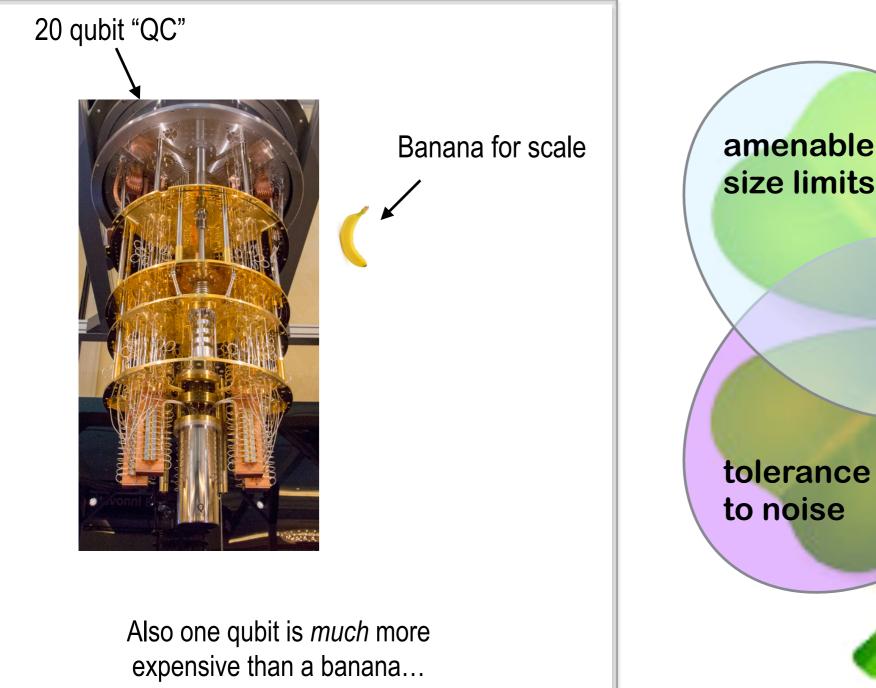


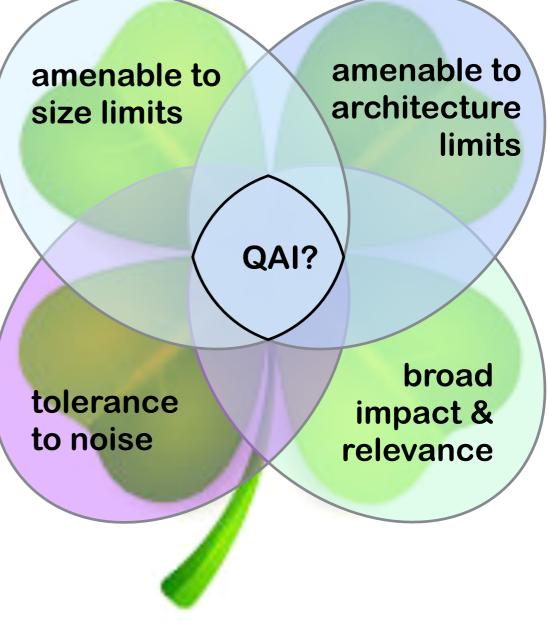
Also one qubit is *much* more expensive than a banana...

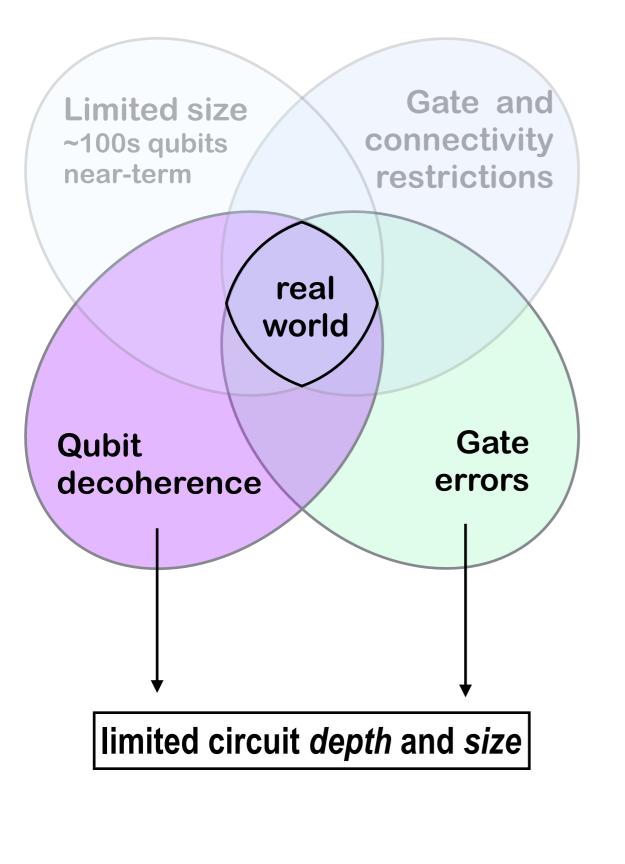


In short: qubits have a life-time (half-life).... up to miliseconds

gates can take 10s-100s of nanoseconds

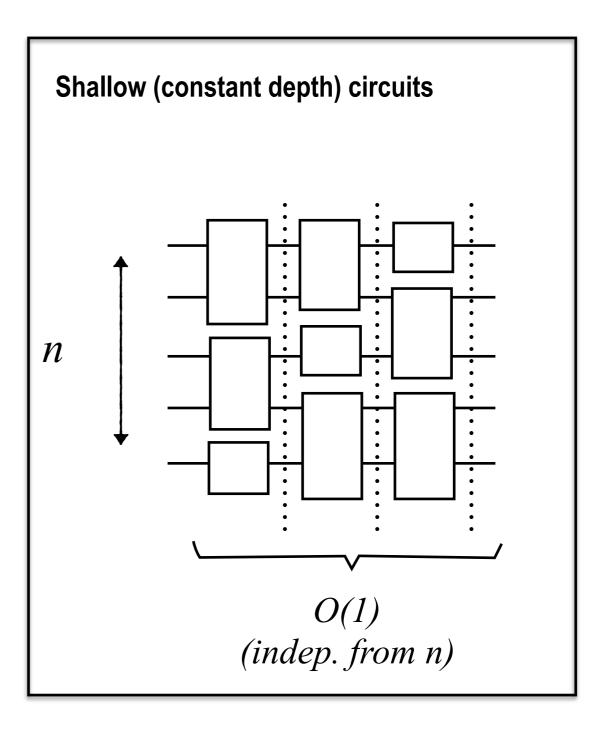




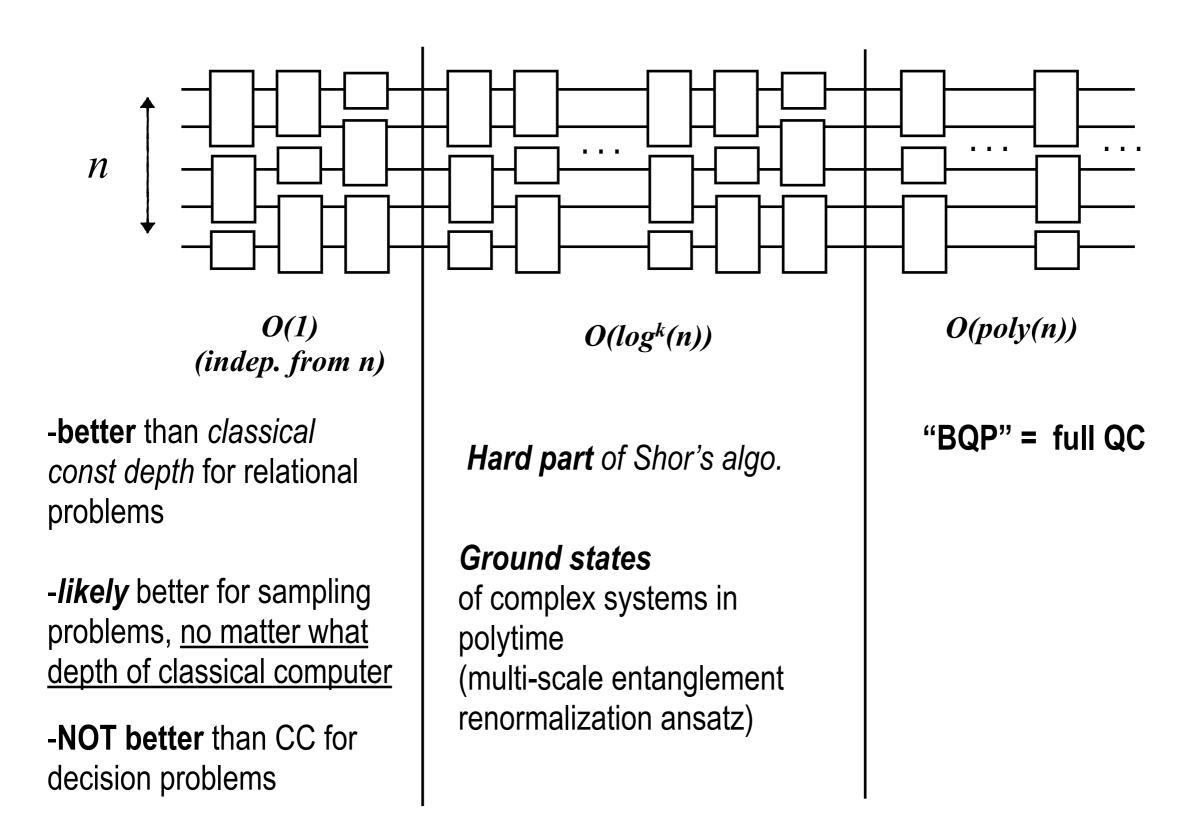


recall: qubits have a life-time (half-life).... up to ms gates can be dozens of ns

Not yet in the *same system*... nowadays whatever you can to in 10 - 100 (parallel) gate times

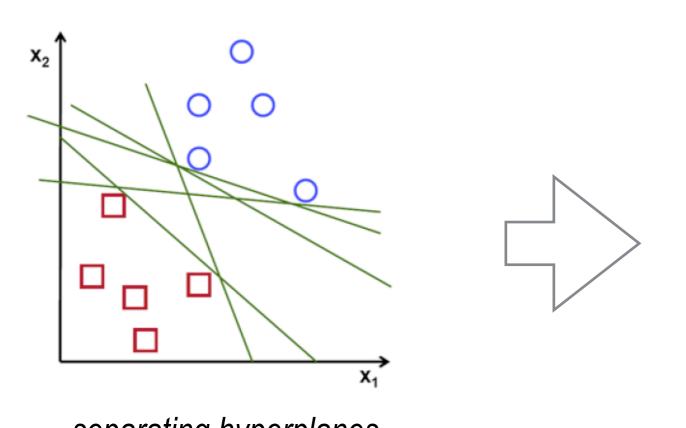


Tangent: Quantum depth complexity

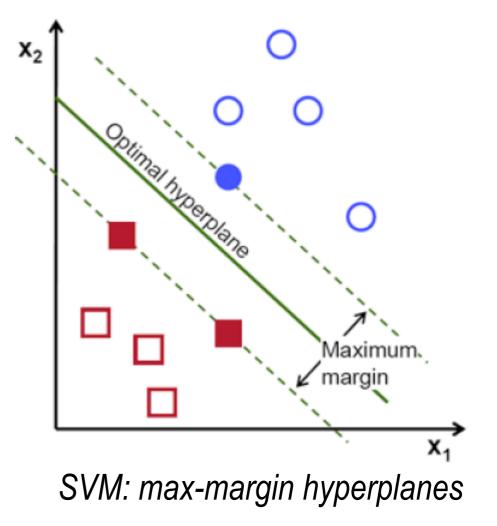


1.2) Support vector machines

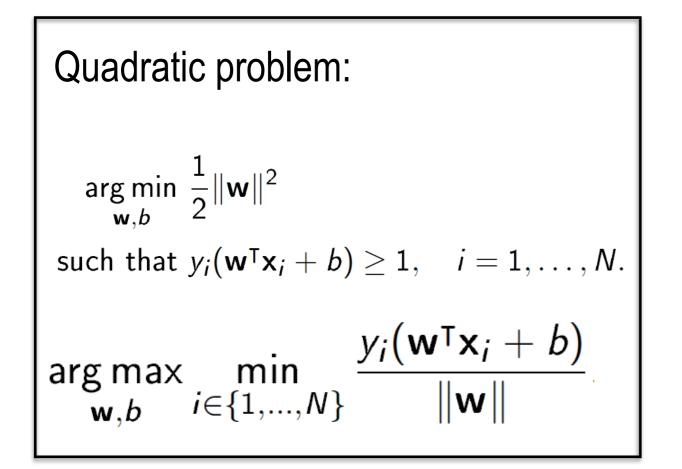
 $D = \{(x_i, y_i)\}_i \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$

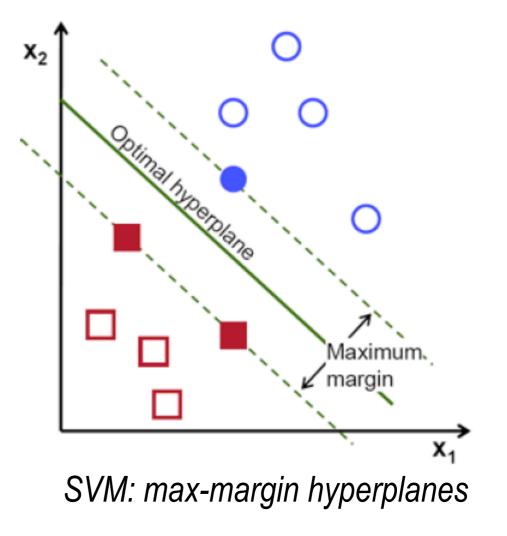


separating hyperplanes (linear classifier, not SVM)

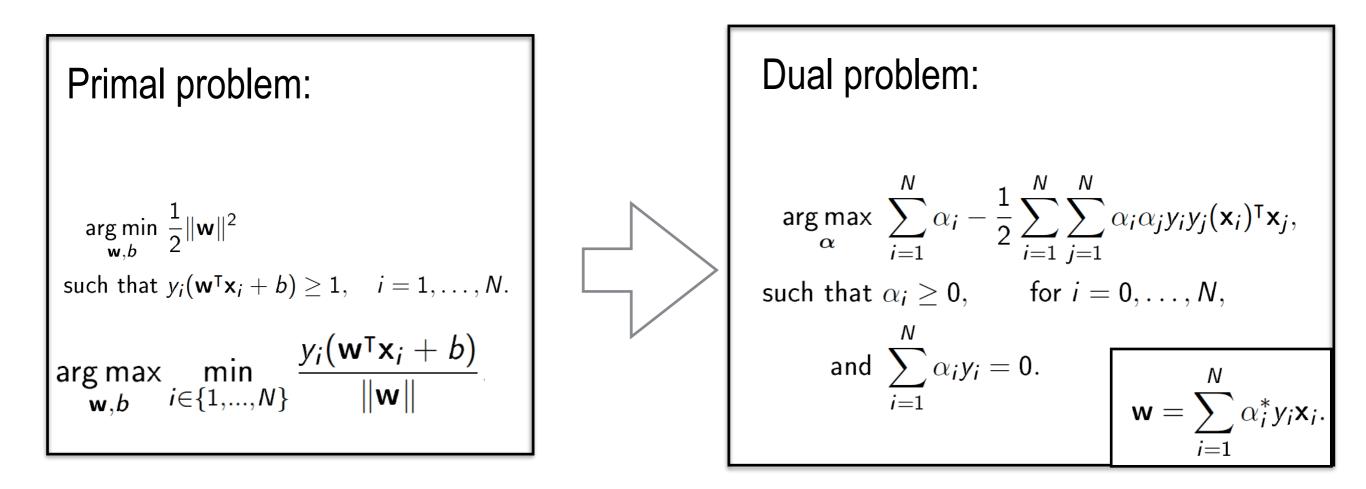


$$D = \{ (x_i, y_i) \}_i \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$





Note: defined on the basis of "support vectors"



Why bother with dual problem? Representation in terms of datapoints

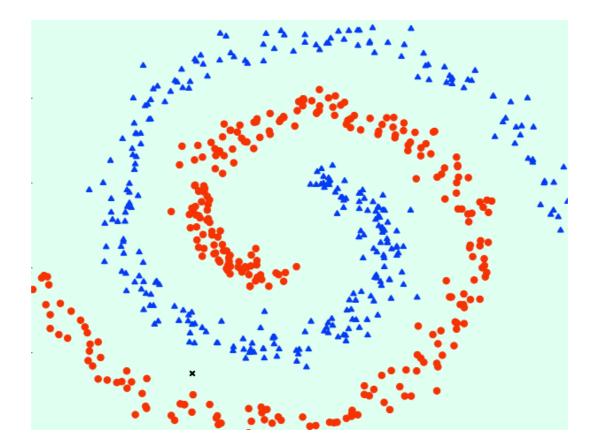
- sparser evaluation $(\mathbf{w}^*)^\mathsf{T}\mathbf{x} + b^* = \left(\sum_{i=1}^n \alpha_i y_i(\mathbf{x}_i)^\mathsf{T}\mathbf{x}\right) + i$
- only inner products matter
- was handy for quantum tricks

$$(\mathbf{v}^*)^\mathsf{T}\mathbf{x} + b^* = \left(\sum_{i=1}^N \alpha_i y_i(\mathbf{x}_i)^\mathsf{T}\mathbf{x}\right) + b^*$$

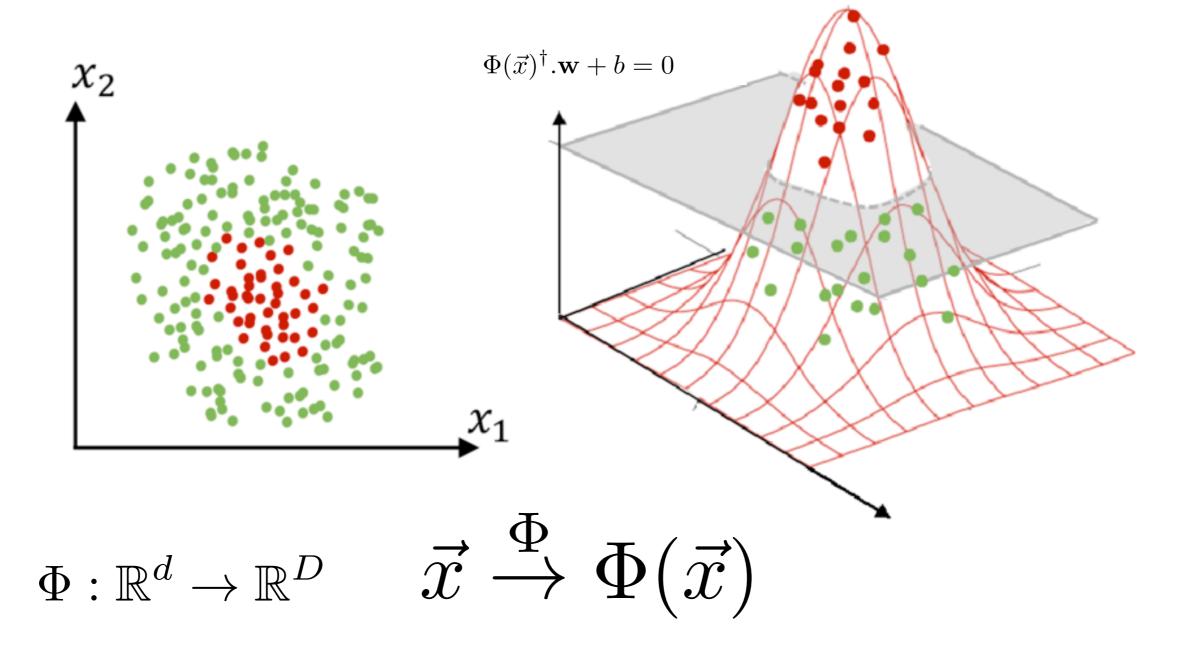
 $\alpha_i \alpha_j y_i y_j (\mathbf{x}_i)^\mathsf{T} \mathbf{x}_j,$

c.f. Representer theorems

Why one should actually bother with SVMs: when data is NOT linearly separable



Non-separable datasets? -slack variables (this lead to QSVM - type 1) -feature mapping and the kernel trick



c.f.: Cover's theorem...

The kernel trick:

one can "train" and evaluate SVM classifiers in rich feature spaces without ever mapping data-points into said spaces. They can even be infinite dimensional

The kernel trick

Recall... only inner products matter: $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle \quad (\phi = \Phi...)$

$$\arg\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i)^{\mathsf{T}} \mathbf{x}_j, \qquad \arg\max_{\alpha} \sum_{i=1}^{N} \alpha_i \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

kernels can sometimes be evaluated (much) more efficiently directly:

E.g. (stupidly)

$$(X_1, X_2, X_3) \mapsto \phi(\mathbf{x}) = (x_1x_1 \ x_1x_2 \ x_1x_3 \ x_2x_1 \ x_2x_2 \ x_2x_3 \ x_3x_1 \ x_3x_2 \ x_3x_3)^{\mathsf{T}}$$

 $\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \sum_{i=1}^d \sum_{j=1}^d x_i z_i x_j z_j$ Runtime for $\phi(\mathbf{x})$: $\mathcal{O}(d^2)$

c.f. Mercer's theorem

The kernel trick

Recall... only inner products matter: $K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ $(\phi = \Phi...)$

$$\arg\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i)^\mathsf{T} \mathbf{x}_j, \qquad \arg\max_{\alpha} \sum_{i=1}^{N} \alpha_i \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

$$\phi(\mathbf{x}) = (x_1 x_1 \ x_1 x_2 \ x_1 x_3 \ x_2 x_1 \ x_2 x_2 \ x_2 x_3 \ x_3 x_1 \ x_3 x_2 \ x_3 x_3)^{\mathsf{T}}$$

reverse-engineered: $\mathcal{K}(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}} \mathbf{z})^2 = \left(\sum_{i=1}^d x_i z_i\right) \left(\sum_{i=1}^d x_i z_i\right) = \sum_{i=1}^d \sum_{j=1}^d x_i z_j x_j z_j = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle.$

Directly: Let $\mathbf{x} = (x_1, \dots, x_d)^T$, $\mathbf{z} = (z_1, \dots, z_d)^T$ and $\mathcal{K}(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$. Runtime: $\mathcal{O}(d)$.

Yay, quadratic speedup

c.f. Mercer's theorem

The kernel trick:

one can "train" and evaluate SVM classifiers in rich feature spaces without ever mapping data-points into said spaces. They can even be infinite dimensional

$$\vec{x} \mapsto \mathcal{U}_{\Phi}(\vec{x})|0\rangle = |\Phi(\vec{x})\rangle$$

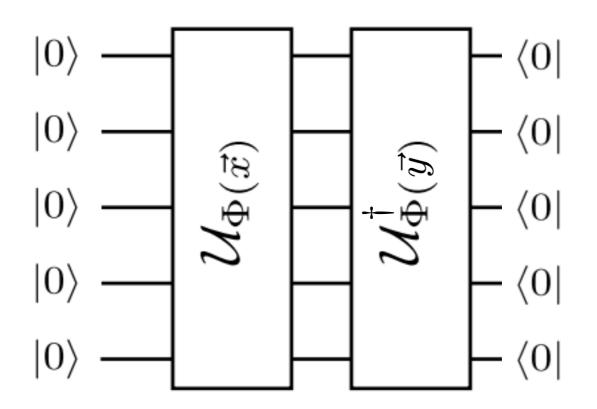
$$U_{\Phi(\vec{x})} = \exp\left(i\sum_{S\subseteq[n]}\phi_S(\vec{x})\prod_{i\in S}Z_i\right)$$

$$\phi_{\{i\}}(\vec{x}) = x_i \text{ and } \phi_{\{1,2\}}(\vec{x}) = (\pi - x_1)(\pi - x_2)$$

Nature. vol. 567, pp. 209-212 (2019)

Kernel! $|\langle \Phi(ec{y}) | \Phi(ec{x})
angle|^2$

Can be hard to compute.



$$U_{\Phi(\vec{x})} = \exp\left(i\sum_{S\subseteq[n]}\phi_S(\vec{x})\prod_{i\in S}Z_i\right)$$

$$\phi_{\{i\}}(\vec{x}) = x_i \text{ and } \phi_{\{1,2\}}(\vec{x}) = (\pi - x_1)(\pi - x_2)$$

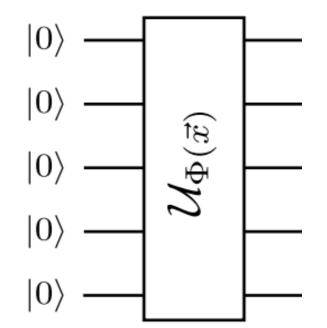
Do this quantumly (recall QC is good for inner products)

Nature. vol. 567, pp. 209-212 (2019)

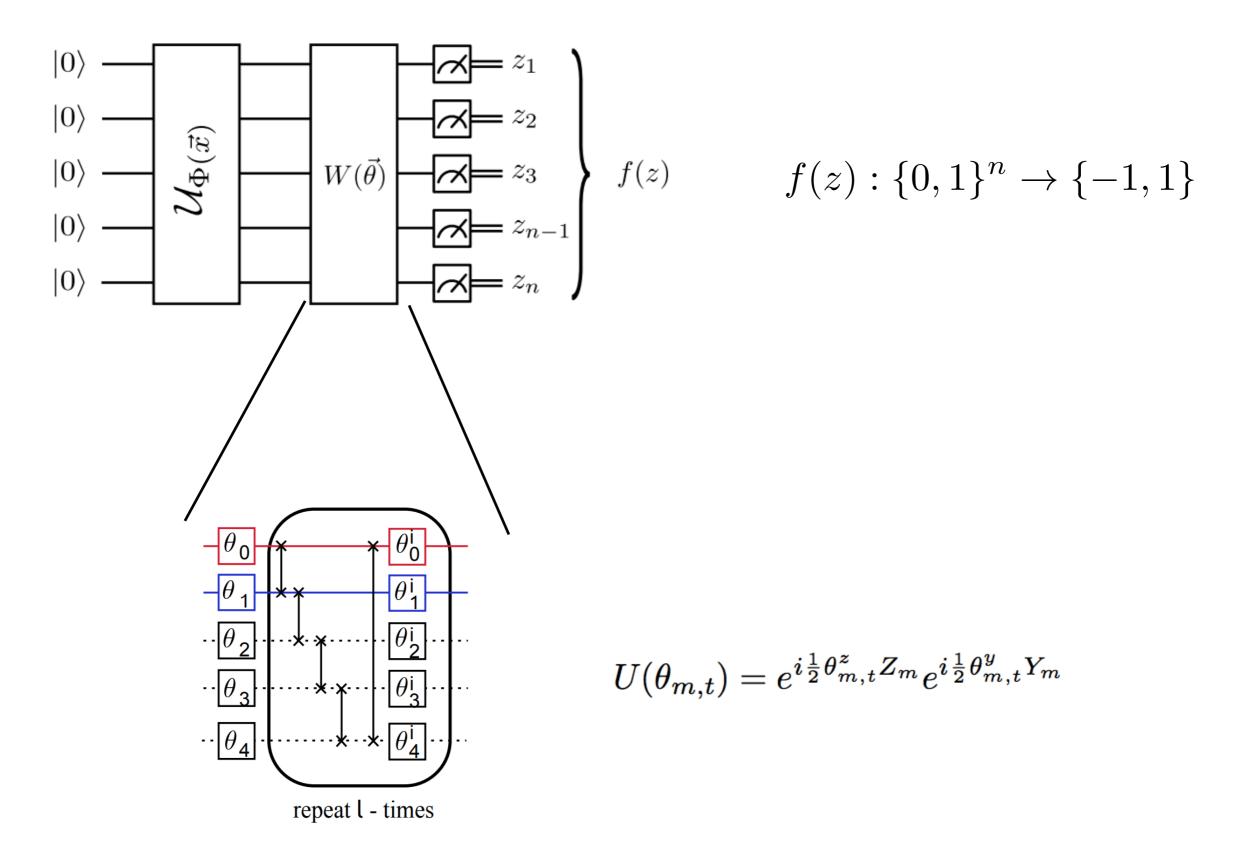
$$U_{\Phi(\vec{x})} = \exp\left(i\sum_{S\subseteq[n]}\phi_S(\vec{x})\prod_{i\in S}Z_i\right)$$
$$\phi_{\{i\}}(\vec{x}) = x_i \text{ and } \phi_{\{1,2\}}(\vec{x}) = (\pi - x_1)(\pi - x_2)$$

$$e^{i\phi_{\{l,m\}}(\vec{x})Z_lZ_m} = - \begin{bmatrix} Z_\phi \end{bmatrix} = \begin{bmatrix} Z_\phi \end{bmatrix}$$

$$\mathcal{U}_{\Phi} = H^{\otimes n} U_{\Phi} H^{\otimes n} U_{\Phi} \cdots H^{\otimes n} U_{\Phi}$$



But there is also the fully quantum version:



Nature. vol. 567, pp. 209-212 (2019)

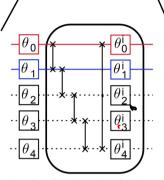
$exp(iH\Delta t) \rightarrow U(\theta) = exp(iH\theta) \dots$

THEY ARE EXPERIMENTALLY WELL-MOTIVATED

PARAMETRIZED OR VARIATIONAL CIRCUITS

BUT UTILIZE (A NUMBER OF) CONTINUOUS PARAMETER ELEMENTS ARE CALLED

WHICH DEVIATE FROM THE DISCRETE GATESET { H, 11/8, CNOT }



BY THE WAY ... CIRCUITS OF THIS TYPE

$$label(\vec{y}) = \tilde{m}(\vec{x}) = sign(\langle \Phi(\vec{x}) | W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) | \Phi(\vec{x}) \rangle + b)$$

involves running circuit many times

 $label(\vec{y}) = \tilde{m}(\vec{x}) = \operatorname{sign}(\langle \Phi(\vec{x}) | W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) | \Phi(\vec{x}) \rangle + b)$

How does it learn?

Optimize θ to minimize some loss/error/empirical risk on dataset

Involves evaluation of label function many times...

Nature. vol. 567, pp. 209-212 (2019)

 $label(\vec{y}) = \tilde{m}(\vec{x}) = \operatorname{sign}(\langle \Phi(\vec{x}) | W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) | \Phi(\vec{x}) \rangle + b)$

How does it learn?

Optimize θ to minimize some loss/error/empirical risk on dataset

What does it do?

$$\begin{split} w_{\alpha}(\vec{\theta}) &= \operatorname{tr} \left[W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) P_{\alpha} \right] \\ \Phi_{\alpha}(\vec{x}) &= \left\langle \Phi(\vec{x}) \left| P_{\alpha} \right| \Phi(\vec{x}) \right\rangle \\ \tilde{m}(x) &= \operatorname{sign} \left(2^{-n} \sum_{\alpha} w_{\alpha}(\vec{\theta}) \Phi_{\alpha}(\vec{x}) + b \right) \end{split}$$

Nature. vol. 567, pp. 209-212 (2019)

$$label(\vec{y}) = \tilde{m}(\vec{x}) = sign(\langle \Phi(\vec{x}) | W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) | \Phi(\vec{x}) \rangle + b)$$

How does it learn?

Optimize θ to minimize some loss/error/empirical risk on dataset

What does it do?

$$w_{\alpha}(\vec{\theta}) = \operatorname{tr} \left[W^{\dagger}(\vec{\theta}) \mathbf{f} W(\vec{\theta}) P_{\alpha} \right]$$

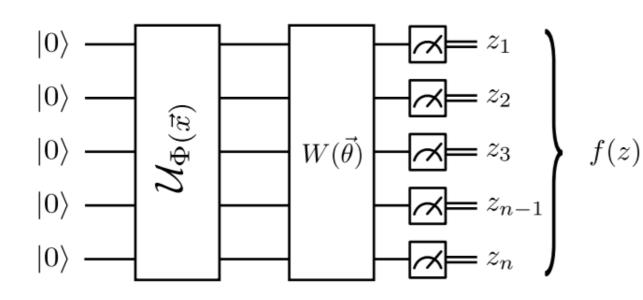
 $\Phi_{\alpha}(\vec{x}) = \langle \Phi(\vec{x}) | P_{\alpha} | \Phi(\vec{x}) \rangle$
 $\tilde{m}(x) = \operatorname{sign} \left(2^{-n} \sum_{\alpha} w_{\alpha}(\vec{\theta}) \Phi_{\alpha}(\vec{x}) + b \right)$

-limitations on the model come into play here...-not *all hyperplanes* reachable...

-not maximal margin attained!

The group with this project will clarify this in report.

Summary:

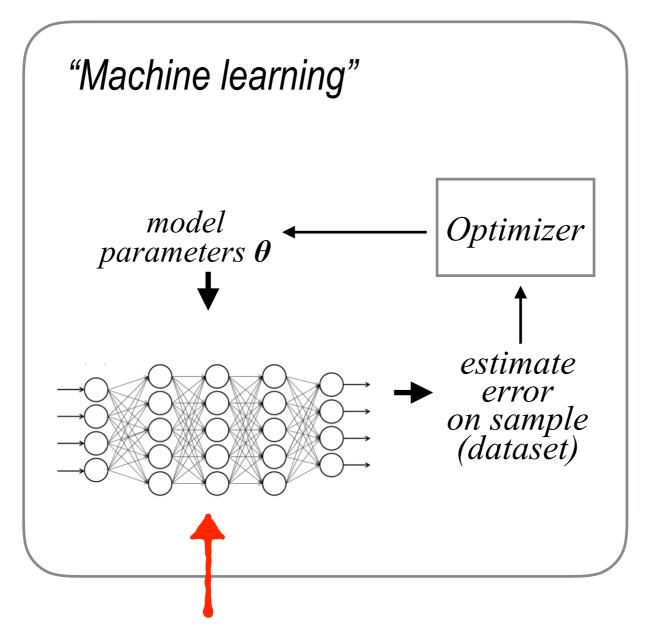


-estimate probability of -1/1
-take estimate of expected value
-use this to label
-loop optimizing θ on dataset

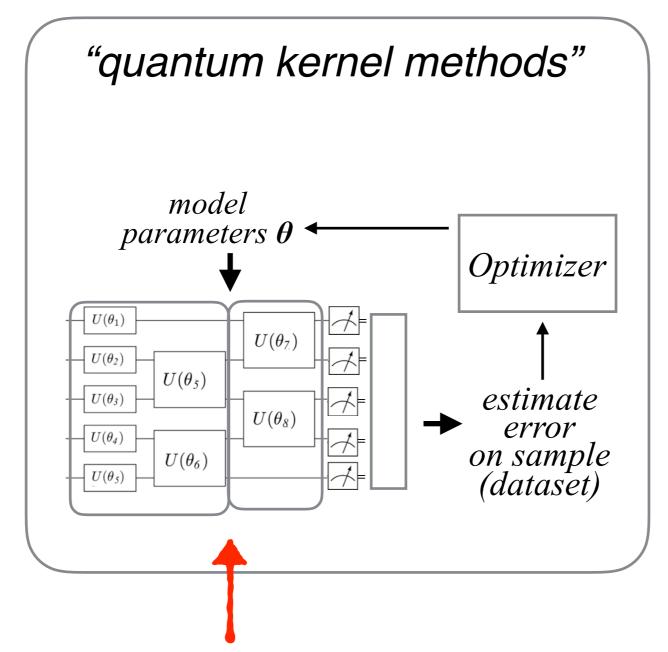
These are basic ideas, with (some) steps omitted. The group with this project will report this precisely.

Nature. vol. 567, pp. 209-212 (2019)

Note this is much like training NNs or other general models



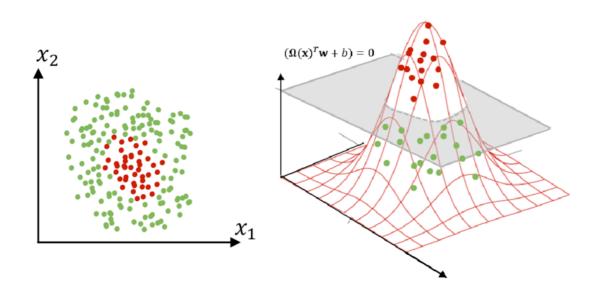
family of functions. if it's "good", we can generalize well But you train a "quantum" network, without backprop, ofc.



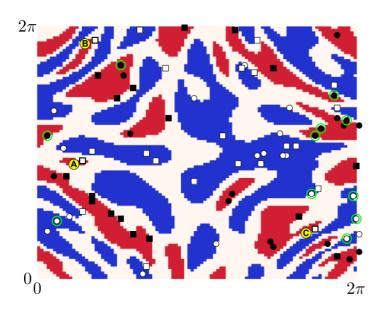
How about "shallow quantum circuits"? -instead neural network, train a QC! -related to ideas from q. condensed-matter physics (VQE)

Phys. Rev. Lett. 122, 040504 2019 Nature 567, 209–212 (2019) (c.f. Elizabeth Behrman in '90s)

BUT it can be interpreted as SVM So what does it do?



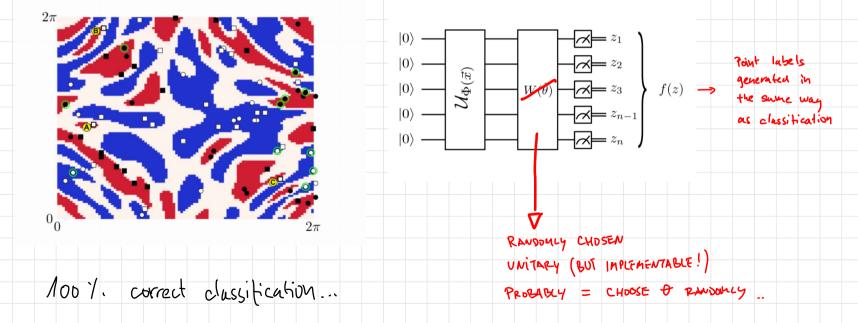
Two slices of quantum kernels:



ORIGINAL PAPER

- PERFORMANLE OF SUCH Q-KERNELS STUDIED IN A NUMBER OF WORKS

- IN OPIGINAL PAPER : GENERALIZATION PERFORMANE ON ARTIFICIAL DATASETS



Cost functions and optimization?

Noise tolerance!

Advantages?

Two models, back-to-back?

That's the question...

Supervised learning with quantum enhanced feature spaces Havlicek, Córcoles, Temme, Harrow, Kandala, Chow, Gambetta Nature. vol. 567, pp. 209-212 (2019)