And now for something completely different:

Quantum Support Vector Machines

but this time without quantum databases, or
quantum-linear-systems-HHL quantum linear algebra tricks

this one could work on near-term quantum computers

Supervised learning with quantum enhanced feature spaces
(E) AgE D ON) Havlicek, Corcoles, Temme, Harrow, Kandala, Chow, Gambetta

Nature. vol. 567, pp. 209-212 (2019)

& n bawch ol(otwer [Weva tuve

1) Background
* limitations of QCs

» Support Vector Machines, QSVM (1) and the kernel trick
» Variational (parametrized) quantum circuits

2) Support Vector Machine with quantum kernels
1) version 1: “quantum-assisted”
2) version 2: “full quantum”

3) Some results

1) Limitations of real-world QCs

20 qubit “QC’

Banana for scale

L/

Also one qubit is much more
expensive than a banana...

Limited size Connectivity
~100s qubits and gate

near-term restrictions

Gate errors

decoherence (much above
FT limits)

Decoherence: effects leading to degradation of qubit(s) state
usually from “coupling to environment” and relaxation

+ dephasing (environment “measures” qubit)

+ de-polarization (gets noisy)

+ relaxation (collapses to “ground state”)

+ dissipation

1) Limitations of real-world QCs

20 qubit “QC’

Banana for scale

Also one qubit is much more
expensive than a banana...

Limited size Connectivity
~100s qubits and gate

near-term restrictions

Gate errors

decoherence (much above
FT limits)

In short: qubits have a life-time (half-life)....
up to miliseconds

gates can take 10s-100s of nanoseconds

1) Limitations of real-world QCs

20 qubit “QC’

Also one qubit is much more
expensive than a banana...

amenable to
architecture
limits

amenable to
size limits

broad
impact &
relevance

1) Limitations of real-world QCs

real
world
Qubit Gate
decoherence errors
v v

limited circuit depth and size

recall: qubits have a life-time (half-life).... up to ms
gates can be dozens of ns

Not yet in the same system... nowadays
whatever you can to in 10 - 100 (parallel) gate times

Shallow (constant depth) circuits

\4

O(1)
(indep. from n)

Tangent: Quantum depth complexity

t -
n .
' -
o(l) O(loo* O(poly(n))
(indep. from n) (log"(w)

-better than classical , “BQP” = full QC

const depth for relational Hard part of Shor's algo.

problems

_ | Ground states

-likely better for sampling of complex systems in

problems, no matter what polytime

depth of classical computer | (multi-scale entanglement

'NOT better than CC for renormalization ansatz)

decision problems

10.1126/science.aar3106

1.2) Support vector machines

Maximum.
\ /margin
N

> hRN
X, .

. >
X4

separating hyperplanes SVM: max-margin hyperplanes

(linear classifier, not SVM)

http://opencv-python-tutroals.readthedocs.org

D = {(xz,yz)}z T; € Rdayi < {_17 1}

X, O
Quadratic problem:
1
arg min —||w/|| O
w,b 2
such that y;(w'™x; +b)>1, i=1,...,N.
7
\ Maximum.
.)/i(WTXi + b) - . /mZ:gliTr]wlm'
arg max min . £ M
wb ie{l Ny [jwl] ~—

SVM: max-margin hyperplanes

Note: defined on the basis of
“Support vectors’

http://opencv-python-tutroals.readthedocs.org

Primal problem: Dual problem:

arg min lHWH2 arg max Z@: — 3 Z Za ;yiy;i(%i)T
w.b 2 =1 j=1
such that y;(wTx; +b)>1, i=1,...,N. such that «; > 0, fori =0,...,N,
N
_ (wTx; + b
argmax min yi{(w'x; + b) and » aiy; = 0. N
w,b i€{l,...,N} HWH i=1 W — Z()ﬁyixi
, .

Why bother with dual problem? Representation in terms of datapoints
» sparser evaluation (W*)Tx + b* = (Z 0iyi(%)) + b
* only inner products matter aiay;yj(%i)Tx;.

» was handy for quantum tricks

c.f. Representer theorems

Why one should actually bother with SVMs:
when data is NOT linearly separable

Ay A o
. L4,
A . ‘\‘ <t & a
A ‘AA‘ ’ .“ AA‘
£ Y X o
e 4
PO, SOOI O PR
™ N .%. ® ‘{‘ ® *
2 o ® ® At ,. o
A‘#“ ¢ '. &
= E 3 $A‘ ..
A ° A r A .rq A
A LN A "g:.
2 ® Y o
| R T R LR
“ * LA o‘o.: “‘: .’
i “aa Ata A 0%
.0.‘ s ‘g . e °
....‘. rs :‘ﬂ‘ . A’ é"‘A ..:3‘
9 2aha # 8 e
soo.:o o & o® ’
2
0’ <’ o ~°. % °

Non-separable datasets?
-slack variables (this lead to QSVM - type 1)
-feature mapping and the kernel trick

c.f.: Cover’s theorem...

The kernel trick:

one can “train” and evaluate SVM classifiers in rich
feature spaces without ever mapping data-points into
said spaces. They can even be infinite dimensional

The kernel trick

Recall... only inner products matter: K(xi,xj) = (d(xi), P(x;)) (qS — CID)
arg max Zoz, — = ZZ@ Ozjy,yj X, T arg Mmax ZO&, — = Z Z(X ozjy,yj Cb()>
i=1 j=1 =1 j=1

kernels can sometimes be evaluated (much) more efficiently directly:

E.qg. (stupidly)
(X17X2,X3)H¢(X):<X1X1 X1X2 X1X3 XoX1 XoXo X9X3 X3X1 X3XD X3X3)T

d d
— y: y: XiZiX[Z; Runtime for ¢(X)I 0(d2)

=1 j=1

c.f. Mercer’s theorem

The kernel trick

Recall... only inner products matter: K(xi,xj) = (d(xi), P(x;)) (qS — CID)
arg max Zoz, — = ZZ@ Ozjy,yj X, T arg Mmax ZO&, — = Z Z(X ozjy,y, d)()>
i=1 j=1 =1 j=1

T
qb(X):(Xle X1X2 X1X3 X2X1 XoXp XpX3 X3X1 X3XD X3X3)

d d d
reverse-engineered: K(x,z) = (xTz)? = (Z x,z,) (Zx;z,) sz,z,szj d(x), P(2)).
=1 Jj=1

=1

Directly:

Yay, quadratic speedup

Runtime: O(d).
c.f. Mercer’s theorem

The kernel trick:

one can “train” and evaluate SVM classifiers in rich
feature spaces without ever mapping data-points into
said spaces. They can even be infinite dimensional

Feature maps matter,
and sometimes kernels are not efficiently computable...

Feature maps matter,
and sometimes kernels are not efficiently computable...

0) — -

0) — _ —

>)

0) —— |
N

0) — -

0) — |—

Usz =exp i » ¢s(@)]] Z
SC[n] 1€S

¢} () = z; and ¢yq 93 (T) = (7 — 21) (7 — T2)

Nature. vol. 567, pp. 209-212 (2019)

Feature maps matter,
and sometimes kernels are not efficiently computable...

() -
Kernel!) 0
: 0) s P (
(1) |D(Z & =
(@) (@)) o SIS,
S S
Can be hard to compute. 0) — (0
0) — (0]
_ . 4 | Do this quantumly
Up(z) = exp (z S%%] ¢s(T) 1;[9 Zz) (recall QC is good for inner products)

¢1:3(T) = z; and ¢y 93(T) = (7 — z1) (7 — z2)

Nature. vol. 567, pp. 209-212 (2019)

Feature maps matter,
and sometimes kernels are not efficiently computable...

Uq;(f) = exp (’L Z Qﬁs(f) H Zz)
SC[n]

b1} (%) = x5 and ¢y 93(T) = (7 — 1) (7 — 22) ()> - I
5
0) — § —
":Qf){l,'rwz.}(ff)ZlZ'rn p—
€ Z(;', 0> - I
0) — |—

Uy = H"Us H®"Ug - - - H®"Ug

Nature. vol. 567, pp. 209-212 (2019)

But there is also the fully quantum version:

0) — K= 21
0) — = XK= 22
0) — g W (6) K= 23 } f(2) f(z):{0,1}" — {-1,1}
0) — A= Zn—1
0) — A= zn)
16, x| 07
18
[*p 7| L
II Tl Ul = e1atn it
o U1 K SREREEE A

repeat | - times

Nature. vol. 567, pp. 209-212 (2019)

Ty THE WAY ... CIRLUTS OF THIS TYPE

/ \
T

WHCH DEVIATE TROM THE Distete Galese1 { M, W, caot)
BUT VTILIZE (N NURGER OF) ComTIM/oUS TRRRAMETER ELEMEWTS NeE CAUED

Pranmetrized OR UaiATiovaAL CiRevints

TMeY ARE ExpERENVALLy WEW -HoTVATED

exo ((Haths U®=exe(ine) .

How does it output a label?

label(§) = m(Z) = sign((®(F) [WT(@)EW ()| 8(Z)) + b)

—
— _/

involves running circuit many times

Nature. vol. 567, pp. 209-212 (2019)

How does it output a label?

label(§) = (@) = sign((®(&) W (O)EW ()| (2)) + b)

How does it learn?

thimize 0 to minimize some loss/error/empirical risk on dataset
V —

Involves evaluation of label function many times...

Nature. vol. 567, pp. 209-212 (2019)

How does it output a label?

—

label(if) = m(Z) = sign((®(@) W (E)EW (6)] @(&)) + b)

How does it learn?
Optimize 0 to minimize some loss/error/fempirical risk on dataset

What does it do?

m(z) = sign (2_" > o Wa(0)®o(Z) + b)

Nature. vol. 567, pp. 209-212 (2019)

How does it output a label?
label(§) = () = sign((®(&) W (O)EW ()| @(2)) + b)

How does it learn?
Optimize 0 to minimize some loss/error/fempirical risk on dataset

What does it do? -limitations on the model
come into play here...
-not *all hyperplanes®
reachable...

-not maximal margin
attained!

The group with this project
will clarify this in report.

Nature. vol. 567, pp. 209-212 (2019)

Summary:

0) AKE=21)
0) — _ A= 22 -estimate probability of -1/1
) . -take estimate of expected value
0) — = 2 2z
O> N o= ; } 1 -use this to label
) — = -loop optimizing 6 on dataset
0) — A= Zn)

These are basic ideas, with (some) steps omitted.
The group with this project will report this precisely.

Nature. vol. 567, pp. 209-212 (2019)

Note this is much like training NNs or other general models

(o R

achine learning”

model 4 Optimizer
parameters 0
estimate

-» error
on sample
(dataset)
family of functions.

if it's “good’, we can generalize well

28

But you train a “quantum” network, without backprop, ofc.

f “‘guantum kernel methods” \

model
parameters 0 <

v Optimizer

(o6 Y DAk
U(6,)
— U(62) —-/7(= T
V@) vy | estimate
Iropl Yl error
on sample

[70 sy (dataset)

How about “shallow quantum circuits”?

-instead neural network, train a QC!
-related to ideas from q. condensed-matter physics (VQE)

Phys. Rev. Lett. 122, 040504 2019
Nature 567, 209-212 (2019)
o9 (c.f. Elizabeth Behrman in ‘90s)

BUT it can be interpreted as SVM
So what does it do?

OR\QWNAL PKPEN MSc Tuesic Maeoiross (LIACS)

- ?Ee.vo‘Z-"\MLe OoF GuckHl

R- KERMEL CIUDIED IV & AMUMAEL of wWiRks

- IV oRlywaL PAPCR : CEMEEALIZATION TERFRMAVE oMl
AeTITICIAL DAIASETS

/lOO / Oti(ra()t (\,((ngik(m({o\/\..\

P Z9 ?&M" |a.‘9ds
) qeneraled v
§ the sume w

os class headion

5
f

v

Rawgoury CoseN
UMTAEY (BT [HPEHENTALLE D)
ProBAUY = CHoSE © Ravdohty

Cost functions and optimization?

Noise tolerance!

Advantages?
Two models, back-to-back?

That's the question...

Supervised learning with quantum enhanced feature spaces
Havlicek, Corcoles, Temme, Harrow, Kandala, Chow, Gambetta

Nature. vol. 567, pp. 209-212 (2019)

