
And now for something completely different: 

Quantum Support Vector Machines

but this time without quantum databases, or 
quantum-linear-systems-HHL quantum linear algebra tricks

this one could work on near-term quantum computers

BASED ON :

& a bunch of other literature
. . .



1) Background 
• limitations of QCs  
• Support Vector Machines, QSVM (1) and the kernel trick 
• Variational (parametrized) quantum circuits 
 

2) Support Vector Machine with quantum kernels 
1) version 1: “quantum-assisted” 
2) version 2: “full quantum” 

 
 

3) Some results
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1) Limitations of real-world QCs

Decoherence: effects leading to degradation of qubit(s) state 
usually from “coupling to environment” and relaxation 
• dephasing (environment “measures” qubit) 
• de-polarization (gets noisy) 
• relaxation (collapses to “ground state”) 
• dissipation



1) Limitations of real-world QCs

In short: qubits have a life-time (half-life)….  
up to miliseconds

gates can take 10s-100s of nanoseconds 
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1) Limitations of real-world QCs
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1) Limitations of real-world QCs

limited circuit depth and size

recall: qubits have a life-time (half-life)…. up to ms
gates can be dozens of ns 

whatever you can to in 10 - 100 (parallel) gate times

O(1) 
(indep. from n)

n

Not yet in the same system… nowadays

Shallow (constant depth) circuits



10.1126/science.aar3106

n

O(1) 
(indep. from n)

O(logk(n)) O(poly(n)) 

… ……

Tangent: Quantum depth complexity

-better than classical 
const depth for relational 
problems 

-likely better for sampling  
problems, no matter what  
depth of classical computer

-NOT better than CC for 
decision problems

Hard part of Shor’s algo. “BQP” =  full QC

Ground states  
of complex systems in 
polytime 
(multi-scale entanglement  
renormalization ansatz)



1.2) Support vector machines 



http://opencv-python-tutroals.readthedocs.org

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

separating hyperplanes 
(linear classifier, not SVM)

SVM: max-margin hyperplanes 



http://opencv-python-tutroals.readthedocs.org

Note: defined on the basis of 
“support vectors”

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

SVM: max-margin hyperplanes 

Quadratic problem:



c.f.  Representer theorems

Why bother with dual problem? Representation in  terms of datapoints 

• sparser evaluation 

• only inner products matter 

• was handy for quantum tricks

Primal problem: Dual problem:



Why one should actually bother with SVMs:  
when data is NOT linearly separable 



Non-separable datasets? 
-slack variables (this lead to QSVM - type 1) 
-feature mapping and the kernel trick

~x
�! �(~x)

�(~x)†.w + b = 0

� : Rd ! RD

c.f.: Cover’s theorem…



The kernel trick: 

one can “train” and evaluate SVM classifiers in rich 
feature spaces without ever mapping data-points into  
said spaces.  They can even be infinite dimensional



The kernel trick

Recall… only inner products matter:

c.f. Mercer’s theorem

kernels can sometimes be evaluated (much) more efficiently directly:

(� = �...)

E.g. (stupidly)

(x1, x2, x3) 7!



The kernel trick

Recall… only inner products matter:

c.f. Mercer’s theorem

(� = �...)

reverse-engineered:

Directly:

Yay, quadratic speedup



The kernel trick: 

one can “train” and evaluate SVM classifiers in rich 
feature spaces without ever mapping data-points into  
said spaces.  They can even be infinite dimensional



Feature maps matter, 
 and sometimes kernels are not efficiently computable…



Feature maps matter, 
 and sometimes kernels are not efficiently computable…

~x 7! U�(~x)|0i = |�(~x)i

 Nature. vol. 567, pp. 209-212 (2019)



†

|h�(~y)|�(~x)i|2
Kernel! 

Can be hard to compute.

Feature maps matter, 
 and sometimes kernels are not efficiently computable…

Do this quantumly 
(recall QC is good for inner products)

 Nature. vol. 567, pp. 209-212 (2019)



Feature maps matter, 
 and sometimes kernels are not efficiently computable…

U� = H
⌦n

U�H
⌦n

U� · · ·H⌦n
U�

 Nature. vol. 567, pp. 209-212 (2019)



But there is also the fully quantum version:

f(z) : {0, 1}n ! {�1, 1}

 Nature. vol. 567, pp. 209-212 (2019)



BY THE WAY . . .
CIRCUITS OF THIS TYPE

(

:

WHICH DEVIATE FROM THE DISCRETE GATESET { H ,
%
,
CNOT }

BUT UTILIZE ( A NUMBER OF ) CONTINUOUS PARAMETER ELEMENTS ARE CALLED

PARAMETRIZED OR VARIATIONAL CIRCUITS

THEY ARE EXPERIMENTALLY WELL -MOTIVATED

exp (i Hatt, UH) -- expli Hot . .
. .



label(~y) =

How does it output a label?

involves running circuit many times

 Nature. vol. 567, pp. 209-212 (2019)

-



label(~y) =

Optimize θ to minimize some loss/error/empirical risk on dataset

How does it output a label?

How does it learn?

Involves evaluation of label function many times…

 Nature. vol. 567, pp. 209-212 (2019)
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label(~y) =

Optimize θ to minimize some loss/error/empirical risk on dataset

How does it output a label?

How does it learn?

What does it do?

 Nature. vol. 567, pp. 209-212 (2019)
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label(~y) =

Optimize θ to minimize some loss/error/empirical risk on dataset

How does it output a label?

How does it learn?

What does it do? -limitations on the model 
come into play here… 
-not *all hyperplanes* 
reachable… 

-not maximal margin 
attained! 

The group with this project  
will clarify this in report. 

 Nature. vol. 567, pp. 209-212 (2019)



Summary:

-estimate probability of -1/1 
-take estimate of expected value 
-use this to label 
-loop optimizing θ on dataset

These are basic ideas, with (some) steps omitted. 
The group with this project will report this precisely. 

 Nature. vol. 567, pp. 209-212 (2019)

c



Note this is much like training NNs or other general models

model  
parameters θ

estimate  
error 

on sample 
(dataset)

Optimizer

“Machine learning”

family of functions.  
if it’s “good”, we can generalize well

28



model  
parameters θ

estimate  
error 

on sample 
(dataset)

Optimizer

How about “shallow quantum circuits”? 
-instead neural network, train a QC! 
-related to ideas from q. condensed-matter physics (VQE) 

=

=

=

=

=

“quantum kernel methods” 

Phys. Rev. Lett. 122, 040504 2019 
Nature 567, 209–212 (2019) 
(c.f. Elizabeth Behrman in ‘90s)29

But you train a “quantum” network, without backprop, ofc.



BUT it can be interpreted as SVM  
So what does it do?

Two slices of quantum kernels:

ORIGINAL PAPER MSC THESIS MHRDIROSIAN (LACS )



- PERFORMANCE OF SUCH Q- KERNELS STUDIED IN A NUMBER OF WORKS

- IN ORIGINAL PAPER : GENERALIZATION PERFORMANCE ON

ARTIFICIAL DATASETS

Point labels

generated in

✓ →
the same way

/
as classification

F
RANDOMLY CHOSEN

UNITARY (BUT IMPLEMENTABLE ! )
100 '/ . correct classification .

. . PROBABLY = CHOOSE 0 RANDOMLY
. .



Noise tolerance!

Cost functions and optimization?



Advantages? 

Two models, back-to-back? 

That’s the question…

 Supervised learning with quantum enhanced feature spaces 

Havlicek, Córcoles, Temme, Harrow, Kandala, Chow, Gambetta 

Nature. vol. 567, pp. 209-212 (2019)


