And now for something completely different:

Quantum Support Vector Machines

but this time without quantum databases, or
quantum-linear-systems-HHL quantum linear algebra tricks

this one could work on near-term quantum computers

Supervised learning with quantum enhanced feature spaces
(E) AgE D ON ) Havlicek, Corcoles, Temme, Harrow, Kandala, Chow, Gambetta
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1) Background
* limitations of QCs

» Support Vector Machines, QSVM (1) and the kernel trick
» Variational (parametrized) quantum circuits

2) Support Vector Machine with quantum kernels
1) version 1: “quantum-assisted”
2) version 2: “full quantum”

3) Some results



1) Limitations of real-world QCs

20 qubit “QC’

Banana for scale

L/

Also one qubit is much more
expensive than a banana...

Limited size Connectivity
~100s qubits and gate

near-term restrictions

Gate errors

decoherence (much above
FT limits)

Decoherence: effects leading to degradation of qubit(s) state
usually from “coupling to environment” and relaxation

+ dephasing (environment “measures” qubit)

+ de-polarization (gets noisy)

+ relaxation (collapses to “ground state”)

+ dissipation



1) Limitations of real-world QCs

20 qubit “QC’

Banana for scale

Also one qubit is much more
expensive than a banana...

Limited size Connectivity
~100s qubits and gate

near-term restrictions

Gate errors

decoherence (much above
FT limits)

In short: qubits have a life-time (half-life)....
up to miliseconds

gates can take 10s-100s of nanoseconds



1) Limitations of real-world QCs

20 qubit “QC’

Also one qubit is much more
expensive than a banana...

amenable to
architecture
limits

amenable to
size limits

broad
impact &
relevance



1) Limitations of real-world QCs

real
world
Qubit Gate
decoherence errors
v v

limited circuit depth and size

recall: qubits have a life-time (half-life).... up to ms
gates can be dozens of ns

Not yet in the same system... nowadays
whatever you can to in 10 - 100 (parallel) gate times

Shallow (constant depth) circuits
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O(1)
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Tangent: Quantum depth complexity
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-better than classical , “BQP” = full QC

const depth for relational Hard part of Shor's algo.

problems

_ | Ground states

-likely better for sampling of complex systems in

problems, no matter what polytime

depth of classical computer | (multi-scale entanglement

'NOT better than CC for renormalization ansatz)

decision problems

10.1126/science.aar3106



1.2) Support vector machines
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separating hyperplanes SVM: max-margin hyperplanes

(linear classifier, not SVM)

http://opencv-python-tutroals.readthedocs.org
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SVM: max-margin hyperplanes

Note: defined on the basis of
“Support vectors’

http://opencv-python-tutroals.readthedocs.org



Primal problem: Dual problem:

arg min lHWH2 arg max Z@: — 3 Z Za ;yiy;i(%i)T
w.b 2 =1 j=1
such that y;(wTx; +b)>1, i=1,...,N. such that «; > 0, fori =0,...,N,
N
_ (wTx; + b
argmax  min yi{(w'x; + b) and » aiy; = 0. N
w,b i€{l,...,N} HWH i=1 W — Z()ﬁyixi
, .

Why bother with dual problem? Representation in terms of datapoints
» sparser evaluation (W*)Tx + b* = (Z 0iyi(%) ) + b
* only inner products matter aiay;yj(%i)Tx;.

» was handy for quantum tricks

c.f. Representer theorems



Why one should actually bother with SVMs:
when data is NOT linearly separable
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Non-separable datasets?
-slack variables (this lead to QSVM - type 1)
-feature mapping and the kernel trick

c.f.: Cover’s theorem...



The kernel trick:

one can “train” and evaluate SVM classifiers in rich
feature spaces without ever mapping data-points into
said spaces. They can even be infinite dimensional



The kernel trick

Recall... only inner products matter: K(xi,xj) = (d(xi), P(x;)) (qS — CID)
arg max Zoz, — = ZZ@ Ozjy,yj X, T arg Mmax ZO&, — = Z Z(X ozjy,yj Cb( )>
i=1 j=1 =1 j=1

kernels can sometimes be evaluated (much) more efficiently directly:

E.qg. (stupidly)
(X17X2,X3)H¢(X):<X1X1 X1X2 X1X3 XoX1 XoXo X9X3 X3X1  X3XD X3X3)T

d d
— y: y: XiZiX[Z; Runtime for ¢(X)I 0(d2)

=1 j=1

c.f. Mercer’s theorem



The kernel trick

Recall... only inner products matter: K(xi,xj) = (d(xi), P(x;)) (qS — CID)
arg max Zoz, — = ZZ@ Ozjy,yj X, T arg Mmax ZO&, — = Z Z(X ozjy,y, d)( )>
i=1 j=1 =1 j=1

T
qb(X):(Xle X1X2 X1X3 X2X1 XoXp XpX3 X3X1 X3XD X3X3)

d d d
reverse-engineered: K(x,z) = (xTz)? = (Z x,z,) (Zx;z,) sz,z,szj d(x), P(2)).
=1 Jj=1

=1

Directly:

Yay, quadratic speedup

Runtime: O(d).
c.f. Mercer’s theorem




The kernel trick:

one can “train” and evaluate SVM classifiers in rich
feature spaces without ever mapping data-points into
said spaces. They can even be infinite dimensional



Feature maps matter,
and sometimes kernels are not efficiently computable...



Feature maps matter,
and sometimes kernels are not efficiently computable...
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Feature maps matter,
and sometimes kernels are not efficiently computable...

() -
Kernel! ) 0
: 0) s P (
(1) |D(Z & =
(@) (@)) o SIS,
S S
Can be hard to compute. 0) — (0
0) — (0]
_ . 4 | Do this quantumly
Up(z) = exp (z S%%] ¢s(T) 1;[9 Zz) (recall QC is good for inner products)

¢1:3(T) = z; and ¢y 93(T) = (7 — z1) (7 — z2)

Nature. vol. 567, pp. 209-212 (2019)



Feature maps matter,
and sometimes kernels are not efficiently computable...
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But there is also the fully quantum version:
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repeat | - times

Nature. vol. 567, pp. 209-212 (2019)



Ty THE WAY ... CIRLUTS OF THIS TYPE
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How does it output a label?

label(§) = m(Z) = sign((®(F) [WT(@)EW ()| 8(Z)) + b)

—
— _/

involves running circuit many times

Nature. vol. 567, pp. 209-212 (2019)



How does it output a label?

label(§) = (@) = sign((®(&) W (O)EW ()| (2)) + b)

How does it learn?

thimize 0 to minimize some loss/error/empirical risk on dataset
V —

Involves evaluation of label function many times...

Nature. vol. 567, pp. 209-212 (2019)



How does it output a label?

—

label(if) = m(Z) = sign((®(@) W (E)EW (6)] @(&)) + b)

How does it learn?
Optimize 0 to minimize some loss/error/fempirical risk on dataset

What does it do?

m(z) = sign (2_" > o Wa(0)®o(Z) + b)

Nature. vol. 567, pp. 209-212 (2019)



How does it output a label?
label(§) = () = sign((®(&) W (O)EW ()| @(2)) + b)

How does it learn?
Optimize 0 to minimize some loss/error/fempirical risk on dataset

What does it do? -limitations on the model
come into play here...
-not *all hyperplanes®
reachable...

-not maximal margin
attained!

The group with this project
will clarify this in report.

Nature. vol. 567, pp. 209-212 (2019)



Summary:

0) AKE=21 )
0) — _ A= 22 -estimate probability of -1/1
) . -take estimate of expected value
0) — = 2 2z
O> N o= ; } 1 -use this to label
) — = -loop optimizing 6 on dataset
0) — A= Zn )

These are basic ideas, with (some) steps omitted.
The group with this project will report this precisely.

Nature. vol. 567, pp. 209-212 (2019)



Note this is much like training NNs or other general models

(o R

achine learning”

model 4 Optimizer
parameters 0
estimate

-» error
on sample
(dataset)
family of functions.

if it's “good’, we can generalize well

28



But you train a “quantum” network, without backprop, ofc.

f “‘guantum kernel methods” \

model
parameters 0 <

v Optimizer
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How about “shallow quantum circuits”?

-instead neural network, train a QC!
-related to ideas from q. condensed-matter physics (VQE)

Phys. Rev. Lett. 122, 040504 2019
Nature 567, 209-212 (2019)
o9 (c.f. Elizabeth Behrman in ‘90s)



BUT it can be interpreted as SVM
So what does it do?

OR\QWNAL  PKPEN MSc Tuesic Maeoiross (LIACS)
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Cost functions and optimization?

Noise tolerance!



Advantages?
Two models, back-to-back?

That's the question...

Supervised learning with quantum enhanced feature spaces
Havlicek, Corcoles, Temme, Harrow, Kandala, Chow, Gambetta

Nature. vol. 567, pp. 209-212 (2019)



