
And now for something completely different:

Quantum Support Vector Machines

but this time without quantum databases, or
quantum-linear-systems-HHL quantum linear algebra tricks

this one could work on near-term quantum computers

BASED ON :

& a bunch of other literature
. . .

1) Background
• limitations of QCs
• Support Vector Machines, QSVM (1) and the kernel trick
• Variational (parametrized) quantum circuits 
 

2) Support Vector Machine with quantum kernels
1) version 1: “quantum-assisted”
2) version 2: “full quantum”

 
 

3) Some results

Qubit
decoherence

Gate errors
(much above
FT limits)

Limited size
~100s qubits
near-term

Connectivity
and gate

restrictions

real
world

20 qubit “QC”

Banana for scale

Also one qubit is much more
expensive than a banana…

1) Limitations of real-world QCs

Decoherence: effects leading to degradation of qubit(s) state
usually from “coupling to environment” and relaxation
• dephasing (environment “measures” qubit)
• de-polarization (gets noisy)
• relaxation (collapses to “ground state”)
• dissipation

1) Limitations of real-world QCs

In short: qubits have a life-time (half-life)….
up to miliseconds

gates can take 10s-100s of nanoseconds

Qubit
decoherence

Gate errors
(much above
FT limits)

Limited size
~100s qubits
near-term

Connectivity
and gate

restrictions

real
world

20 qubit “QC”

Banana for scale

Also one qubit is much more
expensive than a banana…

tolerance
to noise

broad
impact &

relevance

amenable to
size limits

amenable to
architecture

limits

QAI?

20 qubit “QC”

Banana for scale

Also one qubit is much more
expensive than a banana…

1) Limitations of real-world QCs

Qubit
decoherence

Gate
errors

Limited size
~100s qubits
near-term

Gate and
connectivity
restrictions

real
world

1) Limitations of real-world QCs

limited circuit depth and size

recall: qubits have a life-time (half-life)…. up to ms
gates can be dozens of ns

whatever you can to in 10 - 100 (parallel) gate times

O(1)
(indep. from n)

n

Not yet in the same system… nowadays

Shallow (constant depth) circuits

10.1126/science.aar3106

n

O(1)
(indep. from n)

O(logk(n)) O(poly(n))

… ……

Tangent: Quantum depth complexity

-better than classical
const depth for relational
problems

-likely better for sampling
problems, no matter what
depth of classical computer

-NOT better than CC for
decision problems

Hard part of Shor’s algo. “BQP” = full QC

Ground states
of complex systems in
polytime
(multi-scale entanglement
renormalization ansatz)

1.2) Support vector machines

http://opencv-python-tutroals.readthedocs.org

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

separating hyperplanes
(linear classifier, not SVM)

SVM: max-margin hyperplanes

http://opencv-python-tutroals.readthedocs.org

Note: defined on the basis of
“support vectors”

D = {(xi, yi)}i xi 2 Rd, yi 2 {�1, 1}

SVM: max-margin hyperplanes

Quadratic problem:

c.f. Representer theorems

Why bother with dual problem? Representation in terms of datapoints

• sparser evaluation 

• only inner products matter 

• was handy for quantum tricks

Primal problem: Dual problem:

Why one should actually bother with SVMs:
when data is NOT linearly separable

Non-separable datasets?
-slack variables (this lead to QSVM - type 1)
-feature mapping and the kernel trick

~x
�! �(~x)

�(~x)†.w + b = 0

� : Rd ! RD

c.f.: Cover’s theorem…

The kernel trick:

one can “train” and evaluate SVM classifiers in rich
feature spaces without ever mapping data-points into
said spaces. They can even be infinite dimensional

The kernel trick

Recall… only inner products matter:

c.f. Mercer’s theorem

kernels can sometimes be evaluated (much) more efficiently directly:

(� = �...)

E.g. (stupidly)

(x1, x2, x3) 7!

The kernel trick

Recall… only inner products matter:

c.f. Mercer’s theorem

(� = �...)

reverse-engineered:

Directly:

Yay, quadratic speedup

The kernel trick:

one can “train” and evaluate SVM classifiers in rich
feature spaces without ever mapping data-points into
said spaces. They can even be infinite dimensional

Feature maps matter,
 and sometimes kernels are not efficiently computable…

Feature maps matter,
 and sometimes kernels are not efficiently computable…

~x 7! U�(~x)|0i = |�(~x)i

 Nature. vol. 567, pp. 209-212 (2019)

†

|h�(~y)|�(~x)i|2
Kernel!

Can be hard to compute.

Feature maps matter,
 and sometimes kernels are not efficiently computable…

Do this quantumly
(recall QC is good for inner products)

 Nature. vol. 567, pp. 209-212 (2019)

Feature maps matter,
 and sometimes kernels are not efficiently computable…

U� = H
⌦n

U�H
⌦n

U� · · ·H⌦n
U�

 Nature. vol. 567, pp. 209-212 (2019)

But there is also the fully quantum version:

f(z) : {0, 1}n ! {�1, 1}

 Nature. vol. 567, pp. 209-212 (2019)

BY THE WAY . . .
CIRCUITS OF THIS TYPE

(

:

WHICH DEVIATE FROM THE DISCRETE GATESET { H ,
%
,
CNOT }

BUT UTILIZE (A NUMBER OF) CONTINUOUS PARAMETER ELEMENTS ARE CALLED

PARAMETRIZED OR VARIATIONAL CIRCUITS

THEY ARE EXPERIMENTALLY WELL -MOTIVATED

exp (i Hatt, UH) -- expli Hot . .
. .

label(~y) =

How does it output a label?

involves running circuit many times

 Nature. vol. 567, pp. 209-212 (2019)

-

label(~y) =

Optimize θ to minimize some loss/error/empirical risk on dataset

How does it output a label?

How does it learn?

Involves evaluation of label function many times…

 Nature. vol. 567, pp. 209-212 (2019)

he

#

label(~y) =

Optimize θ to minimize some loss/error/empirical risk on dataset

How does it output a label?

How does it learn?

What does it do?

 Nature. vol. 567, pp. 209-212 (2019)

& -

label(~y) =

Optimize θ to minimize some loss/error/empirical risk on dataset

How does it output a label?

How does it learn?

What does it do? -limitations on the model
come into play here…
-not *all hyperplanes*
reachable…

-not maximal margin
attained!

The group with this project
will clarify this in report.

 Nature. vol. 567, pp. 209-212 (2019)

Summary:

-estimate probability of -1/1
-take estimate of expected value
-use this to label
-loop optimizing θ on dataset

These are basic ideas, with (some) steps omitted.
The group with this project will report this precisely.

 Nature. vol. 567, pp. 209-212 (2019)

c

Note this is much like training NNs or other general models

model  
parameters θ

estimate
error

on sample
(dataset)

Optimizer

“Machine learning”

family of functions.
if it’s “good”, we can generalize well

28

model  
parameters θ

estimate
error

on sample
(dataset)

Optimizer

How about “shallow quantum circuits”?
-instead neural network, train a QC!
-related to ideas from q. condensed-matter physics (VQE)

=

=

=

=

=

“quantum kernel methods”

Phys. Rev. Lett. 122, 040504 2019
Nature 567, 209–212 (2019)
(c.f. Elizabeth Behrman in ‘90s)29

But you train a “quantum” network, without backprop, ofc.

BUT it can be interpreted as SVM
So what does it do?

Two slices of quantum kernels:

ORIGINAL PAPER MSC THESIS MHRDIROSIAN (LACS)

- PERFORMANCE OF SUCH Q- KERNELS STUDIED IN A NUMBER OF WORKS

- IN ORIGINAL PAPER : GENERALIZATION PERFORMANCE ON

ARTIFICIAL DATASETS

Point labels

generated in

✓ →
the same way

/
as classification

F
RANDOMLY CHOSEN

UNITARY (BUT IMPLEMENTABLE !)
100 '/ . correct classification .

. . PROBABLY = CHOOSE 0 RANDOMLY
. .

Noise tolerance!

Cost functions and optimization?

Advantages?

Two models, back-to-back?

That’s the question…

 Supervised learning with quantum enhanced feature spaces

Havlicek, Córcoles, Temme, Harrow, Kandala, Chow, Gambetta

Nature. vol. 567, pp. 209-212 (2019)

