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Recap on classical 
backtracking

(1) What is a Constraint Satisfaction Problem?
(2) Example of CSP: the k-SAT problem
(3) Unstructured classical brute force search
(4) What is a backtracking algorithm?



What is a Constraint Satisfaction Problem?
Definition: A constraint satisfaction problem (CSP) is a problem defined on n 
variables  and specified by a set of constraints which must be satisfied by all 
variables.

Example: Map coloring, Sudoku, Crosswords, … 

Remark: The best algorithms for CSPs tend to have an exponential runtime, when 

the problem is taken in all its generality.
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Example of CSP: the k-SAT problem
3-SAT: Given a Boolean formula F in 3-conjunction normal form on n variables, is 
there a bit string y such that f(y)=1? 

Such a bitstring y is called a satisfying assignment.
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Unstructured 
classical 
backtracking

Backtracking is a common 

strategy to solve constraint 

satisfaction problems.

Given a CSP defined on n 
variables take values in a finite 

set of size s. Let’s say that s=3, 

so that each variable takes 

value 0,1 or 2. A bruteforce 

backtracking strategy is to 

explore all possibilities. 
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Bruteforce backtracking of k-SAT

A free variable is a variable whose value has not been assigned yet.

We fix a strategy to decide which variable needs to be considered next by the 
algorithm. Example: take the most significant variable, randomly pick a variable.

For the next free variable, we assign to each variable all its possible values: here 0 
and 1.

Assigning a value to a variable simplifies the formula. We recursively check whether 
the simplified formula is satisfiable.
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Bruteforce backtracking of Sudoku

Tactic = explore all 
possibilities

...

1 in 5x3

9 in 5x3

CONTRADICTION: 
backtrack to the 
previous 
configuration

NO 
CONTRADICTION:
Continue the 
exploration of the 
grid
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Bruteforce backtracking of Sudoku
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Unstructured classical backtracking

Consider a CSP C with n variables 
which take values in {0,...,s-1}.

A partial assignment a:{1,...,n}→
{0,...,s-1,*} is a function which 
associates each variable x to a value v 
or marks it as undefined (*).

Example: a partial assignment for 
k-SAT associates the value 0, 1 or 
‘undefined’ to each variable of the 
Boolean formula

ExhaustiveSearch(CSP C, partial assignment a):

If a is a solution for C: return True

If a is a counter-example for C: return False

b ← False

For every variable x in C:

For every value v in [s]:

a[x] ← v
b ←ExhaustiveSearch(C,a)

If b = True: return b

return False
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Unstructured classical backtracking

Given a CSP whose n variables take 
values in a finite set of size s, there is a 
classical backtracking algorithm which 
finds the solution in time O(sn). This is 
a bruteforce search algorithm works 
by an exhaustive search of all 
solutions.

ExhaustiveSearch(CSP C, partial assignment a):

If a is a solution for C: return True

If a is a counter-example for C: return False

b ← False

For every variable x in C:

For every value v in [s]:

a[x] ← v
b ←ExhaustiveSearch(C,a)

If b = True: return b

return False
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What is a backtracking algorithm?

Consider a CSP on n variables whose values are 

taken in [s] = {0,...,s-1}. Call V the set of variables.

Call A the set of all partial assignments V → 

{0,1,undef}

A predicate is a function P : A → 

{True,False,Undetermined} which determines 

whether a partial solution satisfies the problem.

A heuristics is a function h: A → [n] which 

determines the next variable to be considered.

The algorithm Backtrack determines if the CSP is 

satisfiable (and if yes, gives an answer) or not, 

starting from an indeterminate entry a:x↦undef.

Backtrack(a)

If P(a) = True then return a

If P(a) = False or a has no free bit then 

return FAIL

j <- h(a)

For v = 0..s-1:

Backtrack(a[x
j
 -> v])

return P(x)
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Case study: DPLL for k-SAT

Consider a k-CNF formula F on n variables whose 

values are taken in {0,1}. Call V the set of 

variables.

A partial assignment is a function V → {0,1,undef}

Call A the set of all partial assignments.

Various choices of heuristics h: A → [n].

Example: most significant variable, random, …

Starting from F and the partial assignment 

a:x↦undef, DPLL tries to build a satisfying 

assignment of the formula.

DPLL(F,a)

If a satisfies F then return True

If a does not satisfy F or a has no free bit then 

return False

F’ <- F with all the variables set to the value they 

have in a (unless that value is undefined). 

j <- h(a)

If F’ contains {x
j
} then 

return DPLL(F’,a[x
j
 → 1])

If F’ contains {~x
j
} then 

return DPLL(F’,a[x
j
 → 0])

return DPLL(F’,a[x
j
 → 0]) or DPLL(F’,a[x

j
 → 1])
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Speeding up search 
algorithms via Grover

(1) Balanced vs unbalanced trees
(2) Using Grover on balanced trees
(3) Grover isn’t enough for unbalanced trees



Balanced vs unbalanced trees

Full tree: each node has 0 or 2 children

Balanced tree: subtrees of a node differ in height 

by at most 1.

Perfect tree: full tree + all leaves at the same 

depth

An efficient backtracking algorithm tries to find a 

solution by exploring the most promising 

branches.

In which case: the subtree it explores is 

unbalanced
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Using Grover on balanced trees (for k-SAT)

Consider the k-SAT problem for a given Boolean 

formula F.

Define T to be the size of the balanced tree T 

defined by a classical backtracking algorithm.

Given access to an oracle f : [T] -> {0,1} such that 

f(x)=1 if x is a satisfying assignment, i.e. x is 

satisfying all clauses of F.

evaluations of f necessary to find x 

such that f(x)=1 with high probability (if it exists)

Grover assumes that the search space is known: 
all the possible solutions have been indexed prior 
to the search. This means that the search space is 
of size T.

Application: Grover can solve the k-SAT problem 
for a Boolean formula with n variables in time

whereas classical exhaustive search does it in 
time
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Grover isn’t enough for unbalanced trees

Balanced Unbalanced

Classical 
backtracking 2λn <2λn

Grover
2λn/2 2λn/2 

Grover assumes that the search space is known: all the 
possible solutions have been indexed prior to the search.

We need an algorithm whose execution depends on the 
choice made by the classical backtracking algorithm.

We need quantum backtracking. 16



Quantum backtracking 

(1) How to speedup classical backtracking
(2) How to construct a quantum walk operator 
(3) Case study: quantum backtracking for DPLL
(4) How to detect marked vertices within a search tree?



How to speed up classical backtracking

Build a quantum algorithm which 

determines whether there is a 

marked vertex (for k-SAT, a 

satisfying assignment), given an 

upper bound T on the number of 

vertices of the search tree 

generated by a classical 

backtracking algorithm

Reference: Montanaro, 2015.

QUANTUM BACKTRACKING
Input: quantum walk operator W, number of 

vertices T, and an upper bound d on the depth of 

the tree

(1) Repeatedly apply Quantum Phase 

Estimation (QPE) to the operator W on a 

state representing the root of the tree, with 

finite precision. If the eigenvalue is 1 

accept. Otherwise, reject.

(2) If the acceptance rate is above a 

pre-determined threshold, return YES. Else, 

return NO.
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How to construct a quantum walk operator

D
x
 is the diffusion operator for the node x, and 

represents the next moves of the backtracking 
algorithm, starting from x.
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Implementing diffusion operators
Each diffusion operator represents a set of 

moves of the quantum walk.

A diffusion operator on x is implemented with 

local knowledge: only knowing x and the 

children of x.

A step of the quantum walk is an application of 

the walk operator. 

The way we construct the state corresponding 

to x and all its children depends on how the 

backtracking algorithm chooses the next 

moves. 20

D
x 

is the identity if x is marked 



Case study: quantum backtracking for DPLL 

The unitary V determines the next 
moves, starting from an unmarked 
node x.  This process is done in two 
operations:
(1) check whether there are unit 
clauses (only one literal) and set the 
corresponding variable to true
(2) Select the next free variable

This implements the branching of the 
DPLL algorithm.
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Detecting a marked vertex
Algorithm: Applying phase estimation to a quantum walk (starting at the root) 
with precision         , where T and d are respectively upper bounds on the 
number of vertices of the tree and the depth of the tree, a solution  exists if the 
eigenvalue is 1, and there’s no solution otherwise.

Theorem (Belovs, 2013): This algorithm succeeds with high probability.

Consequence:  rounds of this algorithm can detect the existence of a 

solution.
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How a marked vertex is detected

Algorithm A: Applying phase estimation to a 

quantum walk (starting at the root) with precision 

       

where T and d are respectively upper bounds on 

the number of vertices of the tree and the depth 

of the tree, a solution  exists if the eigenvalue is 1, 

and there’s no solution otherwise.

Theorem (Belovs, 2013): Algorithm A succeeds 

with high probability.

Consequence:  rounds of this 

algorithm can detect the existence of a solution.

Algorithm A exploits an estimate of number of 

steps on the quantum walk necessary to 

encounter a marked vertex, starting from the 

root. It’s the hitting time.

It determines whether the set of marked vertices 

is non-empty by performing the quantum walk.

k-SAT: marked vertex = satisfying assignment

Property: if there is a marked vertex, then the 

state representing the root is close to an 

eigenvector of the walk operator W with 

eigenvalue 1.
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Finding all satisfying assignments
Assume that every vertex in the search tree has a finite degree (at most s).

To find a marked vertex starting from any vertex x in the tree, it suffices to apply the 
detection algorithm on each subtree with a child of x as root, until we find a subtree 
with a marked vertex as root.

The search tree is of depth at most d, therefore we need to run the detection 

algorithm at most O(d) to reach a leaf which is a marked vertex. This process can be 
repeated to find all satisfying assignments, with an overall time complexity of 

24



Improvements on quantum 
backtracking

(1) Quantum tree size estimation
(2) Optimizing phase estimation



Quantum tree size estimation

Drawback of quantum backtracking: the runtime depends 
on the estimate of the size of the search tree (which is a 
parameter of the algorithm), and not on the size of the 
subtree that the classical backtracking algorithm explores.

The efficiency of classical backtracking algorithm relies on 
their capacity to explore the most promising branches first.

Problem: what if the classical algorithm finds a marked vertex 
after exploring T’ vertices, with T’ much smaller than T?
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Quantum tree size estimation

Main strategy: generate subtrees which contains 

the first 2i vertices explored by the classical 

backtracking algorithm, increasing i until a 

marked vertex is found, or the whole tree is 

searched.

Reference: Ambainis, Kokainis, 2017.

Improvement on quantum backtracking: 
estimate the size of the tree explored by the 

classical algorithm instead of using a general 

upper bound.

Theorem: Consider a classical backtracking 

algorithm A which generates a search tree T. 

There is a quantum algorithm which outputs 1 

with high probability if T contains a marked 

vertex and 0 if it doesn’t, with query complexity

where T’ is the number of vertices actually 

explored by A.
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Quantum tree size estimation

Algorithm:

Let i = 1

Repeat:

Use tree size estimation to 

generate the subtree T’ corresponding to the 

first 2i vertices visited by the classical 

algorithm

Run quantum backtracking on T’, 
and if a marked vertex is found, return 1.

i <- i+1

Until T’ contains the whole tree.

return 0

Theorem: Consider a classical backtracking 

algorithm A which generates a search tree T. 

There is a quantum algorithm which outputs 1 

with high probability if T contains a marked 

vertex and 0 if it doesn’t, with query 

complexity

where T’ is the number of vertices actually 

explored by A.

Main strategy: generate subtrees which 

contains the first 2i vertices explored by the 

classical algorithm, increasing i until a marked 

vertex is found, or the whole tree is searched. 28



Optimizing phase estimation

Practical implementations of quantum 
backtracking require a crucial optimisation of 
the circuits involved in the quantum search

Key observation: quantum phase estimation is 

used to distinguish between eigenvalue 1 and 

eigenvalues which are really far from 1.

In practice: the quantum Fourier transformation 

of the quantum phase estimation can be replaced 

by Hadamard gates.

Reference: Campbell, Khurana, Montanaro, 

2019.
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