
Quantum speedup for
backtracking algorithms

Mathys Rennela

(LIACS, Leiden University)

Recap on classical
backtracking

(1) What is a Constraint Satisfaction Problem?
(2) Example of CSP: the k-SAT problem
(3) Unstructured classical brute force search
(4) What is a backtracking algorithm?

What is a Constraint Satisfaction Problem?
Definition: A constraint satisfaction problem (CSP) is a problem defined on n
variables and specified by a set of constraints which must be satisfied by all
variables.

Example: Map coloring, Sudoku, Crosswords, …

Remark: The best algorithms for CSPs tend to have an exponential runtime, when

the problem is taken in all its generality.

3

Example of CSP: the k-SAT problem
3-SAT: Given a Boolean formula F in 3-conjunction normal form on n variables, is
there a bit string y such that f(y)=1?

Such a bitstring y is called a satisfying assignment.

4

Unstructured
classical
backtracking

Backtracking is a common

strategy to solve constraint

satisfaction problems.

Given a CSP defined on n
variables take values in a finite

set of size s. Let’s say that s=3,

so that each variable takes

value 0,1 or 2. A bruteforce

backtracking strategy is to

explore all possibilities.

5

Bruteforce backtracking of k-SAT

A free variable is a variable whose value has not been assigned yet.

We fix a strategy to decide which variable needs to be considered next by the
algorithm. Example: take the most significant variable, randomly pick a variable.

For the next free variable, we assign to each variable all its possible values: here 0
and 1.

Assigning a value to a variable simplifies the formula. We recursively check whether
the simplified formula is satisfiable.

6

Bruteforce backtracking of Sudoku

Tactic = explore all
possibilities

...

1 in 5x3

9 in 5x3

CONTRADICTION:
backtrack to the
previous
configuration

NO
CONTRADICTION:
Continue the
exploration of the
grid

7

Bruteforce backtracking of Sudoku

8

Unstructured classical backtracking

Consider a CSP C with n variables
which take values in {0,...,s-1}.

A partial assignment a:{1,...,n}→
{0,...,s-1,*} is a function which
associates each variable x to a value v
or marks it as undefined (*).

Example: a partial assignment for
k-SAT associates the value 0, 1 or
‘undefined’ to each variable of the
Boolean formula

ExhaustiveSearch(CSP C, partial assignment a):

If a is a solution for C: return True

If a is a counter-example for C: return False

b ← False

For every variable x in C:

For every value v in [s]:

a[x] ← v
b ←ExhaustiveSearch(C,a)

If b = True: return b

return False
9

Unstructured classical backtracking

Given a CSP whose n variables take
values in a finite set of size s, there is a
classical backtracking algorithm which
finds the solution in time O(sn). This is
a bruteforce search algorithm works
by an exhaustive search of all
solutions.

ExhaustiveSearch(CSP C, partial assignment a):

If a is a solution for C: return True

If a is a counter-example for C: return False

b ← False

For every variable x in C:

For every value v in [s]:

a[x] ← v
b ←ExhaustiveSearch(C,a)

If b = True: return b

return False
10

What is a backtracking algorithm?

Consider a CSP on n variables whose values are

taken in [s] = {0,...,s-1}. Call V the set of variables.

Call A the set of all partial assignments V →

{0,1,undef}

A predicate is a function P : A →

{True,False,Undetermined} which determines

whether a partial solution satisfies the problem.

A heuristics is a function h: A → [n] which

determines the next variable to be considered.

The algorithm Backtrack determines if the CSP is

satisfiable (and if yes, gives an answer) or not,

starting from an indeterminate entry a:x↦undef.

Backtrack(a)

If P(a) = True then return a

If P(a) = False or a has no free bit then

return FAIL

j <- h(a)

For v = 0..s-1:

Backtrack(a[x
j
 -> v])

return P(x)

11

Case study: DPLL for k-SAT

Consider a k-CNF formula F on n variables whose

values are taken in {0,1}. Call V the set of

variables.

A partial assignment is a function V → {0,1,undef}

Call A the set of all partial assignments.

Various choices of heuristics h: A → [n].

Example: most significant variable, random, …

Starting from F and the partial assignment

a:x↦undef, DPLL tries to build a satisfying

assignment of the formula.

DPLL(F,a)

If a satisfies F then return True

If a does not satisfy F or a has no free bit then

return False

F’ <- F with all the variables set to the value they

have in a (unless that value is undefined).

j <- h(a)

If F’ contains {x
j
} then

return DPLL(F’,a[x
j
 → 1])

If F’ contains {~x
j
} then

return DPLL(F’,a[x
j
 → 0])

return DPLL(F’,a[x
j
 → 0]) or DPLL(F’,a[x

j
 → 1])

12

Speeding up search
algorithms via Grover

(1) Balanced vs unbalanced trees
(2) Using Grover on balanced trees
(3) Grover isn’t enough for unbalanced trees

Balanced vs unbalanced trees

Full tree: each node has 0 or 2 children

Balanced tree: subtrees of a node differ in height

by at most 1.

Perfect tree: full tree + all leaves at the same

depth

An efficient backtracking algorithm tries to find a

solution by exploring the most promising

branches.

In which case: the subtree it explores is

unbalanced

14

Using Grover on balanced trees (for k-SAT)

Consider the k-SAT problem for a given Boolean

formula F.

Define T to be the size of the balanced tree T

defined by a classical backtracking algorithm.

Given access to an oracle f : [T] -> {0,1} such that

f(x)=1 if x is a satisfying assignment, i.e. x is

satisfying all clauses of F.

evaluations of f necessary to find x

such that f(x)=1 with high probability (if it exists)

Grover assumes that the search space is known:
all the possible solutions have been indexed prior
to the search. This means that the search space is
of size T.

Application: Grover can solve the k-SAT problem
for a Boolean formula with n variables in time

whereas classical exhaustive search does it in
time

15

Grover isn’t enough for unbalanced trees

Balanced Unbalanced

Classical
backtracking 2λn <2λn

Grover
2λn/2 2λn/2

Grover assumes that the search space is known: all the
possible solutions have been indexed prior to the search.

We need an algorithm whose execution depends on the
choice made by the classical backtracking algorithm.

We need quantum backtracking. 16

Quantum backtracking

(1) How to speedup classical backtracking
(2) How to construct a quantum walk operator
(3) Case study: quantum backtracking for DPLL
(4) How to detect marked vertices within a search tree?

How to speed up classical backtracking

Build a quantum algorithm which

determines whether there is a

marked vertex (for k-SAT, a

satisfying assignment), given an

upper bound T on the number of

vertices of the search tree

generated by a classical

backtracking algorithm

Reference: Montanaro, 2015.

QUANTUM BACKTRACKING
Input: quantum walk operator W, number of

vertices T, and an upper bound d on the depth of

the tree

(1) Repeatedly apply Quantum Phase

Estimation (QPE) to the operator W on a

state representing the root of the tree, with

finite precision. If the eigenvalue is 1

accept. Otherwise, reject.

(2) If the acceptance rate is above a

pre-determined threshold, return YES. Else,

return NO.
18

How to construct a quantum walk operator

D
x
 is the diffusion operator for the node x, and

represents the next moves of the backtracking
algorithm, starting from x.

19

Implementing diffusion operators
Each diffusion operator represents a set of

moves of the quantum walk.

A diffusion operator on x is implemented with

local knowledge: only knowing x and the

children of x.

A step of the quantum walk is an application of

the walk operator.

The way we construct the state corresponding

to x and all its children depends on how the

backtracking algorithm chooses the next

moves. 20

D
x

is the identity if x is marked

Case study: quantum backtracking for DPLL

The unitary V determines the next
moves, starting from an unmarked
node x. This process is done in two
operations:
(1) check whether there are unit
clauses (only one literal) and set the
corresponding variable to true
(2) Select the next free variable

This implements the branching of the
DPLL algorithm.

21

Detecting a marked vertex
Algorithm: Applying phase estimation to a quantum walk (starting at the root)
with precision , where T and d are respectively upper bounds on the
number of vertices of the tree and the depth of the tree, a solution exists if the
eigenvalue is 1, and there’s no solution otherwise.

Theorem (Belovs, 2013): This algorithm succeeds with high probability.

Consequence: rounds of this algorithm can detect the existence of a

solution.

22

How a marked vertex is detected

Algorithm A: Applying phase estimation to a

quantum walk (starting at the root) with precision

where T and d are respectively upper bounds on

the number of vertices of the tree and the depth

of the tree, a solution exists if the eigenvalue is 1,

and there’s no solution otherwise.

Theorem (Belovs, 2013): Algorithm A succeeds

with high probability.

Consequence: rounds of this

algorithm can detect the existence of a solution.

Algorithm A exploits an estimate of number of

steps on the quantum walk necessary to

encounter a marked vertex, starting from the

root. It’s the hitting time.

It determines whether the set of marked vertices

is non-empty by performing the quantum walk.

k-SAT: marked vertex = satisfying assignment

Property: if there is a marked vertex, then the

state representing the root is close to an

eigenvector of the walk operator W with

eigenvalue 1.
23

Finding all satisfying assignments
Assume that every vertex in the search tree has a finite degree (at most s).

To find a marked vertex starting from any vertex x in the tree, it suffices to apply the
detection algorithm on each subtree with a child of x as root, until we find a subtree
with a marked vertex as root.

The search tree is of depth at most d, therefore we need to run the detection

algorithm at most O(d) to reach a leaf which is a marked vertex. This process can be
repeated to find all satisfying assignments, with an overall time complexity of

24

Improvements on quantum
backtracking

(1) Quantum tree size estimation
(2) Optimizing phase estimation

Quantum tree size estimation

Drawback of quantum backtracking: the runtime depends
on the estimate of the size of the search tree (which is a
parameter of the algorithm), and not on the size of the
subtree that the classical backtracking algorithm explores.

The efficiency of classical backtracking algorithm relies on
their capacity to explore the most promising branches first.

Problem: what if the classical algorithm finds a marked vertex
after exploring T’ vertices, with T’ much smaller than T?

26

Quantum tree size estimation

Main strategy: generate subtrees which contains

the first 2i vertices explored by the classical

backtracking algorithm, increasing i until a

marked vertex is found, or the whole tree is

searched.

Reference: Ambainis, Kokainis, 2017.

Improvement on quantum backtracking:
estimate the size of the tree explored by the

classical algorithm instead of using a general

upper bound.

Theorem: Consider a classical backtracking

algorithm A which generates a search tree T.

There is a quantum algorithm which outputs 1

with high probability if T contains a marked

vertex and 0 if it doesn’t, with query complexity

where T’ is the number of vertices actually

explored by A.
27

Quantum tree size estimation

Algorithm:

Let i = 1

Repeat:

Use tree size estimation to

generate the subtree T’ corresponding to the

first 2i vertices visited by the classical

algorithm

Run quantum backtracking on T’,
and if a marked vertex is found, return 1.

i <- i+1

Until T’ contains the whole tree.

return 0

Theorem: Consider a classical backtracking

algorithm A which generates a search tree T.

There is a quantum algorithm which outputs 1

with high probability if T contains a marked

vertex and 0 if it doesn’t, with query

complexity

where T’ is the number of vertices actually

explored by A.

Main strategy: generate subtrees which

contains the first 2i vertices explored by the

classical algorithm, increasing i until a marked

vertex is found, or the whole tree is searched. 28

Optimizing phase estimation

Practical implementations of quantum
backtracking require a crucial optimisation of
the circuits involved in the quantum search

Key observation: quantum phase estimation is

used to distinguish between eigenvalue 1 and

eigenvalues which are really far from 1.

In practice: the quantum Fourier transformation

of the quantum phase estimation can be replaced

by Hadamard gates.

Reference: Campbell, Khurana, Montanaro,

2019.
29

