
Datastructuren

2009-10

André Deutz

ADT Stack:

• createStack() // creates an empty stack

• destroyStack() // destroys a stack

• stackIsEmpty() // determines whether the stack

is empty

• push(newItem) // Adds newItem to a stack.

• pop() // Removes from a stack the

item that was added most recently.

getStackTop(stackTop)// Retrieves into var

stackTop the item that was added most recently to

a stack, leaving the stack unchanged.
2

class StackClass {

public:

StackClass();

StackClass(const StackClass & S); //copy constructor

~StackClass();

// stack operations

bool stackIsEmpty();

// determines whether the stack is empty.

// precondition: the constructor has been called

// postcondition: Returns TRUE if the stack was empty, otherwise returns FALSE

void push(stackItemType newItem);

// adds an item to the top of the stack

// precondition: the constructor has been called. newItem is the item to be

// added.

// postcondition: if insertion was successful, newItem is on top of the

// stack.

void pop();

// Removes the top of stack.

// precondition: the constructor has been called.

// postcondition: if the stack was not empty, the item that was added

// MOST RECENTLY is removed.

void getStackTop(stackItemType & topItem);

// Retrieves the top of the stack.

// If the stack was not empty, topItem contains the item

// that was added MOST RECENTLY.

private:

// belongs to implementation!

};

A
D

T
 S

ta
ck

sp
ec

in
 C

+
+

Resembles too much C programming, since typedef is used or needs to
be used.
Use templates (generic programming) instead 3

Can use the ADT stack without knowing the

implementation of the ops
S.createStack() ; //in C++ declare S as instance of the stack class, since

//createStack() is implemented as the class’ constructor

Read newChar;

While (newChar not eoln){

if (newChar is not ‘*’){

S.push(newChar);

} else {

if (! S.stackIsEmpty){

S.pop();

}

}

read newChar

} //end while
P

ro
gr

am
 R

ea
d

in
pu

t l
in

e
an

d
co

rr
ec

t a
lo

ng
T

he
 w

ay

4

Can use the ADT stack without knowing the

implementation of the operations:

tempS.createStack();

While (!S.isEmptyStack()) {

S.getTopStack(ch);

S.pop();

tempS.push(ch);

}

// top of the stack tempS holds the first char of the line

// entered !!

P
ro

gr
am

 R
ea

d
in

pu
t l

in
e

an
d

co
rr

ec
t a

lo
ng

T
he

 w
ay

co
nt

in
ue

d

5

class StackClass {

public:

StackClass();

StackClass(const StackClass & S); //copy constructor

~StackClass();

// stack operations

bool stackIsEmpty();

// determines whether the stack is empty.

// precondition: the constructor has been called

// postcondition: Returns TRUE if the stack was empty, otherwise returns FALSE

void push(stackItemType newItem);

// adds an item to the top of the stack

// precondition: the constructor has been called. newItem is the item to be

// added.

// postcondition: if insertion was successful, newItem is on top of the

// stack.

void pop();

// Removes the top of stack.

// precondition: the constructor has been called.

// postcondition: if the stack was not empty, the item that was added

// MOST RECENTLY is removed.

void getStackTop(stackItemType & topItem);

// Retrieves the top of the stack.

// If the stack was not empty, topItem contains the item

// that was added MOST RECENTLY.

private:

// belongs to implementation!

};

A
D

T
 S

ta
ck

sp
ec

in
 C

+
+

6

// header file; array based implementation

#ifndef _ARRAYIMPLSTACK_ // or use the directive #pragma once

#define _ARRAYIMPLSTACK_

#include <iostream>

using namespace std;

const int MAX_STACK = 100;

typedef char stackItemType;

class StackClass {

public:

StackClass();

StackClass(const StackClass & S); //copy constructor

~StackClass();

// stack operations

bool stackIsEmpty();

void push(stackItemType newItem);

void pop();

void getStackTop(stackItemType & topItem);

private:

stackItemType items[MAX_STACK]; // information hiding, only accessible throuhg public interface/contract

int top; // information hiding

};

#endif

Im
pp

le
m

tin
g

A
D

T
 S

ta
ck

in
 C

+
+

,P
ar

t 1

Resembles too much C programming, since typedef is used.
Use templates (generic programming) instead

7

// implementation file arrayImplStack.cpp for the ADT Stack; array-based
//implementation

#include “arrayImplStack.h”

StackClass::StackClass(): top(-1) {}

StackClass::StackClass(const StackClass & S): top(S.t op) {

for(int i=0; i<=S.top; i++){

items[i] = S.items[i];

}

}

StackClass::~StackClass() {}

bool StackClass::stackIsEmpty() {return bool (top<0); }

void StackClass::push(stackItemType newItem) {

if (top<(MAX_STACK-1)){

++top;

items[top]=newItem;

}

}

void StackClass::pop() {

if (!stackIsEmpty()) {

--top;

}

}

void StackClass::getStackTop(stackItemType& topItem) {

if (!stackIsEmpty()){

topItem=items[top];

}

}

Im
pp

le
m

tin
g

A
D

T
 S

ta
ck

in
 C

+
+

,P
ar

t 2

8

// a client program that uses stack(s)
// (i.e., an algorithm

// that uses a stack, actually two
//stacks)

#include “arrayImplStack.h”

#include <iostream>

using namespace std;

int main (){

stackItemType anItem;

StackClass S;

cin.get(anItem);

while (anItem!='\n'){

if (anItem!='*'){

S.push(anItem);

}else{

if (!S.stackIsEmpty()){

S.pop();

}

cin.get(anItem);

cout << "\n"<<"\n";

StackClass tempS;

while(!S.stackIsEmpty()){

S.getStackTop(anItem);

S.pop();

tempS.push(anItem);

}

// top of the stack tempS now contains
//the first char of the entered line

// you can print, for instance to the
//screen

while (!tempS.stackIsEmpty()){

tempS.getStackTop(anItem);

cout << anItem;

tempS.pop();

}

cout << "\n";

cout << "\n";

return 1;

}

C
lie

nt
pr

og
ra

m
 o

f S
ta

ck
,

i.e
. A

lg
or

ith
w

hi
ch

us
es

S
ta

ck

9

A
D

T
 S

ta
ck

S
pe

c
in

 C
+

+
,

us
in

g
te

m
pl

at
es

Better yet: T & getStackTop(); // see Chapter 4 in
Drozdek

Does not belong to spec

spec
10

Implementing ADT Stack in C++, template version

11

Client program of Stack,
i.e. Algorithm which uses Stack

The spots to watch out for
when changing implementations.
Normally speaking the client program should not
have to be changed. In this case
the ADT designer changed the
contract slightly in the typing by going from C-style
to C++ style (templates).
This required a change in the client
code.

12

Discussion of Uses of Stacks

edgser dijkstra: invented stacks to implement

recursively defined functions/programs

CA: stack frames used in function calls

visiting nodes in a tree

Ubiquitous! (see also Chapter 4 for more apps)
13

The end ☺. This means read and study Chapter 4
in Drozdek.

14

Start of Lecture of Sep 7

15

Data Structures
• Recap

– Course Goals

– ADTs in solution development (= from problem to ADT).

– In our example a ADT Stack emerged and an ADT which is almost

equal to the standard ADT Deque (double ended queue).

• In class : the ideas, in the werkgroep: high level practice; in

the book most of the time you can find the details, sometimes

gory.

16

Data Structures

• What are we trying to learn, explained on a very high level?

Answer: managing complexity. Slightly less high level:

producing reliable, correct, and efficient programs;

17

ADTs revisited

• More precise informal specification: pre- and postconditions (see

example of previous lecture, written out in C++)

• Definition: programmed as an interface or can be mathematical

• Math spec � axiomatic semantics

18

type T
uses types Boolean, Int
operators

Create → T
P1 : T * Int → T
P2 : T → T
B : T → Int
E : T → Boolean

axioms
E(Create) = true
E(P1(t,i)) = false
P2(Create) = Create *
P2(P1(t,i)) = t
B(Create) = 0
B(P1(t,i)) = i *

end T

ADTs revisited

19

type Intstack
uses types Boolean, Int
operators

Create → Intstack
Push : Intstack * Int → Intstack
Pop : Intstack → Intstack
Top : Intstack → Int
Isempty : Intstack → Boolean

axioms
Isempty(Create) = true
Isempty(Push(s,i)) = false
Pop(Create) = Create *
Pop(Push(s,i)) = s
Top(Create) = 0
Top(Push(s,i)) = i *

end Intstack

ADTs revisited

20

ADTs Revisited
• ADT is not a fancy name for a data structure: ultimately you implement

the ADT using a data structure (= a structured data type) and data types

• Data type defines a set of values and allowable operations on those

values.

• In most programming languages additional data types can be defined,

usually by combining multiple elements of other types and defining valid

operations on them .

• For example, a programmer might create a new data type named

"Person" that specifies that data interpreted as Person would include a

name and a date of birth.

• Client programs of an ADT are concerned with the interface, not the

implementation as implementation can change in the future (Supports

information hiding (or protecting client programs from design decision

that are subject to change)

• Strength of ADT is that implementation is hidden from the user. Only

interface is published – thus can implement ADT in various ways as long as

you adhere to the interface/contract, client programs are unaffected.
21

ADTs Revisited

• There is distinction, sometimes subtle, between the abstract

data type and the data structure used in its implementation.

• Example: ADT List can be represented as array-based

implementation or linked-list implementation.

• A List is an ADT with well defined operations (add element,

remove element , etc) while a linked-list is a pointer based

data structure that can be used to create a representation of

a List.

• Linked-list implementation is commonly used to represent

ADT List and by abuse of language the terms are commonly

interchanged.

22

23

ADT through the Glasses of a Modern Language

(C++)

• Client uses class as abstraction
– Invokes public operations only

– Internal implementation not relevant!

• Client can't and shouldn't muck with internals
– Class data should private (supported by modern languages)

• Imagine a "wall" between client and implementer
– Wall prevents either from getting involved in other's business

– Interface is the "chink" in the wall

– Conduit allows controlled access between the two

• Consider Lexicon
– Abstraction is a word list, operations to verify word/prefix

– How does it store list? using array? vector? set? does it matter to
client?

24

Why ADTs?
•Abstraction

–Client insulated from details, works at higher-level

•Encapsulation
–(In modern language can make) internals private to ADT,

not accessible by client (accidentally or on purpose)

•Independence
–Separate tasks for each side (once agreed on interface)

•Flexibility
–ADT implementation can be changed without affecting client (provided

implementation adheres to the contract: that is, syntax and semantics of

functions does not change)

• Once and Only Once

• Strongly supports Modularity

25

Interplay Algo -- ADT
• Example of interplay between (main) algorithm and ADT: how

much intelligence do you put into the ADT and how much of it

into the main Algorithm?

• Possibly without knowing it, last time you came up with a

solution where more of the intelligence was put into the ADT

Recall problem of last time: How can you implement the “undo” for the following situation.

When you type a line of text at a keyboard, you are likely to make mistakes. We assume that you can use the

usual ascii characters to enter lines of text except the asterisk ‘*’. With this character you can announce

the wish for the undo in case you made a typo. The understanding is that you use the asterisk key to

correct these mistakes, each asterisk erases the previous character entered. Consecutive asterisks are

applied in sequence and so erase several characters.

For instance, if you type the line

abcc*ddde***ef*fg

the corrected input would be

abcdefg

How can a program read the original line and get the corrected input AND DISPLAY (or PROCESS) IT IN THE

ENTERED ORDER? The algorithm you came up with uses the following ADT (see next slide) – the ADT was

also your proposal
26

Retrieve bottom
P

op
 =

 r
em

ov
e

to
p

P
us

h
=

 in
se

rt
at

 te
 to

p
Remove bottom

NB retrieve does not
change the state of
the data structure
= get the info

NB pop, remove: loses
info forever;
Each of the ops
pop, push, and remove
changes the state of the data
structure

Hybridization/Interlacing of Stack
and Queue:

ADT HybridStackQueue (HSQ)
(yours ☺☺☺☺; it is almost
the ADT Deque)

27

Spec of ADT HSQ

Create() // Creates an empty hsq

Destroy() // Destroys the hsq

isEmpty() //Determines whether the hsq is empty

insertAtTheTop(newItem) // Add a newItem

removeTop() // Removes from the hsq the MOST RECENTLY added item to

the hsq

retrieveBottom(item) // Retrieves into var item the item that was added LEAST

RECENTLY to a hsq, leaving the hsq unchanged.

removeBottom() // Removes the item that was added LEAST RECENTLY to a hsq.

Not needed: retrieveTop(topItem) //Retrieves into var topItem the item that was added MOST RECENTLY to a hsq, leaving the hsq

unchanged

28

Given the ADT HSQ, how can we specify the

“undo” algorithm/program? Again we don’t need

to know the implementation of the ADT HSQ.

H.create()
Read newChar;
While (newChar not eoln) {

if (newChar is not ‘*’) {
H.insertAtTheTop (newChar);

} else {
if (! H.isEmpty()) {

H.removeTop();
}

}
While (! H.isEmpty()){

H.retrieveBottom(newChar);
H.removeBottom();
// process newChar e.g., display newChar
// items will be process according to entry-

order
}

Recall Ops of HSQ:
Create()
Destroy()
isEmpty()
insertAtTheTop(newItem)
removeTop()
retrieveBottom(item)
removeBottom()

29

Retrieve bottom

P
op

 =
 r

em
ov

e
to

p

P
us

h
=

 in
se

rt
at

 te
 to

p

Remove bottom
P

op
 =

 r
em

ov
e

to
p

P
us

h
=

 in
se

rt
at

 te
 to

p

Retrieve top

ADT HSQ ADT Stack

Which of the two ADTs will we choose for the
“undo” algorithm?

30

The interplay between ADT and the (main)

algorithm using it
ADT HSQ

• The design of the “undo and

entered-order processing”

algorithm becomes easier (we

put more smartness in the ADT):

it is much easier to design the

algorithm

• More work to come up with an

implementation

• Array implementation either very

inefficient (time) or subtle

implementation (such as circular

arrays – error prone)

• What about the efficiency of the

various implementations

• Can already start processing once

the first item is in!

ADT Stack

• By the same token: Need to put more

smartness into the design of the

“undo and entered-order processing”

algorithm.

• Less work to design the

implementation

• Array implementation is done in a

jiffy – important in the chicken and

the egg problem (testing one module

against another)

• What about the efficiency of the

various implementations?

– We could look at the efficiency

of the ADT operations

– Could also look at the total

efficiency of the Algorithm
31

HSQ vs Stack

• Suppose we decide to implement HSQ with the array data structure. A

straightforward implementation will invariably be not efficient. While

implementing a Stack is with an array is efficient. Both have the same

problem can grow beyond the array size. What about using the STL

vector?

• Circular array. Will be efficient for HSQ – more difficult to implement.

Each operation is O(1). Not needed though for Stacks (or stronger: don’t

use it for Stacks). See next slide.

32

HSQ implementations

insert At TheTop

topbottom

Circular array representation
of HSQ

Circular array representation
of HSQ: after insertAtTheTop

top bottom

topbottom

Situation occurring with
Hsq with an array

insert At TheTop
(cannot do! First have to move all at least 1 to the left)
Maybe you should do more for anticipation. Costly!

11

1 2 5 10

topbottom

Situation occurring with
Hsq with an array

Array: after insert at the top of above array1052 111

“Wrap around” by mod
33

HSQ implementations

Retrieve end2

R
em

o
ve

en
d

1

in
se

rt
at

 e
n

d
1

Remove end2

Retrieve end1

Insert at end2

A
D

T
 D

eq
u

e Given an implementation of the ADT Deque, it is
a freebie to provide an implementation for the
ADT HSQ (just forget the operations Retrieve end1
and Insert at end2).

Retrieve end2
R

em
o

ve
en

d
1

in
se

rt
at

 e
n

d
1
Remove end2

Retrieve end1

Insert at end2

A
D

T
 H

S
Q

34

HSQ implementations

• In the next slides we define ADT List

• Given ADT List we can implement HSQ by

using an implementation of ADT List

35

• Lists contain items of the same type

– List of grocery items

– List of phone numbers

• What can you do to the items of a list?

• Determine length of the list

• Add an item to the list

• Remove an item from the list

• Retrieve an item from the list

• Where do you want to add a new item and

which item do you want to look at?

• Various answers � various ADTs List

Lists

36

ADT List
createList()

// Creates an empty list.

destroyList()

// Deatroys a list.

listIsEmpty()

// Determines whether the list is empty.

listLength()

// Returns the number of items in list.

listInsert(newPosition, newItem, success)

// Inserts newItem at position newPosition of a list, if 1 ≤ newPosition ≤ listLength() + 1

// if newPosition ≤ listLength(), the items are shifted as follows

// the item at newPosition becomes the item at newPosition becomes the item at newPosition + 1, the item

// at newPosition + 2, and so on. Success indicates whether the insertion was successful.

listDelete(pos, success)

// Deletes the item at position pos of a list, if 1 ≤ pos ≤ listLength(). If pos < lengthList(), the items are

// shifted as follows: the item at pos+1 becomes the at pos, the item at pos+1 becomes the item at pos+1, and

so // on. Success indicates whether the deletion was successful.

listRetrieve(pos, dataItem, success)

// sets dataItem to the item at position pos of a list, if 1 ≤ pos ≤ listLength(). The list is left unchanged by

// this operation. Success indicates whether the retrieval was successful.

NB there is also ADT Ordered list 37

This variant is not
Discussed in Drozdek

Given the ADT List, how do you

implement the ADT HSQ?

38

ADT List-Drozdek

• (We are going to study Chapter 3 of Drozdek via the notion of

ADTs. NB this is not the way Drozdek has structured Chapter 3

of his book. More about this later on.)

The operations of this ADT are as follows:
createList()

// Creates an empty list. In C++ this is implemented as a constructor (provided we implement the ADT as a

class)

destroyList()

// Destroys a list. In C++ this is implemented as the destructor (provided we implement the ADT as a class).

isEmpty()

// Determines whether the list is empty. The type of this operation is: Lists � Bool

addToHead(int)

// The type of this operation is: Lists x int � Lists

addToTail(int)

// The type of this operation is: Lists x int � Lists

deleteFromHead()

// delete the head and return its info; thus the type of the operation is: Lists � int

deleteFromTail()

// delete the tail and return its info; thus the type of the operation is: Lists � int

isInList(int)

// checks whether the integer occurs in the list; the type of the operation is: Lists � bool 39

Given the ADT List-Drozdek, how do

implement the ADT HSQ?

40

41

Chapter 3 of Drozdek a la ADT
• ADT List, ADT ListDrozdek, ADT ListDrozdek+whoIsNext, ADT Ordered

List, and ADT List Insertion Influenced Implicitly by Search

• Compare these ADTs

• We are going to study Chapter 3 through the glasses of ADTs:

• The different implementations ADT List Drozdek

– Array Implementation

– Singly Linked List Implementation

– Doubly Linked List Implementation

– Circular Singly Linked List Implementation

– Circular Doubly Linked List Implementation

• The different Implementations of ADT List Drozdek +whoIsNext

– Circular Singly Linked List Implementation

– Circular Doubly Linked List Implementation

• Implementation of ADT Ordered (Sorted) List

– Skip List implementation

• “ADT List With Insertion Influenced Implicitly by Search”

– Implementations with Self-Organization: move-to-front, transpose, count-method

(excluding ordered implementation)

42

Chapter 3 of Drozdek a la ADT
• See previous slides for the specification of ADT List and ADT List Drozdek

• Here is how the spec for ADT List Drozdek appears in book on page 79

written in C++:

43

(An Aside)
Recall: Self-referential Classes

Self-referential class objects can be linked together to form useful
Data structures (such as lists, queues, stacks or trees.

44

ADT List; is not discussed
in the book

Compare Two ADTs
ADT ListDrozdek

45

ADT List Drozdek: array

implementation
• Analyze each of the operations and determine

the cost of each

– Insert at the head

– Delete at the head

– Insert at the tail

– Delete at the tail

– Delete int

– Determine whether int is in the list.

46

ADT List Drozdek: singly linked list

implementation

• Analyze each of the operations and determine the

cost of each

– Insert at the head

– Delete at the head

– Insert at the tail

– Delete at the tail

– Delete int

– Determine whether int is in the list.

47

ADT List Drozdek: doubly linked

list implementation
• Analyze each of the operations and determine the

cost of each

– Insert at the head

– Delete at the head

– Insert at the tail

– Delete at the tail

– Delete int

– Determine whether int is in the list.

48

ADT List Drozdek: circular singly

linked list implementation
• Analyze each of the operations and determine

the cost of each
– Insert at the head
– Delete at the head
– Insert at the tail
– Delete at the tail
– Delete int

– Determine whether int is in the list.

• NB In fact this implementation does more than is needed by

the ADT List Drozdek: it implements an extra operation

whoIsNext (=current). Hence, it satisfies another ADT,

namely, ADT List Drozdek + the op whoIsNext

tail

49

ADT List Drozdek: circular doubly

linked list implementation
• Analyze each of the operations and determine the

cost of each
– Insert at the head
– Delete at the head
– Insert at the tail
– Delete at the tail
– Delete int
– Determine whether int is in the list

• NB In fact this implementation does more than is
needed by the ADT List Drozdek: it easy to implement
an extra operation whoIsNext (by the intro of an extra
pointer current). Hence, it satisfies another ADT,
namely, ADT List Drozdek + the op whoIsNext

50

ADT List Drozdek + whoIsNext

operation
This ADT has all the operations of ADT List Drozdek plus

an extra operation whoIsNext.

As already said on the previous slides: Chapter 3 of

Drozdek describes two implementations of this ADT:

1) A circular singly linked list

2) A circular doubly linked list

ADT Ordered (Sorted) List
Operations:

createSortedList // creates empty sorted list

destroySortedList // destroys sorted list

sortedListIsEmpty // determines whether sorted list is empty

sortedListLength //returns the number of items in the a sorted list

sortedListInsert(newItem, success) // inserts newitem into its

//proper sorted position in a sorted list.

sortedListDelete(item, success) // deletes item from a sorted list

sortedListRetrieve(position, dataItem, success) // sets dataItem

to the item position position of a sorted list, if 1<= position <=

sortedListLength. The list is left unchanged by this operation

locatePosition (anItem, position, success) //sets position to the

position where anItem belongs or exists in a sorted list. Success indicates

whether anItem is currently in the list. AnItem and the list are unchanged.

(A variation on this ADT is to discard the last two operations and introduce an

operation isInTheList(item); this variation is used by Drozdek implicitly in

the discussion on skip list and ordered self-organization.)
51

ADT Ordered (Sorted) List: skip list

implementation

52

53

ADT Ordered List: skip list

implementation

ADT Ordered List: skip list

implementation

• Of course: there are other implementations of

the ADT Ordered List.

• Remark: in the discussion of self-organization

(see next slides) Drozdek uses one of the

implementation of the ADT Ordered List;

which implementation is used is not made

explicit.

54

55

ADT List with Insertion Influenced by Search:

self-organizing list implementation

There are four methods for organizing lists:

• Move-to-front method – after the desired element is located,

put it at the beginning

of the list (Figure 3.18a)

• Transpose method – after the desired element is located,

swap it with its predecessor unless it is at the head of the list

(Figure 3.18b)

• Count method – order the list by the number of times

elements are being accessed (Figure 3.18c)

56

ADT List with Insertion Influenced by Search:

self-organizing list implementation

There are four methods for organizing lists:

• Ordering method – order the list using certain criteria natural

for the information under scrutiny (Figure 3.18d) – is in fact

an implementation of ADT Ordered List!

• Optimal static ordering all the data are already ordered by

the frequency of their occurrence in the body of data so that

the list is used only for searching, not for inserting new items

57

ADT List with Insertion Influenced by Search: self-organizing
list implementation

58

ADT List with Insertion Influenced by Search:

self-organizing list implementation

59

Implementation of ADT List?

createList()

// Creates an empty list.

destroyList()

// Destroys a list.

listIsEmpty()

// Determines whether the list is empty.

listLength()

// Returns the number of items in list.

listInsert(newPosition, newItem, success)

// Inserts newItem at position newPosition of a list, if 1 ≤ newPosition ≤ listLength() + 1

// if newPosition ≤ listLength(), the items are shifted as follows

// the item at newPosition becomes the item at newPosition becomes the item at newPosition + 1, the item

// at newPosition + 2, and so on. Success indicates whether the insertion was successful.

listDelete(pos, success)

// Deletes the item at position pos of a list, if 1 ≤ pos ≤ listLength(). If pos < lengthList(), the items are

// shifted as follows: the item at pos+1 becomes the at pos, the item at pos+1 becomes the item at pos+1, and

so // on. Success indicates whether the deletion was successful.

listRetrieve(pos, dataItem, success)

// sets dataItem to the item at position pos of a list, if 1 ≤ pos ≤ listLength(). The list is left unchanged by

// this operation. Success indicates whether the retrieval was successful.

59

This variant is not
Discussed in Drozdek

Implementation of ADT List?

• Will be assignment:

– Efficient array implementation

– And another implementation with pointers.

Study Chapter 3 pages 76-106

60

