Datastructuren

2009-10
André Deutz

ADT Stack:

createStack() // creates an empty stack
destroyStack() // destroys a stack
stacklsEmpty() // determines whether the stack
IS empty

push(newltem) // Adds newltem to a stack.
pop() // Removes from a stack the
item that was added most recently.
getStackTop(stackTop)// Retrieves into var

stackTop the item that was added most recently to
a stack, leaving the stack unchanged.

class StackClass {
public:
StackClass(); +
StackClass(const StackClass & S); //copy constructor
~StackClass(); +
// stack operations U
bool stackIsEmpty();
// determines whether the stack is empty. C
// precondition: the constructor has been called

// postcondition: Returns TRUE if the stack was empty, otherwise returns FALSE
void push(stackltemType newltem);

// adds an item to the top of the stack

// precondition: the constructor has been called. newltem is the item to be

// added.

// postcondition: if insertion was successful, newltem is on top of the

// stack.

void pop();

// precondition: the constructor has been called.

// postcondition: if the stack was not empty, the item that was added
// MOST RECENTLY is removed.

void getStackTop(stackltemType & topltem);

// Retrieves the top of the stack.

// If the stack was not empty, topltem contains the item

// that was added MOST RECENTLY.

O
QD
Q.
p)
4
// Removes the top of stack. U
©
fd
V)
|_
O

private:
// belongs to implementation! Resembles too much C programming, since typedef is used br needs to
% be used.

Use templates (generic programming) instead

Can use the ADT stack without knowing the
implementation of the ops

S.createStack() ; //in C++ declare S as instance of the stack class, since
//createStack() is implemented as the class’ constructor

Read newChar;
While (newChar not eoln){

if (newChar is not “*’){ T
©
S.push(newChar); ®
} else { ;
if (! S.stacklsEmpty){ 5
©
S.pop(); S
X o
} c T >
g O
} 50 >
05 2
read newChar a Sk

} //end while 4

Can use the ADT stack without knowing the
implementation of the operations:

tempS.createStack();
While (!S.isEmptyStack()) {

©

S.getTopStack(ch); 3

()

S.pop(); k=
tempS.push(ch); 2 T
c <))
} =
S o=
// top of the stack tempS holds the first char of the line T 5 §
// entered !! = g =
5 0 >
o 52
A o

(O}

class StackClass {
public:
StackClass();
StackClass(const StackClass & S); //copy constructor
~StackClass();
// stack operations
bool stackIsEmpty();
// determines whether the stack is empty.
// precondition: the constructor has been called
// postcondition: Returns TRUE if the stack was empty, otherwise returns FALSE
void push(stackltemType newltem);
// adds an item to the top of the stack
// precondition: the constructor has been called. newltem is the item to be
// added.
// postcondition: if insertion was successful, newltem is on top of the
// stack.
void pop();
// Removes the top of stack.
// precondition: the constructor has been called.
// postcondition: if the stack was not empty, the item that was added
// MOST RECENTLY is removed.
void getStackTop(stackltemType & topltem);
// Retrieves the top of the stack.
// If the stack was not empty, topltem contains the item
// that was added MOST RECENTLY.
private:
// belongs to implementation!

|5

ADT Stack spec in C++

// header file; array based implementation

#ifndef _ARRAYIMPLSTACK_ // or use the directive #pragma once
#define _ARRAYIMPLSTACK _

#include <iostream>

using namespace std;

const int MAX_STACK = 100;

typedef char stackltemType;

class StackClass {
public:
StackClass();
StackClass(const StackClass & S); //copy constructor
~StackClass();
// stack operations
bool stackisEmpty();
void push(stackltemType newltem);
void pop();
void getStackTop(stackltemType & topltem);

private:
stackltemType items[MAX_STACK]; // information hiding, only accessible throuhg public interface/contract
int top; // information hiding

2

#endif

Resembles too much C programming, since typedef is used.
Use templates (generic programming) instead

Impplemting ADT Stack in C++,Part 1

~

/I implementation file arraylmplStack.cpp for the ADT
/limplementation

#include “arraylmplStack.h”
StackClass::StackClass(): top(-1) {}
StackClass::StackClass(const StackClass & S): top(S.t
for(int i=0; i<=S.top; i++){
itemsJi] = S.itemsi];

}
StackClass::~StackClass() {}

bool StackClass::stacklsEmpty() {return bool (top<O0);
void StackClass::push(stackltemType newltem) {
if (top<(MAX_STACK-1){
++top;
items[top]=newltem;

}
void StackClass::pop() {

if (IstacklsEmpty()) {
--top;

}
void StackClass::getStackTop(stackltemType& topltem)

if (!stacklsEmpty()){
topltem=items[top];

Stack; array-based

op) {

co

Impplemting ADT Stack in C++,Part 2

/I aclient program that uses stack(s)
/l (i.e., an algorithm

/l that uses a stack, actually two
/Istacks)

#include “arraylmplStack.h”
#include <iostream>
using namespace std;
int main (){
stackltemType anltem;
StackClass S;
cin.get(anltem);
while (anltem!="n"){
if (anltem!=""){
S.push(anltem);
telse{
if (IS.stackIsEmpty()){
S.pop();
}
cin.get(anltem);
cout <<"\n"<<"\n";
StackClass tempS;
while(!S.stackIsEmpty()){
S.getStackTop(anltem);
S.pop();
tempS.push(anltem);

I/ top of the stack tempS now contains
/lthe first char of the entered line

/[you can print, for instance to the
lIscreen

while (ItempS.stacklsEmpty()){
tempS.getStackTop(anltem);
cout << anitem;
tempS.pop();

}

cout <<"\n";

cout <<"\n";

return 1,

Client program of Stack,

l.e. Algorith which uses Stack

Vo)

ADT Stack Spec in C++,
sing templates

Spéc

template<class T Asnow type checking is enabled
class StackClass {
public:

StackClas=s();
StackClass(const StackClas=<T: & 5] ~“oopy constructor
~“StackClas=():)

_s# stack operations

bool =s=tackIsEnptv();

A determines whether the =stack is empty;

¢ precondition; the constructor has been called

A4 postoondition: Returns TRUE if the stack was enpty, otherwise returns FALSE

void push(T newltem):

S+ adds an item to the top of the stack :

L4 precondition: the constructor has been called, newltem i= the item to be
< added

¥ postecondition: 1f insertion was succes=ful; newltem i= on top of the

<7 =tack,

void pop():

< HRemowves the top of staclk.

A4 precondition: the constructor has been called.)

S postoondition; if the stack was not empty. the item that was added
< HOST RECEHTLY 1= removed,

woid getStackTop(T & topltem):

A4 Retrleves the top of the stack.
L4 1f the stack was not enpty. topltem contains the item
S that was added MOST RECEHNTLY .

Better yet: T & getStackTop(); // see Chapter 4 in
Drozdek 10

Implementing ADT Stack in C++, template version

Aelnplenentation file arravimnplStack . cpp: Arrav-bazed imnplementation
#include "arravImnplStack.h

#include<iostream:

u=ing namnespace =td:

S dinplementatie

template<class T

StackiClas=<T:: :StackCla==(): topl(-1) {t

tenplatedclasz=s T
StackiClas=<T:: StackCla==({con=t StackClas=<T: & S5): top(5. toplid{
top = 5. top;
for (int i=0; i<= 5. top: ++1i){
itemns[1i] = 5. itens[1]:

i

tenplatedclasz=s T
StackClas=<T:: "StackCla==() {}

templatesclass T
bool StackClass<T:: stacklzsEnptyi{) {return bool {(top<0).}

temnplate<clazs T
wvold StackClas=<Tr: push(T newltemn) {
if (top< (MAX STACE-1)1{
++top;
itens[top]l=newlten:

i

temnplate<clazs T
wold StackClazs<T:: popil 1
if (l=tackIsEmnptv(i) {
—top;
1

¥

tenplateiclaz=s T
vold StackClass<Tr: getStackTop(Té topltem){
if [l=ztackIsEnptw(ii{
toplten=itens[top]:
I

11

Client program of Stack,
l.e. Algorithm which uses Stack

#finclude "arravImplStacl . h”
finclude <iostream:
u=ing nanespace =td;

int main (}{ he spots to watch out for

when changing implementations.

Normally speaking the client program should not
have to be changed. In this case

the ADT designer changed the

contract slightly in the typing by going from C-style
to C++ style (templates).

This required a change in the client

code.

char anltemn:
StackiCla=z=s<{char: 5;

cin.get{anlten);

vhile {anltem!="“n'}){
if (anlteml="'#="'31{
S . pushianltem);
tel=e{
if (15 =tackI=Enpty{)){
S. popl).

cin.get{anlten);

cont << "sn"
StackiCla=s=s<char: temnpS:

vhile{ !5 stackIsEnpty({)){
S.get5StackToplanltemn)

S.popi).
tenpS. pushianlten)

¥

S top of the staclk temnpS now contains the first char of the entered line
S wou can print, for instance to the =screen
while (|ltenp5. =tackIsEnpty()){
tenpS . getStackTop{anlten) ;
cout << anltem:
tenpS. pop()
Iy
cout €€ "sn'
cout << "mn':
return 1;

Discussion of Uses of Stacks

edgser dijkstra: invented stacks to implement
recursively defined functions/programs

CA: stack frames used in function calls
visiting nodes in a tree

Ubiquitous! (see also Chapter 4 for more apps)

13

7|

Push\v Po

The end ©. This means read and study Chapter 4
in Drozdek.

14

Start of Lecture of Sep 7

Data Structures

* Recap
— Course Goals
— ADTs in solution development (= from problem to ADT).
— In our example a ADT Stack emerged and an ADT which is almost
equal to the standard ADT Deque (double ended queue).
* Inclass:theideas, in the werkgroep: high level practice; in
the book most of the time you can find the details, sometimes

gory.

Data Structures

e What are we trying to learn, explained on a very high level?
Answer: managing complexity. Slightly less high level:
producing reliable, correct, and efficient programs;

ADTs revisited

More precise informal specification: pre- and postconditions (see
example of previous lecture, written out in C++)

Definition: programmed as an interface or can be mathematical
Math spec = axiomatic semantics

ADTs revisited

Boolean, Int

Create - T
P1:T*Int - T
P2:T T

B: T - Int

E: T - Boolean

E(Create) = true

E(PL1(t,i))) = false
P2(Create) = Create
P2(P1(t,i)) =t

B(Create) =0
B(PL(t,)) =1 *

ADTs revisited

Intstack
Boolean, Int
Create - Intstack
Push : Intstack * Int - Intstack
Pop : Intstack - Intstack
Top : Intstack - Int

Isempty : Intstack - Boolean

Isempty(Create) = true

Isempty(Push(s,i)) = false

Pop(Create) = Create *

Pop(Push(s,i))) =s

Top(Create) =0

Top(Push(s,i)) =i *
Intstack

ADTs Revisited

ADT is not a fancy name for a data structure: ultimately you implement
the ADT using a data structure (= a structured data type) and data types

Data type defines a set of values and allowable operations on those
values.

In most programming languages additional data types can be defined,
usually by combining multiple elements of other types and defining valid
operations on them .

For example, a programmer might create a new data type named
"Person" that specifies that data interpreted as Person would include a
name and a date of birth.

Client programs of an ADT are concerned with the interface, not the
implementation as implementation can change in the future (Supports
information hiding (or protecting client programs from design decision
that are subject to change)

Strength of ADT is that implementation is hidden from the user. Only
interface is published — thus can implement ADT in various ways as long as
you adhere to the interface/contract, client programs are unaffected.

ADTs Revisited

There is distinction, sometimes subtle, between the abstract
data type and the data structure used in its implementation.

Example: ADT List can be represented as array-based
implementation or linked-list implementation.

A List is an ADT with well defined operations (add element,
remove element, etc) while a linked-list is a pointer based
data structure that can be used to create a representation of
a List.

Linked-list implementation is commonly used to represent
ADT List and by abuse of language the terms are commonly
interchanged.

ADT through the Glasses of a Modern Language
(C++)

Client uses class as abstraction

— Invokes public operations only

— Internal implementation not relevant!
Client can't and shouldn't muck with internals

— Class data should private (supported by modern languages)
Imagine a "wall" between client and implementer

— Wall prevents either from getting involved in other's business

— Interface is the "chink" in the wall

— Conduit allows controlled access between the two
Consider Lexicon

— Abstraction is a word list, operations to verify word/prefix

— How does it store list? using array? vector? set? does it matter to
client?

Why ADTs?

eAbstraction
—Client insulated from details, works at higher-level

*Encapsulation
—(In modern language can make) internals private to ADT,
not accessible by client (accidentally or on purpose)

°Independence

—Separate tasks for each side (once agreed on interface)
*Flexibility

—ADT implementation can be changed without affecting client (provided

implementation adheres to the contract: that is, syntax and semantics of
functions does not change)

* Once and Only Once
* Strongly supports Modularity

25

Interplay Algo -- ADT

e Example of interplay between (main) algorithm and ADT: how
much intelligence do you put into the ADT and how much of it
into the main Algorithm?

e Possibly without knowing it, last time you came up with a
solution where more of the intelligence was put into the ADT

Recall problem of last time: How can you implement the “undo” for the following situation.

When you type a line of text at a keyboard, you are likely to make mistakes. We assume that you can use the
usual ascii characters to enter lines of text except the asterisk ‘*’. With this character you can announce
the wish for the undo in case you made a typo. The understanding is that you use the asterisk key to
correct these mistakes, each asterisk erases the previous character entered. Consecutive asterisks are
applied in sequence and so erase several characters.

For instance, if you type the line
abcc*ddde***ef*fg

the corrected input would be
abcdefg

How can a program read the original line and get the corrected input AND DISPLAY (or PROCESS) IT IN THE
ENTERED ORDER? The algorithm you came up with uses the following ADT (see next slide) —the ADT was
also your proposal

Hybridization/Interlacing of Stack

and Queue:

ADT HybridStackQueue (HSQ)
(yours ©; it is almost
the ADT Deque)

NB pop, remove: loses

info forever;

Each of the ops

pop, push, and remove
changes the state of the data
structure

NB retrieve does not
change the state of
the data structure

= get the info

jPop = remove top
\Push

insert at te top

g

——J Retrieve bottom/

D J Remove bottom

27

Spec of ADT HSQ

Create() // Creates an empty hsq

Destroy() // Destroys the hsq

iIsEmpty() //Determines whether the hsq is empty

insertAtTheTop(newltem) // Add a newltem

removeTop() // Removes from the hsq the MOST RECENTLY added item to
the hsq

retrieveBottom(item) // Retrieves into var item the item that was added LEAST
RECENTLY to a hsq, leaving the hsg unchanged.

removeBottom() // Removes the item that was added LEAST RECENTLY to a hsq.

Not needed: retrieveTop(topltem) //Retrieves into var topltem the item that was added MOST RECENTLY to a hsq, leaving the hsq
unchanged

Given the ADT HSQ, how can we specify the
“undo” algorithm/program? Again we don’t need
to know the implementation of the ADT HSQ.

H.create()
Read newChar;
While (newChar not eoln) {
if (newChar is not *) {
H.insertAtTheTop (newChar);
} else {
if (! H.isEmpty()) {
H.removeTop();
}
}
While (! H.isEmpty()){
H.retrieveBottom(newChar);

H.removeBottom();
Il process newChar e.g., display newChar

I/ items will be process according to entry-

order

}

Recall Ops of HSQ:
Create()
Destroy()
ISEmpty()
insertAtTheTop(newltem)
removeTop()
retrieveBottom(item)
removeBottom()

29

Which of the two ADTs will we choose for the
“undo” algorithm?

g

Retrieve t6p

o
= o
o L =
O w Q
) Q —
¢ ¢ e =«
o ¢ O
e 2 > D
5 £ ©
SR £ <
N L ¥

o %2)

o Qa S S

N @ o

N
e

Retrieve bottom

DJ Remove bottom H

ADT HSQ ADT Stack

The interplay between ADT and the (main)
algorithm using it

ADT HSQ

The design of the “undo and
entered-order processing”
algorithm becomes easier (we
put more smartness in the ADT):
it is much easier to design the
algorithm

More work to come up with an
implementation

Array implementation either very
inefficient (time) or subtle
implementation (such as circular
arrays — error prone)

What about the efficiency of the
various implementations

Can already start processing once
the first item is in!

ADT Stack

By the same token: Need to put more
smartness into the design of the
“undo and entered-order processing”
algorithm.

Less work to design the
implementation

Array implementation is done in a
jiffy — important in the chicken and
the egg problem (testing one module
against another)

What about the efficiency of the
various implementations?

— We could look at the efficiency
of the ADT operations

— Could also look at the total
efficiency of the Algorithm

HSQ vs Stack

Suppose we decide to implement HSQ with the array data structure. A
straightforward implementation will invariably be not efficient. While
implementing a Stack is with an array is efficient. Both have the same

problem can grow beyond the array size. What about using the STL
vector?

Circular array. Will be efficient for HSQ — more difficult to implement.

Each operation is O(1). Not needed though for Stacks (or stronger: don’t
use it for Stacks). See next slide.

HSQ implementations

Situation occurring with

Hsq with an array
(J insert At TheTop
| | | | 1 | 2 | 5 | 10| (cannot do! First have to move all at least 1 to the left)
T Maybe you should do more for anticipation. Costly!

bottom top ‘
Situation occurring with

Hsq with an array
| | | 1 | 2| 5 |10 |11| Array: after insert at the top of above array

bottom top
Circular array representation Circular array representation
of HSQ D of HSQ: after insertAtTheTop
[1 1 1 1 1| kJinsertAtTheTop# [| 1T 1T 11 1| |
))))
bottom top top bottom

“Wrap around” by mod

33

HSQ implementations

- %' O

5 5 =
o S ()

3 - 0O

5 I

14 S 0
g, @ <
e

Retrieve end1l

Retrieve end?2
—

A~
ﬁ
-

O

Remove end?2 Insert at end?2

Given an implementation of the ADT Deque, it is

a freebie to provide an implementation for the

ADT HSQ (just forget the operations Retrieve endl
and Insert at end?2).

ADT HSQ

D Remove end1
D insert at endl

N
~N

Retrieve end?2
>

.
T

Remove end?2

34

HSQ implementations

* |In the next slides we define ADT List

e Given ADT List we can implement HSQ by
using an implementation of ADT List

Lists

e Lists contain items of the same type
— List of grocery items
— List of phone numbers

 What can you do to the items of a list?

e Determine length of the list
e Add an item to the list
e Remove an item from the list

e Retrieve an item from the list

* Where do you want to add a new item and
which item do you want to look at?

e VVarious answers = various ADTs List

ADT List

createlist()
// Creates an empty list.
destroyList() This variant is not

// Deatroys a list. / Discussed in Drozdek
listiIsEmpty()

// Determines whether the list is empty.

listLength()

// Returns the number of items in list.

listinsert(newPosition, newltem, success)

// Inserts newltem at position newPosition of a list, if 1 < newPosition < listLength() + 1

// if newPosition < listLength(), the items are shifted as follows

// the item at newPosition becomes the item at newPosition becomes the item at newPosition + 1, the item
// at newPosition + 2, and so on. Success indicates whether the insertion was successful.

listDelete(pos, success)

// Deletes the item at position pos of alist, if 1 < pos < listLength(). If pos < lengthlList(), the items are

// shifted as follows: the item at pos+1 becomes the at pos, the item at pos+1 becomes the item at pos+1, and
so // on. Success indicates whether the deletion was successful.

listRetrieve(pos, dataltem, success)
// sets dataltem to the item at position pos of a list, if 1 < pos < listLength(). The list is left unchanged by
// this operation. Success indicates whether the retrieval was successful.

NB there is also ADT Ordered list

Given the ADT List, how do you
implement the ADT HSQ?

38

ADT List-Drozdek

e (We are going to study Chapter 3 of Drozdek via the notion of
ADTs. NB this is not the way Drozdek has structured Chapter 3
of his book. More about this later on.)

The operations of this ADT are as follows:

createlist()

// Creates an empty list. In C++ this is implemented as a constructor (provided we implement the ADT as a
class)

destroyList()

// Destroys a list. In C++ this is implemented as the destructor (provided we implement the ADT as a class).
isEmpty()

// Determines whether the list is empty. The type of this operation is: Lists = Bool
addToHead(int)

// The type of this operation is: Lists x int = Lists

addToTail(int)

// The type of this operation is: Lists x int = Lists

deleteFromHead()

// delete the head and return its info; thus the type of the operation is: Lists = int
deleteFromTail()

// delete the tail and return its info; thus the type of the operation is: Lists = int
isInList(int)

// checks whether the integer occurs in the list; the type of the operation is: Lists = bool

Given the ADT List-Drozdek, how do
implement the ADT HSQ?

40

Chapter 3 of Drozdek a la ADT

ADT List, ADT ListDrozdek, ADT ListDrozdek+wholsNext, ADT Ordered
List, and ADT List Insertion Influenced Implicitly by Search

Compare these ADTs
We are going to study Chapter 3 through the glasses of ADTs:

The different implementations ADT List Drozdek
— Array Implementation
— Singly Linked List Implementation
— Doubly Linked List Implementation
— Circular Singly Linked List Implementation
— Circular Doubly Linked List Implementation

The different Implementations of ADT List Drozdek +wholsNext
— Circular Singly Linked List Implementation
— Circular Doubly Linked List Implementation

Implementation of ADT Ordered (Sorted) List
— Skip List implementation

“ADT List With Insertion Influenced Implicitly by Search”

— Implementations with Self-Organization: move-to-front, transpose, count-method
(excluding ordered implementation)

Chapter 3 of Drozdek a la ADT

e See previous slides for the specification of ADT List and ADT List Drozdek

e Here is how the spec for ADT List Drozdek appears in book on page 79
written in C++:

FIGURE 3.2

[[% % Kk ek ok ke ke ke k ok ok ke ok ok ok ok ke ok k ok intSLLSt.h HXx*xkkkkkkkhkkhxdkkkkhkhxhx

// singly-linked list class to store integers

#ifndef INT LINKED LIST
#define INT LINKED_LIST

class IntSLLNode {
public:
int info;
IntSLLNode *next;
IntSLLNode(int el, IntSLLNode *ptr = 0) {
info = el; next = ptr;
}
}i

class IntSLList {
public:
IntSLList() {
head = tail = 0;
}
~IntSLList();
int isEmpty() {
return head == 0;
}
void addToHead(int);
void addToTail(int);
int deleteFromHead(); // delete the head and return its info;
int deleteFromTail(); // delete the tail and return its info;
void deleteNode(int);
bool isInList(int) const;

Continues

(An Aside)
Recall: Self-referential Classes

#include <iostream:
us=ing namespace std;

=truct node {

int height

node * next: - used befors completely defined! the onlvy place in C++ where this i1z allowed.
+ A4 =0 called sslf-referential structs (or classses)

sEExxxxxE%* glternatively with classes
class node {
public:

int height:

node * next:

¥

36 3 3

int main ()
node # head = new nodel)
<« froebeling with pointers:
head -3 height = 10;
head —-:next = new nodel);
head —:next-rheight = 11;
head -:next-:next = HULL:
return 1;

Self-referential class objects can be linked together to form useful
Data structures (such as lists, queues, stacks or trees.

43

Compare Two ADTs

ADT ListDrozdek

Sepage 79 in Drozdek
o

fpragma once

. . . class IntSLLHode {
ADT List; Is not discussed public:

int info:;
1 IntSLLHod=e * ne=xt;
In the bOOk IntSLLHode (int =l. IntSLLHode * ptr = 0) {
tpragmna ocnce) info = =l; next=ptr;
Cla== List { _
public: T
List();
Sl =F (0

int listlengthi) const; class IntsSllist |

bool listIsEmpty() const: public: . _ . .
wold listIn=sert{int. int. bool); E?tSE%igt{},.//{head = raal=U0
void listDelete{int, bool); . ni , Est()f _

void listRetrieve(int . dint & booliconst: ool isEnptyi);

wold addToHead(int):

wold addToTailiint):

e e e int deletelronHesdl il - delete the head and reftnen 1t= info
int deleteFromTail(); -~ delete the tail and return it=s info
wolid deleteNode(int);

bool i=Inlist{int) const;

Seprivate:

createlist()
Creates an empty li=t: taken care off by con
destrovLi=st()

: . private:
listISEmE?$E?D?S a li=t; taken care of by destructor IntSIINode * head. = tail:
Determines whether the list iz emnpty. ¥
li=ztlengthi)
Feturn=s the numnber of item= in list.
liztInsertinevPosition, newltem, success)
Inszerts newlten at poz=iticonh newPozition of a li=st. if 1 = newPosition = listlengthi() + 1
if newFo=zition = li=tlength(). the item= are shifted a= follows

the 1temn at newPosition becomes the item at newPoszition becomes the item at newvPosition + 1, the iten
at newPozition + 2. and =0 on. Success indicates whether the insertion was successful .
listDelete({pos. success)
Deletes the i1tem at position pos of a list, 12f 1 = po= = listlengthi{). If po= < lengthli=st(). the it
zhifted a= follows: the item at pos+l becomes the at pos,. the item at pos+l becomes the item at pos+l. and
=0 on. Success indicates whether the deletion was successiul.
li=stRetrievei(pos. dataltem. =uccess)
=tz dataltem to the item at position pos of a list, if 1 = position = listlength(). The li=t i= left unchangs

thi=z operation. Success indicates whether the retriewval was successful.
36 36 36 IE 36 IE IE IE 36 IE 36 I IE IE IE IE IE IE 36 IE I IE IE IEIE I IEIE

1

ADT List Drozdek: array

implementation
* Analyze each of the operations and determine
the cost of each
— Insert at the head
— Delete at the head
— Insert at the tail
— Delete at the tail
— Delete int
— Determine whether int is in the list.

ADT List Drozdek: singly linked list
implementation

* Analyze each of the operations and determine the
cost of each list

1 [10 8 50
— Insertatthe head @ % v j \

tail —~
— Delete at the head S

— Insert at the tail head tail

— Delete at the tail (b) 10 Vame /* 50
: 1 | \

— Delete int

— Determine whether int is in the list.

ADT List Drozdek: doubly linked
list implementation

* Analyze each of the operations and determine the
cost of each

— Insert at the head head tail

— Delete at the head > 6 3 \> 3
— Insert at the tail —~>Y —~>Y \
— Delete at the tail \ N B

— Delete int

— Determine whether int is in the list.

ADT List Drozdek: circular singly

linked list implementation

 Analyze each of the operations and determine
the cost of each

— Insert atthe head _ . . ent tail

— Delete at the head NN - - n .

— Insert at the tall Q ,/> /> B
— Delete at the tall /J
— Delete int

— Determine whether int is in the list.

e NB In fact this implementation does more than is needed by
the ADT List Drozdek: it implements an extra operation
wholsNext (=current). Hence, it satisfies another ADT,
namely, ADT List Drozdek + the op wholsNext

48

ADT List Drozdek: circular doubly

linked list implementation
 Analyze each of the operations and determine the

cost of each

— Insert at the head
— Delete at the head
— Insert at the tall

— Delete at the tall
— Delete Int

=\

"\

—

— Determine whether int is in the list

NB In fact this implementation does more than is

needed by the ADT List Drozdek: it easy to implement
an extra operation wholsNext (by the intro of an extra
pointer current). Hence, it satisfies another ADT,
namely, ADT List Drozdek + the op wholsNext 49

ADT List Drozdek + wholsNext

operation

This ADT has all the operations of ADT List Drozdek plus
an extra operation wholsNext.

As already said on the previous slides: Chapter 3 of
Drozdek describes two implementations of this ADT:

1) A circular singly linked list
2) A circular doubly linked list

ADT Ordered (}Sorted) List

Operatidns:
createSortedList // creates empty sorted list
destroySortedList // destroys sorted list
sortedListlIsEmpty // determines whether sorted list is empty
sortedListLength //returns the number of items in the a sorted list

sortedListinsert(newltem, success) // inserts newitem into its
//proper sorted position in a sorted list.

sortedListDelete(item, success) // deletes item from a sorted list

sortedListRetrieve(position, dataltem, success) // sets dataltem
to the item position position of a sorted list, if 1<= position <=
sortedListLength. The list is left unchanged by this operation

locatePosition (anltem, position, success) //sets position to the
position where anltem belongs or exists in a sorted list. Success indicates
whether anltem is currently in the list. Anltem and the list are unchanged.

(A variation on this ADT is to discard the last two operations and introduce an
operation isInThelList(item); this variation is used by Drozdek implicitly in -
the discussion on skip list and ordered self-organization.)

ADT Ordered (Sorted) List: skip list

implementation
1
1-———— FG——— 5
| - S R >9

1-%2-%3-4->5-6->7-»83->9->10

ADT Ordered List: skip list

implementation

10

22

35

wEESHESTES

(2] T

17

B na

B [

(a)

7| 28

|10

NEERDEN

E3-

17

KoEN

22

NoEN

33

—{35] \ |

(b)

53

ADT Ordered List: skip list
implementation

e Of course: there are other implementations of
the ADT Ordered List.

e Remark: in the discussion of self-organization
(see next slides) Drozdek uses one of the
implementation of the ADT Ordered List;
which implementation is used is not made
explicit.

ADT List with Insertion Influenced by Search:
self-organizing list implementation

There are four methods for organizing lists:

e Move-to-front method — after the desired element is located,
put it at the beginning
of the list (Figure 3.18a)

 Transpose method — after the desired element is located,
swap it with its predecessor unless it is at the head of the list
(Figure 3.18b)

e Count method — order the list by the number of times
elements are being accessed (Figure 3.18c)

ADT List with Insertion Influenced by Search:
self-organizing list implementation

There are four methods for organizing lists:

 Ordering method — order the list using certain criteria natural
for the information under scrutiny (Figure 3.18d) —is in fact
an implementation of ADT Ordered List!

 Optimal static ordering all the data are already ordered by
the frequency of their occurrence in the body of data so that
the list is used only for searching, not for inserting new items

56

ADT List with Insertion Influenced by Search: self-organizing
list implementation

FIGURE 3.18 Accessing an element on a linked list and changes on the list depending on the
self-organization technique applied: (a) move-to-front method, (b) transpose method,
(c) count method, and (d) ordering method, in particular, alphabetical ordering,
which leads to no change. In the case when the desired element is not in the list,
(e) the first three methods add a new node with this element at the end of the list
and (f) the ordering method maintains an order on the list.

A//> B’/» C’/>l\) Access D D,/’A,/) B~/>C
move-to-front \
(a)
A‘/> B‘/+ C’/>]\) Access D A’/> B‘/+ D’/>(\3
transpose
(b)
A B C D Access D A D B C
o VA o Ve Vs
B B B © - = o \
A’/> B“/> C’/+]\) Acces'sD A“/> B4/+ C‘/*D
ordering \
(@D
A’/» B,/)l\) Access‘C A//> B’/> D‘/>C
move-to-front, \
transpose, count
(e)
A’/> B’/>]\) Acces’sC AJ/> B’/> C‘/>D
ordering \

®

ADT List with Insertion Influenced by Search:
self-organizing list implementation

Element
Searched For

A:

HHO0>02>920 020

Plain

A

AC
ACB
ACB
ACBD
ACBD
ACBD
ACBD
ACBD
ACBD
ACBD
ACBD
ACBDE
ACBDE

Move-to-
Front

A

AC
ACB
CAB
CABD
ACBD
DACB
ADCB
CADB
ACDB
CADB
CADB
CADBE
ECADB

Transpose
A

AC
ACB
CAB
CABD
ACBD
ACDB
ACDB
CADB
ACDB
CADB
CADB
CADBE
CADEB

Count

A

AC
ACB
CAB
CABD
CABD
DCAB
ADCB
CADB
ACDB
ACDB
CADB
CADBE
CAEDB

Ordering
A

AC
ABC
ABC
ABCD
ABCD
ABCD
ABCD
ABCD
ABCD
ABCD
ABCD
ABCDE
ABCDE

58

Implementation of ADT List?

createlist()
// Creates an empty list.
destroyList() This variant is not

// Destroys a list. / Discussed in Drozdek
listiIsEmpty()

// Determines whether the list is empty.

listLength()

// Returns the number of items in list.

listinsert(newPosition, newltem, success)

// Inserts newltem at position newPosition of a list, if 1 < newPosition < listLength() + 1

// if newPosition < listLength(), the items are shifted as follows

// the item at newPosition becomes the item at newPosition becomes the item at newPosition + 1, the item
// at newPosition + 2, and so on. Success indicates whether the insertion was successful.

listDelete(pos, success)

// Deletes the item at position pos of alist, if 1 < pos < listLength(). If pos < lengthlList(), the items are

// shifted as follows: the item at pos+1 becomes the at pos, the item at pos+1 becomes the item at pos+1, and
so // on. Success indicates whether the deletion was successful.

listRetrieve(pos, dataltem, success)
// sets dataltem to the item at position pos of a list, if 1 < pos < listLength(). The list is left unchanged by
// this operation. Success indicates whether the retrieval was successful.

Implementation of ADT List?

e Will be assignment:
— Efficient array implementation
— And another implementation with pointers.

Study Chapter 3 pages 76-106

