
Data Structures

September 28

1

Hierachical structures: Trees

•

2

3

Objectives

Discuss the following topics:

• Trees, Binary Trees, and Binary Search Trees

• Implementing Binary Trees

• Tree Traversal
• Searching a Binary Search Tree

• Insertion

• Deletion

4

Objectives (continued)

Discuss the following topics:

• Heaps
• Balancing a Tree

• Self-Adjusting Trees

5

Trees, Binary Trees, and Binary

Search Trees

• A tree is a data type that consists of nodes

and arcs

• These trees are depicted upside down with

the root at the top and the leaves (terminal

nodes) at the bottom

• The root is a node that has no parent; it can

have only child nodes

• Leaves have no children (their children are

null)

6

Trees, Binary Trees, and Binary

Search Trees (continued)

• Each node has to be reachable from the root
through a unique sequence of arcs, called a
path

• The number of arcs in a path is called the
length of the path

• The level of a node is the length of the path
from the root to the node plus 1, which is the
number of nodes in the path

• The height of a nonempty tree is the
maximum level of a node in the tree

7

Trees, Binary Trees, and Binary

Search Trees (continued)

Figure 6-1 Examples of trees

8

Trees, Binary Trees, and Binary

Search Trees (continued)

Figure 6-2 Hierarchical structure of a university s hown as a tree

T
r
e
e
s

(

T
r
e
e
s

(

T
r
e
e
s

(

T
r
e
e
s

(
a
d
t

a
d
t

a
d
t

a
d
t
))))

Trees: abstract/mathematical
important, great number of varieties

• terminology
(knoop, wortel, vader, kind)
node/vertex, root, father/parent, child
(non) directed
(non) orderly
binary trees (left ≠≠≠≠ right)
full (sometimes called decision trees, see Drozdek), complete (all
levels are filled, except the last one)

• categorization
structure

number of children (binary, B-boom)
height of subtrees (AVL-, B-trees)
compleet (heap)

Location of keys
search tree, heap

9

^

¬

v

ζ1

ζ3ζ2

expression code

A

D

CB

1

1

1

0

0

0

bst

trie

16

5 6 2

12

10

7

4 2 heap

syntax

sat tues

fri mon
sun thur

wed

B-tree (2,3 tree)

expr

term

term

term

expr *

fact

a

*
fact

a
b

fact

thur

fri sat wed

tues

sun

mon

sc

a a e

a etr t

kl

10

Recall Definition of Tree

1. An empty structure is a tree

2. If t1, ..., tk are disjoint trees, then the

structure whose root has as its children the

roots of t1,...,tk is also a tree

3. Only structures generated by rule 1 and 2 are

trees

Alternatively: a connected graph which contains

no cycles is a tree

11

Equivalent statements (see φ1)

• Let T be graph with n vertices then the

following are equivalent:

a) T is a tree (= no cycles and connected)

b) T contains no cycles, and has n-1 edges

c) T is connected, and has n-1 edges

d) T is connected, and every edge is a bridge

e) Any two vertices are connected by exactly one

path

f) T contains no cycles, but the addition of any new

edge creates exactly one circuit (cycle with no

repeated edges). 12

13

Trees, Binary Trees, and Binary

Search Trees (continued)

• An orderly tree is where all elements are

stored according to some predetermined

criterion of ordering

Figure 6-3 Transforming (a) a linked list into (b) a tree

14

Binary Trees

• A binary tree is a tree whose nodes have two

children (possibly empty), and each child is

designated as either a left child or a right child

Figure 6-4 Examples of binary trees

15

Binary Trees

• In a complete binary tree, all the nodes at all

levels have two children except the last level.

• A decision tree is a binary tree in which all

nodes have either zero or two nonempty

children

Complete
Binary tree
Dutch: compleet)
The more common
def

Decision tree
(Dutch: vol) complete

Tree (Drozdek def)incomplete
Binary tree

Remark on definition of Complete

Binary Tree
• Drozdek Page218 uses the following definition: a

complete binary tree is a binary tree of which all

non-terminal nodes have both their children, and all

leaves are at the same level

• The more common definition is as follows: A

complete binary tree is a binary tree in which every

level, except possibly the last, is completed filled,

and all nodes are as far left as posssible

Binary Trees

• At level i in binary tree at most 2i-1 nodes

• For non-empty binary tree whose nonterminal

nodes (i.e., a full binary tree) have exactly two

nonempty children: #of leaves =

1+#nonterminal nodes

• In a Drozdek-complete tree: # of nodes =

2height-1; one way to see this is to use the

statement #of leaves = 1+#nonterminal

nodes; another way is to count how many

nodes there are in each level and then sum

the geometric progression;
18

19

Binary Trees

Figure 6-5 Adding a leaf to tree (a), preserving th e relation of the
number of leaves to the number of nonterminal nodes (b)

ADT Binary Tree (more explicitly)

createBinaryTree() //creates an empty binary tree

createBinary(rootItem) // creates a one-node bin tree whose root contains

rootItem

createBinary(rootItem, leftTree, rightTree) //creates a bin tree whose root

contains rootItem //and has leftTree and rightTree, respectively, as its

left and right subtrees

destroyBinaryTree() // destroys a binary tree

rootData() // returns the data portion of the root of a nonempty binary tree

setRootData(newItem) // replaces the the data portion of the root of a

//nonempty bin tree with newItem. If the bin tree is empty, however,

//creates a root node whose data portion is newItem and inserts the new

//node into the tree

attachLeft(newItem, success) // attaches a left child containing newItem to

//the root of a binary tree. Success indicates whether the operation was

//successful.

attachRight(newItem, success) // ananlogous to attachLeft
20

ADT Binary Tree (continued)

attachLeftSubtree(leftTree, success) // Attaches leftTree as the left subtree

to the root of a bin tree. Success indicates whether the operation was

successful.

attachRightSubtree(rightTree, success) // analogous to attachLeftSubtree

detachLeftSubtree(leftTree, success) // detaches the left subtree of a bin

tree’s root and retains it in leftTree. Success indicates whether the op was

successful.

detachRightSubtree(rightTree, success) // similar to detachLeftSubtree

leftSubtree() // Returns, but does not detach, the left subtree of a bin tree’s

root

rightSubtree() // analogous to leftSubtree

preorderTraverse(visit) // traverses a binary tree in preorder and calls the

function visit once for each node

inorderTraverse(visit) // analogous: inorder

postorderTraverse(visit) // analogous: postorder

21

22

Implementing Binary Trees

• Binary trees can be implemented in at least

two ways:

– As arrays

– As linked structures

• To implement a tree as an array, a node is

declared as an object with an information

field and two “reference” fields

23

Implementing Binary Trees (continued)

Figure 6-7 Array representation of the tree in Figu re 6.6c

Can do for complete binary trees;
A[i] with children A[2i] and A[2i+1].
Parent of A[i] is A[i div 2].

0 8
root free

33

Implementing Binary Trees (continued)

Can do array for complete binary trees;
Level order storage;
A[i] with children A[2i] and A[2i+1].
Parent of A[i] is A[i div 2]:

1

2

3

MaxNode

....

Heapsort
Also for trees of max degree k (at most k children)

B
i
n
a
r
y

B
i
n
a
r
y

B
i
n
a
r
y

B
i
n
a
r
y
T
r
e
e

C
+
+

T
r
e
e

C
+
+

T
r
e
e

C
+
+

T
r
e
e

C
+
+

template <class T>
struct TreeNode {

T info;
TreeNode<T> *left, * right;
int tag // a.o. For threading

TreeNode (const T& i,
TreeNode<T> *left = NULL,
TreeNode<T> *right = NULL)

: info(i)

{ left = l; right = r; tag = 0; }

};

constructor
of type T

default

constructor

template

See the next slide for the proof of concept; type T=int, is hardwired 25

The programmed ADT Binary Tree (refers to slide 20, 21: ADT Binary Tree)
not parametrized: itemType = int

// Client

// ADT

// Impl.

26

27

D
ro

zd
ek

D
oe

s
no

ts
ho

w
H

ow
to

im
pl

em
en

t
G

en
er

ic
B

in
ar

y
T

re
e

28

bst

29

bst

Traversal of Binary Trees 30

Traversal of Binary Trees 31

Traversals of Binary Trees
• Is the process of visiting each node (precisely

once) in a systematic way (visiting has technical meaning, a visit can possibly

‘write’ to the node, or change the structure of the tree, so you need to do it precisely once for each node; you can ‘pass ‘by

a node many times when are only reading , for instance)

• Why?

– Get info, updates

– Check for structural properties, updating

– Definitely can be extended to graphs (with

cycles)!

• Methods:

– Depth first (recursively or iteratively with stacks):

• preorder (VLR),

• inorder(symmetric)-LVR,

• postorder (LRV)

– in level order (breadth first) -- queues

32

Traversals of Binary Trees

• Recursively

• Iteratively: stacks (Depth First)

• Queues for Breadth First

• Threaded Trees

• Tree Transformation (e.g., Morris)

33

34

Tree Traversal: breadth-first

• Breadth-first traversal is visiting each node

starting from the lowest (or highest) level and

moving down (or up) level by level, visiting

nodes on each level from left to right (or from

right to left)

35

Tree Traversal: breadth-first

36
36

Depth-First Traversal

• Depth-first traversal proceeds as far as

possible to the left (or right), then backs up

until the first crossroad, goes one step to the

right (or left), and again as far as possible to

the left (or right)

– V — Visiting a node

– L — Traversing the left subtree

– R — Traversing the right subtree

37

Depth-First Traversal

38

Inorder Tree Traversal

39

Preorder Traversal – iterative

uses a stack
S.create();

S.push(root);

while (not S.isEmpty()) {

current = S.pop() // a retrieving pop

while (current ≠ NULL) {

visit(current);

S.push(current -> right);

current = current -> left

} // end while

} // end while 40

41

Preorder Traversal – iterative

42

Stackless Depth-First Traversal

• Threads are references to the predecessor

and successor of the node according to an

inorder traversal

• Trees whose nodes use threads are called

threaded trees

43

Successor (right Pointer)

A threaded tree; an inorder traversal´s path in a threa ded tree with
Right successors only

44

Successor (right Pointer)

A threaded tree; right pointers: successors; left poin ters: predecessors

Predecessor (left Pointer)

45

MorrisInOrder ()
while not finished

if node has NO left descendant
visit it;
go to the right;

else make this node the right child of the rightmost node
in its left descendant;
go to this left descendant

T
ra

ve
rs

al
 T

hr
ou

gh
 T

re
e

T
ra

ns
fo

rm
at

io
n

46T
ra

ve
rs

al
 T

hr
ou

gh
 T

re
e

T
ra

ns
fo

rm
at

io
n

47

Traversal Through Tree Transformation

Figure 6-20 Implementation of the Morris algorithm for inorder traversal

48

Binary Search Trees

Figure 6-6 Examples of binary search trees

49

Searching a Binary Search Tree

(continued)

• The internal path length (IPL) is the sum of all

path lengths of all nodes

• It is calculated by summing Σ(i – 1)li over all

levels i, where li is the number of nodes on

level I

• A depth of a node in the tree is determined by

the path length

• An average depth, called an average path

length, is given by the formula IPL/n, which

depends on the shape of the tree

50

Insertion

Figure 6-22 Inserting nodes into binary search tree s

51

Insertion (continued)

Figure 6-23 Implementation of the insertion algorit hm

52

Insertion (continued)

Figure 6-25 Inserting nodes into a threaded tree

53

Deletion in BSTs

• There are three cases of deleting a node from

the binary search tree:

– The node is a leaf; it has no children

– The node has one child

– The node has two children

54

Deletion (continued)

Figure 6-26 Deleting a leaf

Figure 6-27 Deleting a node with one child

55

Deletion by Merging

• Making one tree out of the two subtrees of

the node and then attaching it to the node’s

parent is called deleting by merging

Figure 6-28 Summary of deleting by merging

56

Deletion by Copying

• If the node has two children, the problem can

be reduced to:

– The node is a leaf

– The node has only one nonempty child

• Solution: replace the key being deleted with

its immediate predecessor (or successor)

• A key’s predecessor is the key in the rightmost

node in the left subtree

