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Topics

• Global balancing of binary (search) trees

• Local balancing of binary (search) trees

• Self-organizing (binary search) trees



Recall Definitions
• Height-balanced (aka balanced) binary tree: for any node in 

the tree the height of the node’s subtrees differ by at most 1. 

• Page 251 Drozdek: a perfectly balanced tree, is a balanced

tree such that all leaves are on one level or on two levels. 

(Exercise: construct a balanced tree such that the leaves are 

in more than two levels.)

• A binary tree has the Symmetric Search property, if

• Each node contains a key

• Different nodes will have different keys

• There is an ordering on the keys

• For each node in the tree,  the key of the node is strictly

bigger than any key in the left subtree and strictly smaller 

than any key in the right subtree 





Binary Tree Transformations: 

Rotations

par

ch

P Q

R

ch

parP

Q R

Right rotation of child
ch about parent par

Some details: 
P, Q, and R are subtrees, possibly empty
Dashed means: does not matter whether present or not.
Vertical line means that it does not matter whether the node is a left or a 
right child of somebody.
Red lines on the left mean that on the lower level specifications (for instance
on the implementation level of the tree, say in pointer based, the value of the red
links will change)

!! This transformation preserves symmetric Binary Search Tree property !!

Right rotation of child
ch about parent par
(aka
right rotation on node 
par )



Binary Tree Transformations: 
Rotations

par

ch

P Q

R

ch

parP

Q R

Of course, starting with the tree on the right,  we 
say that the tree on the left is  
the left rotation of node par around node ch. 
(The right and left rotations are inverses of each other.)
If the tree happens to be a seach tree, then a rotation will
Preserve the search property.

Right rotation

Left rotation of node par
around node ch

These are the only
rotations needed; 
As  double rotations
are built up from
single rotations.



Binary Tree Transformations: 

Rotations

gr

par

ch

P Q

R

1or2 gr

ch

parP

Q R

1or2

Node par can have parent; node par can be either a left or a right
child of gramps – it does not matter; by the same token in the right
tree, the node ch can have a parent and it can either be a left or right
child of gramps; (of course, in the right tree, ch and par are just names,
and are not intended to suggest parent-child relationship)

Left rotation

Right rotation
on node par



Motivation for the Left and Right

Rotation (continued)

We can motivate the left rotation, on a very simple
unbalanced BST:  

Carry out left rotation on A: 

B 

C A 
B

C

A +2

+1

0

Numbers next to the nodes are the balance factors of the nodes (balance factor of 
a node = height of right subtree – height of left subtree)

Balanced !



Motivation for the Left and Right

Rotation (continued)

Similarly we can motivate the right rotation, again on a very simple
unbalanced BST:  

Left-right

Carry out right rotation on C: 

B 

C A 

A 

B

C 

Balanced !



Left and right rotations are not

enough for balancing: 

C

A Consider the simple
balanced BST on the left. 
Suppose an insertion
with key B takes place, 
we then get:

B

C

A

The resulting tree
on the right is clearly
unbalanced. 
Moreover it cannot
be balanced by a 
single rotation (left or
right) and on any of the 
nodes A, B or C.
(Exercise)

Right Rotation
on C:

B

C

A

Left Rotation
on A:

B

C

A

B 

C A 

Balanced !



Left and right rotations are not

enough for balancing (symm. case):

C

A

Consider the simple
balanced BST on the left. 
Suppose an insertion
with key B takes place, 
we then get:

The resulting tree
on the right is clearly
unbalanced. 
Moreover it cannot
be balanced by a 
single rotation (left or
right) and on any of the 
nodes A, B or C.
(Exercise)

left Rotation
on A:

Right Rotation
on C:

B

A

C

B 

C A 

Balanced !
B

A

C

A 

B

C 



Summary of Single Rotations

B

A

T1 T2

T3

A

BT1

T2 T3

A

BT1

T2 T3

B

A

T1 T2

T3

Single right rotation

Single left rotation
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B

A

C

T4

T3T2

T1

Double rotation
to the right

Composition of
left on A 
Followed by right on C

B 

C A 

T1 T2 T3 T4

T1

B

C

A

T2 T3

T4

B 

C A 

T1 T2 T3 T4

Double rotation
to the left

Composition of
Right on C 
Followed by left on A





Digression: Rigidity

• In the following we verify that, if we require

the rotation transformation of the tree to be

symmetric search property preserving, than

the rotation is completely determined (is 

unique) – or in simpler terms: we know where

nodes ch, par and subtrees P, Q, and R go in 

the right transformation and we know where

nodes par, ch and subtrees P, Q, and R go in 

the left transformation

• Sometimes life is easy on your memory ☺



Binary Tree Transformations: Rotations; 

The Anatomy

gr

par

ch

gr

par

ch

P Q

R

The dashed lines and dashed subtrees indicate that we  don’t care whether these 
links and subtrees are present or not. Verticality means we don´t care whether gr is 
a left or right descendant of its parent.  We represent the same situation with each
of the two pictures below.  We are going to consider rotations (right and left which
are inverses of each other).  All or some of the direct descendants P, Q, and R can
be absent. But we do care about them! That is we need to tell explicitly where they
end up after the rotation. A better way of saying this is that P, Q, or R could be the 
empty subtree and show their position in the rotated tree (whether they are empty or
not). 

=

In what follows, the node par
could also be the left child of
gramps; in order to fix our
thoughts we let the node par
be the right descendant of 
gramps



Bin Trees Transfo: Rotations
The rigidity of a right rotation of node ch around its

parent par. 
The rotation can be done in any binary tree but in order to rediscover
what the rotation should be, we let us guide by the 
binary symmetric search tree property. In  case the rotation is applied to a 
BST we require the BST property to be invariant (i.e., the BST property, if present 
before the rotation, should be present also after the rotation.)

gr

ch

Step 1: the ch takes the placs of par
a)BST prop. still holds
b)With respect to gramps, ch can only
be put down as a right descendant 
of gramps.

What about parent par ? Where can
we put it?

gr

par

ch

P Q

R



Bin Tree Transfo: Rotations
The rigidity of a right rotation of node ch around its

parent par. 

gr

par

ch

P Q

R

Step 1: the ch takes the placs of par
a)BST prop. still holds
b)With respect to gramps, ch can only
be put down as a right descendant 
of gramps.

Step 2: What about parent par ? Where
can we put it? It can only be the right
child of ch:gr

ch

par

Next: where can we 
put P, Q, and R?



Bin Tree Transfo: Rotations
The rigidity of a right rotation of node ch around its

parent par. 

gr

par

ch

P Q

R

Step 1: the ch takes the placs of par
a)BST prop. still holds
b)With respect to gramps, ch can only
be put down as a right descendant 
of gramps.

Step 2: What about parent par ? Where
can we put it? It can only be the right
child of ch:

Next: where can we 
put P, Q, and R?
Out of the 3!  = 6 possibilities
for placing P, Q , and R only
one preserves the BST prop.

gr

ch

parP

Q R



Bin Tree Transfo: Rotations
By the same token we have  rigidity of a left rotation of 

node par around its parent node ch starting from the  

tree on the right

gr

par

ch

P Q

R

gr

ch

parP

Q R



Digression on Rigidity

Rigidity also applies to the double rotations

End of Rigidity discussion



Balancing a Tree

• A binary tree is height-balanced or balanced if 

the difference in height of both subtrees of 

any node in the tree is either zero or one

• A tree is considered perfectly balanced if it is 

balanced and all leaves are to be found on 

one level or two levels
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Balancing a Tree (continued)

Different binary search trees with the same information
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Balancing a Tree (continued)

Maximum number of nodes in binary trees of 
different heights
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Balancing a Tree (continued)

Creating a binary search tree from an ordered array
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The DSW Algorithm

• The building block for tree transformations in 

this algorithm is the rotation

• There are two types of rotation, left and right, 

which are symmetrical to one another as 

discussed earlier: 
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The DSW Algorithm (continued)

rotateRight (Gr, Par, Ch)

if Par is not the root of the tree // i.e., if Gr is not null 

{
grandparent Gr of child Ch becomes Ch’s parent;

}

right subtree of Ch becomes left subtree of Ch’s parent Par;

node Ch acquires Par as its right child;
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The DSW Algorithm (continued)

Transforming a binary search tree into a backbone
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The DSW Algorithm (continued)

Transforming a backbone into a perfectly balanced tree 
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AVL Trees

• An AVL tree is one in which the height of the 

left and right subtrees of every node differ by 

at most one

Examples of AVL trees
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AVL Trees (continued)

Balancing a tree after insertion of a node in the right 
subtree of node Q  
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AVL Trees (continued)

Balancing a tree after insertion of a node in the right 
subtree of node Q    
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AVL Trees (continued)

Balancing a tree after insertion of a node in the left 
subtree of node Q



To be continued 


