
1

Data Structures

October 26

2

The Family of B-trees

• B* - trees

• B+ - trees

• Simple prefix B+ - trees

• prefix B+ - trees

• R-trees

• 2-4 B-trees, vh-trees, red-black trees

33

Red-Black Trees

Red-Black Tree is a BST (binary search tree) with the following
properties:

1. Each node is either black or red

2. The root of the tree is black

3. If a node is red, than its children are black

4. Each simple path from a given node to any of its descendant
leaves contains the same number of black nodes

5. Each node is made to have two children (also the leaves);
these added nodes are called external leaves; these external
leaves are black

Key, parent, left, right, color

4

A Red-Black Tree
Nodes are made internal by attaching (black)
external nil nodes

5

26

17 41

14 21 30 47

10 16 19 23 28 38

7 12 15 20 35 39

3

A Red-Black Tree

Black nodes are shown in white

6

26

17 41

14 21 30 47

10 16 19 23 28 38

7 12 15 20 35 39

3 nil nil nil nil nil nil

nil nil nil nil nil nil

nil nil

nil nil

nil nil nil nilnil

A Red-Black Tree; external leaves are shown

External
leaves

7

Red-Black Trees

• bh(v) = the number of black nodes (not

counting v if it is black) from v to any leaf in

the subtree (called the black-height).

• (As done before: we will denote by h(v) the

height of the subtree rooted at node v)

8

26

17 41

14 21 30 47

10 16 19 23 28 38

7 12 15 20 35 39

3 nil nil nil nil nil nil

nil nil nil nil nil nil

nil nil

nil nil

nil nil nil nilnil

A Red-Black Tree; external leaves
and black heights (bh(x)) are shown

3

3

2 2

2

2 1

2 1 1 1 1 1

1

1

1 1 1 1 1

9

26

17 41

14 21 30 47

10 16 19 23 28 38

7 12 15 20 35 39

3

[T]nil

A detail:
Using a
sentinel

10

Red-Black Trees

• Statement: a red-black tree which contains n
internal nodes has a height of O(log(n)). (Internal
nodes are the nodes of the original tree without
the nil leaves decoration.)

• This follows easily from the following assertion: a
subtree in a red-black tree rooted at v has at least
2bh(v) – 1 internal nodes.

• Proof by induction on h(v), the height of v.

Base case: h(v) = 0; if v has height zero it must be
nil, thus bh(v) = 0; and the base case follows (2bh(v)

– 1 = 20 – 1 = 0).

11

Red-Black Trees
Induction Step

Induction hypothesis: if v is such that h(v) = k, then the
subtree rooted v has at least 2bh(v) – 1 internal
nodes.

This implies that, if v’ is such that it has h(v’) = k+1,
then subtree rooted at v’ has 2bh(v’) – 1 internal
nodes. For:

v’ has h(v’) > 0. Thus it has two children, each of which
has black-height of either bh(v’) or bh(v’) -1. By ind.
hyp. each child has at least 2bh(v’)-1 – 1 internal
nodes, so v’ has at least

2bh(v’)-1 – 1 + 2bh(v’)-1 – 1 +1 = 2bh(v’) – 1 internal nodes.

Done.

12

Red-Black Trees

Next we show that the height of a red-black tree with n internal
nodes is O(log(n)) by using the previously derived assertion:

On any path of the root to a leaf at least half of the nodes are black
(property 3: if a node is red than both its children are black), the
black height of the root is h(root)/2. Combined with the
assertion we have:

n ≥ 2bh(root) – 1 ≥ 2h(root)/2 – 1
Which is equivalent to

log2(n+1) ≥ h(root) / 2
And in turn to

h(root) ≤ 2 log2(n+1)

Thus the height is O(log(n)).

1313

Red-Black Trees: Insertion

Put the new node X as in any BST- variant (binary search tree)
insertion in the appropriate leaf

What color will the inserted node get? The wise decision is to
color it red.

Next we have to worry about restoring properties 1-5. We
consider the following cases:

a) Tree was empty before insertion: the new node is the root;
color it black

1414

Red-Black Trees: Insertion

b) The inserted node X has a father: two subcases:

1) the father is black (we are done);

2) the father is red: so the inserted node has a grandfather
who is necessarily black (property 3);

b)2) has again two subcases:

i) the grandfather of X has another child (the brother of the
father; the uncle of X) and it is black or the grandfather has
only one child; in this case we do a rotation – we will
describe this in full generality for any node X being red, the
father is also red, no uncle or a black uncle;

ii) the uncle of X is red: flip-flag;

1515

Red-Black Trees: Insertion

b) 2) ii) the uncle of X is red: flag-flip; now the grandfather is
red which might violate the rules of a red-black tree, so
now we let the role of X be played by the grandfather (who
became red);

If the grandfather is the root, then we color the root black and
we are done: we get a red-black tree whose black height
has increased by 1.

If the grandfather is not the root, we proceed as before; this
process will not go on indefinitely, of course.

Remark: rotations and flag-flip do not change the black height of
the tree; the changing of the color of the root from red to
black is the only case in which the black height is changed
(by +1).

16

Red-Black Trees: Insertion; description of

rotations

X

par

gr

grX

par

Case: “left-left”; no uncle (next page: uncle is black)

Of course: parent right child of grandfather; X right child of parent is dealt
with analogously by using a left rotation

17

Red-Black Trees: Insertion; description of

rotations

X

par

gr

grX

par

uncle

uncle

Case: “left-left” and uncle is black)

Of course: parent right child of grandfather; X right child of parent is dealt
with analogously by using a left rotation

18

Red-Black Trees: Insertion; description of

rotation

X

par

gr

uncle

Case “right-left” and no uncle or black uncle

Double rotation black height does not change

Case “left-right” is done similarly

A

B
C

X

par
gr

uncle

A CB

19

Red-Black Trees: Insertion; description of

flag-flip

X

par

gr

uncle

Case of red uncle: flag-flip; now grandfather (gr) can cause trouble

A

B
C

X

par

gr

uncle

A

B
C

20

Red-Black Trees: ((Insertion; description of

flag-flip)) this case should already be clear

X

par

gr

uncle

Case of red uncle: flag-flip; now grandfather (gr) can cause trouble

C

A B

X

par

gr

uncle

C

A B

21

Red-Black Trees: Insertion Examples

B

11

7 14

2

Insert 1

22

Red-Black Trees: Insertion Examples

11

7 14

2

1

11

2 14

1 7

Single right rotation

Next: Insert 5

23

Red-Black Trees: Insertion Examples

Insert 5; flag-flip (can stop)

Next insert 8

11

2 14

1 7

5

11

2 14

1 7

5

24

Red-Black Trees: Insertion Examples

Insert 8; nothing to be done

Next: insert 4

11

2 14

1 7

5
8

11

2 14

1 7

5
8

25

Red-Black Trees: Insertion Examples

insert 4: flag-flip;

11

2 14

1 7

5
8

4

11

2 14

1 7

5
8

4X

Flag-flip brings grandfather in trouble;
Next: The role of X is played by the grandfather
(The node with key 7)

26

Red-Black Trees: Insertion Examples

11

2 14

1 7

5
8

4

Flag-flip brings grandfather in trouble;
Next: The role of X is played by the grandfather
(The node with key 7)

X

Double rotation

7
X

11

148

2

51

4

27

Red-Black Trees

• Discussion of deletion in Red-Black trees

• Discussion of relation with B-trees

• How are the operations on Red-Black trees

reflected at the B-tree counterpart

• Comparison with AVL trees

28

Next slides give an alternative approach to red-black trees;
These (until slide 51) can be skimmed or skipped ☺

2929

2–4 Trees

• In 2–4 trees, only one, two, or at most three

elements can be stored in one node

• To represent a 2–4 tree as a binary tree, two

types of links between nodes are used:

– One type indicates links between nodes

representing keys belonging to the same

node of a 2–4 tree

– Another represents regular parent–children links

3030

2–4 Trees (continued)

(a) A 3-node represented (b–c) in two possible ways by red-black

trees and (d–e) in two possible ways by vh-trees. (f) A 4-node represented (g)

by a red-black tree and (h) by a vh-tree.

3131

2–4 Trees (continued)

(a) A 2–4 tree represented (b) by a red-black tree and (c)

by a binary tree with horizontal and vertical pointers

3232

2–4 Trees (continued)

(a) A vh-tree of height 7; (b) a vh-tree of height 8

lg(n+1) ≤ h ≤ 2 lg(n+2) -2

3333

2–4 Trees (continued)

(a–b) Split of a 4-node attached to a node with one key in a

2–4 tree. (c–d) The same split in a vh-tree equivalent to these two nodes.

flagFlipping

3434

2–4 Trees (continued)

(a–b) Split of a 4-node attached to a 3-node in a 2–4 tree

and (c–d) a similar operation performed on one possible vh-tree

equivalent to these two nodes.

3535

2–4 Trees (continued)

Fixing a vh-tree that has consecutive horizontal links

3636

2–4 Trees (continued)

A 4-node attached to a 3-node in a 2–4 tree

3737

2–4 Trees (continued)

Building a vh-tree by inserting numbers in this

sequence: 10, 11, 12, 13, 4, 5, 8, 9, 6, 14

3838

2–4 Trees (continued) deletion

We delete a node by first interchanging it

with its successor.

Bad case: successor with no descendants which

is connected to its parent by a vertical link

While looking for successor transform vh tree into

another vh tree such that successor without

descendants is attached to its parent with a

horizontal link

3939

2–4 Trees (continued)

Deleting a node from a vh-tree

4040

2–4 Trees (continued)

Deleting a node from a vh-tree

4141

2–4 Trees (continued)

Deleting a node from a vh-tree (continued)

4242

2–4 Trees (continued)

Deleting a node from a vh-tree (continued)

4343

2–4 Trees (continued)

Deleting a node from a vh-tree (continued)

4444

2–4 Trees (continued)

Deleting a node from a vh-tree (continued)

4545

2–4 Trees (continued)

Examples of node deletions from a vh-tree

4646

2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)

4747

2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)

4848

2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)

4949

2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)

5050

2–4 Trees (continued)

An example of converting (a) an AVL tree into

(b) an equivalent vh-tree

51

Graphs

Chapter 8

5252

Objectives

Discuss the following topics:

• Graphs

• Graph Representation

• Graph Traversals (breadth first, depth first)

• Connectivity

• Bipartiteness

• Topological Sort (aka topological ordering)

• Cycle Detection

• Shortest Paths

5353

Graphs

• A graph is a collection of vertices (or nodes)
and the connections between them

• A simple graph G = (V, E) consists of a
nonempty set V of vertices and a possibly
empty set E of edges, each edge being a set of
two vertices from V

• A directed graph, or a digraph, G = (V, E)
consists of a nonempty set V of vertices and a
set E of edges (also called arcs), where each
edge is a pair of vertices from V

5454

Graphs (continued)

• A multigraph is a graph in which two vertices

can be joined by multiple edges

• A pseudograph is a multigraph with the

condition vi ≠ vj removed, which allows for

loops to occur

• A graph is called a weighted graph if each

edge has an assigned number

5555

Graphs (continued)

• A path from v1 to vn is a sequence of edges

edge(v1,v2), edge(v2,v3), …, edge(vn-1,vn)

• If v1=vn, and no edge is repeated, then the

path is called a circuit

• If all vertices in a circuit are different, then it is

called a cycle.

5656

Graphs (continued)

Examples of graphs: (a–d) simple graphs; (c) a complete graph K4;

(e) a multigraph; (f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the

digraph

57
57

Graph Representation

G
ra

p
h

 r
e

p
re

se
n

ta
ti

o
n

s
(a

)
A

 g
ra

p
h

re
p

re
se

n
te

d
 a

s
(b

–
c)

 a
n

 a
d

ja
ce

n
cy

 l
is

t

m ≤ n(n-1)/2! ≤ n2 (m=#edges; n=#nodes)

G connected: n-1 ≤ m ≤ n(n-1)/2! ≤ n2

G sparse: m << n(n-1)/2!

Adjacency matrix requires O(n2) space; process neighbors of v needs |V| steps.

Adjacency list: O(m+n) space; steps; process neighbors of v needs deg(v) steps

5858

Graph Representation (continued)

Graph representations (d) an adjacency matrix, and

(e) an incidence matrix (continued)

59

Graph Traversal: breadth first search

and depth first search

• Let G = (V, E) be a graph and let s and t be two

particular nodes. Is there a path from s to t in

G?

• Two high level solutions: breadth first search

and depth first search

• Breadth-first search

60

1 7

2

5

3

4

6

8

9

13

11

1210

Layers, flooding; more precisely:

61

Graph traversal: bsf

• Define the layers L1, L2, L3, … more precisely

• Layer L1 consists of all nodes that are
neighbors of node s. (Denote the set {s} by L0)

• Assume we have defined L1, … , Lj, then layer
Lj+1 consists of all nodes that do not belong to
an earlier layer and that have an edge to a
node in layer Lj.

• Distance between two nodes: minimum
number of edges on a path joining them

62

Graph traversal: bsf

• For each j ≥ 1, layer Lj produced by BFS

consists of all nodes at distance exactly j from

s.

• There is a path from s to t if and only if t

appears in some layer.

• BFS � a tree T rooted at s on the set of nodes

reachable from s. Breadth first search tree.

63

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

Node 1.

64

Graph traversal: bsf

• Let T be a breadth-first search tree, let x and y

be nodes in T belonging to Li and Lj, and let

(x,y) be an edge of G. Then i and j differ by at

most 1.

65

Use array discovered[], and for each layer Li we have a list L[i], i=0, 1, 2, ….

BFS(s):

discovered[s] true;

discovered[v] false // for all other nodes of G

initialize L[0] to consist of the single element s

set current BFS tree T to ǿ.

While L[i] is not empty

initialize empty list L[i+1]

for each node u ε L[i]

consider each edge (u,v) incident to u

if (discovered[v] == false) {

discovered[v] true;

add edge (u,v) to T

add v to the list L[i+1]

}

endfor

Endwhile Can also use a queue; will

have one list L then.

