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The Family of B-trees

• B* - trees

• B+ - trees

• Simple prefix B+ - trees

• prefix B+ - trees

• R-trees

• 2-4 B-trees, vh-trees, red-black trees
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Red-Black Trees 

Red-Black Tree is a BST (binary search tree) with the following 
properties:

1. Each node is either black or red

2. The root of the tree is black

3. If a node is red, than its children  are black

4. Each simple path from a given node to any of its descendant 
leaves contains the same number of black nodes

5. Each node is made to have two children (also the leaves); 
these added nodes are called external leaves; these external 
leaves are black

Key, parent, left, right, color



4

A Red-Black Tree
Nodes are made internal by attaching (black)
external nil nodes
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3

A Red-Black Tree

Black nodes are shown in white
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nil nil nil nil nil nil

nil nil

nil nil

nil nil nil nilnil

A Red-Black Tree; external leaves are shown

External
leaves



7

Red-Black Trees

• bh(v) = the number of black nodes (not 

counting v if it is black) from v to any leaf in 

the subtree (called the black-height). 

• (As done before:  we will denote by h(v) the  

height of the  subtree rooted at node v )
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A Red-Black Tree; external leaves 
and black heights ( bh(x)) are shown
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[T]nil

A detail:
Using a 
sentinel
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Red-Black Trees

• Statement: a red-black tree which contains  n   
internal nodes has a height of  O(log(n)). (Internal 
nodes are the nodes of the original tree without 
the nil leaves decoration.) 

• This follows easily from the following assertion: a 
subtree in a red-black tree rooted at v has at least
2bh(v) – 1 internal nodes.

• Proof by induction on h(v),  the height of v.

Base case:  h(v) = 0; if v has height zero it must be 
nil, thus bh(v) = 0; and the base case follows (2bh(v)

– 1 = 20 – 1 = 0). 
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Red-Black Trees
Induction Step

Induction hypothesis: if v is such that h(v) = k, then the 
subtree rooted v has at least 2bh(v) – 1 internal 
nodes. 

This implies that,  if  v’ is such that it has h(v’ ) = k+1, 
then subtree rooted at v’ has 2bh(v’ ) – 1 internal 
nodes. For: 

v’ has h(v’ ) > 0. Thus it has two children, each of which 
has black-height of either bh(v’ ) or bh(v’ ) -1. By ind. 
hyp. each child has at least 2bh(v’ )-1 – 1 internal 
nodes, so v’ has at least

2bh(v’ )-1 – 1 + 2bh(v’ )-1 – 1 +1 = 2bh(v’ ) – 1 internal nodes. 

Done. 
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Red-Black Trees

Next we show that the height of a red-black tree with n internal 
nodes is O(log(n)) by using the previously derived assertion:

On any path of the root to a leaf at least half of the nodes are black 
(property 3: if a node is red than both its children are black), the 
black height of the root is h(root)/2. Combined with the 
assertion we have:

n   ≥ 2bh(root) – 1   ≥ 2h(root)/2 – 1
Which is equivalent to

log2(n+1)    ≥ h(root) / 2
And in turn to 

h(root)  ≤ 2 log2(n+1) 

Thus the height is O(log(n )).
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Red-Black Trees: Insertion 

Put the new node X as in any BST- variant (binary search tree) 
insertion in the appropriate leaf

What color will the inserted node get? The wise decision is to 
color it red.

Next we have to worry about restoring properties 1-5. We 
consider the following  cases:

a) Tree was empty before insertion: the new node is the root; 
color it black
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Red-Black Trees: Insertion 

b) The inserted node X has a father: two subcases: 

1) the father is black (we are done); 

2) the father is red:  so the inserted node has a grandfather 
who is necessarily black (property 3); 

b)2) has again two subcases: 

i) the grandfather of X has another child (the brother of the 
father; the uncle of X) and it is black  or the grandfather has 
only one child;  in this case we do a rotation – we will 
describe this in full generality for any node X being red, the 
father is also red, no uncle or a black uncle; 

ii) the uncle of X is red: flip-flag; 



1515

Red-Black Trees: Insertion 

b) 2) ii) the uncle of X is red: flag-flip; now the grandfather is 
red which might violate the rules of a red-black tree, so 
now we let the role of X be played by the grandfather (who 
became red); 

If the grandfather is the root, then we color the root black and
we are done: we get a red-black tree whose black height 
has increased by 1.

If the grandfather is not the root, we proceed as before; this 
process will not go on indefinitely, of course. 

Remark: rotations and flag-flip do not change the black height of 
the tree; the changing of the color of the root from red to 
black is the only case in which the black height is changed 
(by +1). 
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Red-Black Trees: Insertion; description of 

rotations

X

par

gr

grX

par

Case: “left-left”; no uncle (next page: uncle is black)

Of course: parent right child of grandfather; X right child of parent is dealt
with analogously by using a left rotation
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Red-Black Trees: Insertion; description of 

rotations

X

par

gr

grX

par

uncle

uncle

Case: “left-left” and uncle is black)

Of course: parent right child of grandfather; X right child of parent is dealt
with analogously by using a left rotation
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Red-Black Trees: Insertion; description of 

rotation

X

par

gr

uncle

Case  “right-left” and no uncle or black uncle

Double rotation                   black height does not change

Case  “left-right” is done similarly 

A

B
C

X

par
gr

uncle

A CB
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Red-Black Trees: Insertion; description of 

flag-flip

X

par

gr

uncle

Case of red uncle: flag-flip;    now grandfather (gr) can cause trouble

A

B
C

X

par

gr

uncle

A

B
C
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Red-Black Trees:  ((   Insertion; description of 

flag-flip  )) this case should already be clear

X

par

gr

uncle

Case of red uncle: flag-flip;    now grandfather (gr) can cause trouble

C

A B

X

par

gr

uncle

C

A B
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Red-Black Trees: Insertion Examples

B

11

7 14

2

Insert 1
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Red-Black Trees: Insertion Examples
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1 7

Single right rotation

Next:    Insert 5
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Red-Black Trees: Insertion Examples

Insert 5;   flag-flip (can stop)

Next insert   8
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1 7

5
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2 14

1 7

5
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Red-Black Trees: Insertion Examples

Insert   8;  nothing to be done

Next: insert  4
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Red-Black Trees: Insertion Examples

insert  4:  flag-flip;   
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5
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2 14
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5
8

4X

Flag-flip brings grandfather in trouble;
Next: The role of X is played by the grandfather
(The node with key  7)
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Red-Black Trees: Insertion Examples

11

2 14

1 7

5
8

4

Flag-flip brings grandfather in trouble;
Next: The role of X is played by the grandfather
(The node with key  7)

X

Double rotation

7
X

11

148

2

51

4
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Red-Black Trees

• Discussion of deletion in Red-Black trees

• Discussion of relation with B-trees

• How are the operations on Red-Black trees 

reflected at the B-tree counterpart

• Comparison with AVL trees
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Next slides give an alternative approach to red-black trees;
These (until slide 51) can be skimmed or skipped ☺
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2–4 Trees

• In 2–4 trees, only one, two, or at most three 

elements can be stored in one node

• To represent a 2–4 tree as a binary tree, two 

types of links between nodes are used:

– One type indicates links between nodes 

representing keys belonging to the same 

node of a 2–4 tree 

– Another represents regular parent–children links
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2–4 Trees (continued)

(a) A 3-node represented (b–c) in two possible ways by red-black 

trees and (d–e) in two possible ways by vh-trees. (f) A 4-node represented (g) 

by a red-black tree and (h) by a vh-tree.
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2–4 Trees (continued)

(a) A 2–4 tree represented (b) by a red-black tree and (c) 

by a binary tree with horizontal and vertical pointers
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2–4 Trees (continued)

(a) A vh-tree of height 7; (b) a vh-tree of height 8  

lg(n+1) ≤ h ≤ 2 lg(n+2) -2
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2–4 Trees (continued)

(a–b) Split of a 4-node attached to a node with one key in a 

2–4 tree. (c–d) The same split in a vh-tree equivalent to these two nodes.

flagFlipping
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2–4 Trees (continued)

(a–b) Split of a 4-node attached to a 3-node in a 2–4 tree 

and (c–d) a similar operation performed on one possible vh-tree 

equivalent to these two nodes.



3535

2–4 Trees (continued)

Fixing a vh-tree that has consecutive horizontal links
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2–4 Trees (continued)

A 4-node attached to a 3-node in a 2–4 tree
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2–4 Trees (continued)

Building a vh-tree by inserting numbers in this 

sequence: 10, 11, 12, 13, 4, 5, 8, 9, 6, 14
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2–4 Trees (continued) deletion

We delete a node by first interchanging it 

with its successor. 

Bad case: successor with no descendants  which 

is connected to its parent by a vertical link

While looking for successor transform vh tree into

another vh tree such that successor without 

descendants is attached to its parent with a 

horizontal link
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2–4 Trees (continued)

Deleting a node from a vh-tree
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2–4 Trees (continued)

Deleting a node from a vh-tree
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2–4 Trees (continued)

Deleting a node from a vh-tree (continued)
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2–4 Trees (continued)

Deleting a node from a vh-tree (continued)
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2–4 Trees (continued)

Deleting a node from a vh-tree (continued)



4444

2–4 Trees (continued)

Deleting a node from a vh-tree (continued)
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2–4 Trees (continued)

Examples of node deletions from a vh-tree
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2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)
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2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)
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2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)
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2–4 Trees (continued)

Examples of node deletions from a vh-tree (continued)
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2–4 Trees (continued)

An example of converting (a) an AVL tree into 

(b) an equivalent vh-tree
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Graphs

Chapter 8
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Objectives

Discuss the following topics: 

• Graphs

• Graph Representation

• Graph Traversals (breadth first, depth first)

• Connectivity

• Bipartiteness

• Topological Sort (aka topological ordering)

• Cycle Detection

• Shortest Paths
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Graphs

• A graph is a collection of vertices (or nodes) 
and the connections between them

• A simple graph G = (V, E) consists of a 
nonempty set V of vertices and a possibly 
empty set E of edges, each edge being a set of 
two vertices from V

• A directed graph, or a digraph, G = (V, E) 
consists of a nonempty set V of vertices and a 
set E of edges (also called arcs), where each 
edge is a pair of vertices from V
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Graphs (continued)

• A multigraph is a graph in which two vertices 

can be joined by multiple edges

• A pseudograph is a multigraph with the 

condition vi ≠ vj removed, which allows for 

loops to occur

• A graph is called a weighted graph if each 

edge has an assigned number
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Graphs (continued)

• A path from v1 to vn is a sequence of edges 

edge(v1,v2), edge(v2,v3), …, edge(vn-1,vn) 

• If v1=vn, and no edge is repeated, then the 

path is called a circuit

• If all vertices in a circuit are different, then it is 

called a cycle. 
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Graphs (continued)

Examples of graphs: (a–d) simple graphs; (c) a complete graph K4; 

(e) a multigraph; (f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the 

digraph
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Graph Representation
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m  ≤ n(n-1)/2!  ≤ n2  (m=#edges; n=#nodes)

G connected:        n-1 ≤ m  ≤ n(n-1)/2!  ≤ n2

G sparse:       m   <<   n(n-1)/2! 

Adjacency matrix requires O(n2 ) space;  process neighbors of v needs |V| steps.

Adjacency list: O(m+n) space;   steps;  process neighbors of v needs deg(v) steps 
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Graph Representation (continued)

Graph representations (d) an adjacency matrix, and 

(e) an incidence matrix (continued)
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Graph Traversal: breadth first search 

and depth first search

• Let G = (V, E) be a graph and let s and t be two 

particular nodes. Is there a path from s to t in 

G? 

• Two high level solutions: breadth first search 

and depth first search

• Breadth-first search
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Layers, flooding; more precisely:
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Graph traversal: bsf

• Define the layers L1, L2, L3, … more precisely

• Layer L1 consists of all nodes that are 
neighbors of node s. (Denote the set {s} by L0)

• Assume we have defined L1, … , Lj, then layer  
Lj+1 consists of all nodes that do not belong to 
an earlier layer and that have an edge to a 
node in layer Lj.

• Distance between two nodes: minimum 
number of edges on a path joining them
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Graph traversal: bsf

• For each j ≥ 1, layer Lj produced by BFS 

consists of all nodes at distance exactly j from 

s.

• There is a path from s to t if and only if t

appears in some layer.

• BFS � a tree T rooted at s on the set of nodes 

reachable from s.  Breadth first search tree.



63

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from 

Node 1. 
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Graph traversal: bsf

• Let T be a breadth-first search tree, let x and y

be nodes in T belonging to Li and Lj, and let 

(x,y) be an edge of G. Then i and j differ by at 

most 1. 
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Use array discovered[], and for each layer Li we have a list L[i], i=0, 1, 2, …. 

BFS(s):

discovered[s]  true;  

discovered[v]  false    // for all other nodes of G

initialize L[0] to consist of the single element s

set current BFS tree T to ǿ. 

While L[i] is not empty

initialize empty list L[i+1]

for each node  u ε L[i] 

consider each edge (u,v) incident to u

if (discovered[v] == false ) {

discovered[v]  true;

add edge (u,v) to T

add v to the list L[i+1]

}

endfor

Endwhile Can also use a queue; will 

have one list L then.


