
Data Structures

October 19

Topics

• Multi-way trees

Multiway Trees

• A multiway search tree of order m, or an m-

way search tree, is a multiway tree in which:

– Each node has (at most) m children and (at most)

m – 1 keys

– The keys in each node are in ascending order

– The keys in the first i children are smaller than

the ith key

– The keys in the last m – i children are larger than

the ith key

Multiway Search Trees (continued)

A 4-way tree (book notation)

70

6050 80

30 35 58 59 63 70 73 100

52 54 61 62

55 56

57

The same 4-way tree in a different notation

Multiway Search Trees (continued)

The same 4-way tree in a third notation

50 60 80

30 35 58 59 63 70 73 100

52 54 61 62

57

55 56

A 4-way tree (book notation)

Is not a 4-way B-tree:
for instance the node
with one key (100) should have two children; will
introduce B-trees later

Multiway Search Trees (continued)

A 4-way tree (book notation)
The same 4-way tree in a fourth notation

.100..30.35. .58.59. .50.60.80.

.50.60.80.

.52.54. .61.62.

.55.56.

.57.

The Family of B-Trees
access time = seek time + rotational delay (latency) + transfer time

• Seek time depends on the mechanical

movement of the disk head to position the

head at the correct track of the disk

• Latency is the time required to position the

head above the correct block and is equal to

the time needed to make one-half of a

revolution

• No matter how you go about it the upshot is:

• Roughly 100 disk accesses per second

correspond to 500,000,000 instructions per

second (order of magnitude difference 106)

The Family of B-Trees (continued)

Nodes of a binary tree can be located in
different blocks on a disk

Definition: B-Tree of Order m
• A multiway search tree of order m

• The root has at least two children, unless it is

a leaf

• Each nonroot and each nonleaf nodes holds

k-1 keys and k pointers to subtrees, where

ceiling(m/2) ≤ k ≤ m

• All leaves are on the same level
• (NB ceiling(m/2) = (m+1) div 2); usual notation for ceiling: m/2

B-Tree of Order m, slightly more

precise definition
• A multiway tree of order m (m ≥ 3)

• The root has at least two children, unless it is

a leaf

• Each nonroot and each nonleaf nodes holds

k-1 keys and k pointers to subtrees (more

abstractly: has k children), where

ceiling(m/2) ≤ k ≤ m (we emphasize: each

nonleaf node with k-1 keys has precisely k

children)

• All leaves are on the same level

50

70 80

10 15 20

6 8 11 12 16 18 21 25 27 29

54 56 71 76 81 89

Example of B-Tree of order 5

NB the node with keys 10,15,20 and the node with keys 70, 80 are on the same level;
Of course the same is true for the children of these two nodes. (Key Tallies are omitted)

B-Trees

One node of a B-tree of order 7 (a) without and (b) with
an additional indirection

Key tally

Discussion of additional indirection

AB123 PQ12 SF012 ST023

In our notation (a) looks as follows:

4

Key tally

Height h of B-trees of order m:

• h ≤ logq ((n+1)/2) + 1, n is the number of

keys, q = ceiling(m/2)

• Discussion and derivation of this formula

B-Trees (continued)

A B-tree of order 5 shown in an abbreviated form

Inserting a Key into a B-Tree

• There are three common situations

encountered when inserting a key into a B-

tree:

– A key is placed in a leaf that still has

some room

– The leaf in which a key should be

placed is full

– If the root of the B-tree is full then a new

root and a new sibling of the existing root

have to be created

Inserting a Key into a B-Tree of order 5

(continued)

A B-tree (a) before and (b) after insertion of the
number 7 into a leaf that has available cells

ceiling(5/2)-1= 2 ≤ (#of keys) ≤ 4 = 5-1
ceiling(5/2) = 3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree of order 5

(continued)

Inserting the number 6 into a full leaf

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree of order 5

(continued)

Inserting the number 13 into a full leaf

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree of order 5

(continued)

Inserting the number 13 into a full leaf (continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree of order 5

(continued)

Building a B-tree of order 5 with the BTreeInsert() algorithm

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree of order 5

(continued)

Building a B-tree of order 5 with the BTreeInsert() algorithm
(continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree of order 5

(continued)

Building a B-tree of order 5 with the BTreeInsert() algorithm
(continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Inserting a Key into a B-Tree

• See page 306 in Drozdek for the algorithm in

words

• See page 307 for its implementation in C++

Inserting a Key into a B-Tree of order

m

• Find a leaf where the key should be placed

according to the search tree property

• In case this leaf has fewer than m-1 the key is

placed in order in this leaf

• If the leaf overflowed (i.e., it contains m-1

keys) it is split in two. The median key is

moved to the father; there one continues in

the same fashion.

Deleting a Key from a B-Tree

• Avoid allowing any node to be less than half

full after a deletion

• In deletion, there are two main cases:

– Deleting a key from a leaf

– Deleting a key from a nonleaf node

Deleting a Key from a B-Tree of order 5

(continued)

Deleting keys from a B-tree

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Deleting a Key from a B-Tree of order 5

(continued)

Deleting keys from a B-tree (continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Deleting a Key from a B-Tree of order 5

(continued)

Deleting keys from a B-tree (continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5

Deleting a key from a B-tree of order m
• If the key is not a leaf swap it with the biggest smaller key

present in the B-tree – this predecessor will be in a leaf.

• Remove the key from the leaf.

• If the node from which the key is removed is not

underflowing (i.e., contains at least ceiling(m/2)-1 keys), then

we are done.

• If the node from which the key is deleted underflows, then try

each of the following:

a. Try to borrow a key of the immediate left brother (in case the node

has a left brother)

b. If no success in a): Try to borrow a key of the immediate right brother

(if the node has a right brother)

c. If no success in b): merge the node with its immediate left brother (if

the node has a left brother

d. If no success in c): merge the node with the immediate right brother

(if you come this far, there will always be a right brother)

e. Merging two brothers will cause the father to have one less key; now

we apply a-d to the father node

