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Topics

• Multi-way trees



Multiway Trees

• A multiway search tree of order m, or an m-

way search tree, is a multiway tree in which:

– Each node has (at most) m children and (at most) 

m – 1 keys

– The keys in each node are in ascending order

– The keys in the first i children are smaller than 

the ith key

– The keys in the last m – i children are larger than 

the ith key



Multiway Search Trees (continued)

A 4-way tree (book notation)

70

6050 80

30 35 58 59 63 70 73 100

52 54 61 62

55 56

57

The same 4-way tree in a different notation



Multiway Search Trees (continued)

The same 4-way tree in a third notation

50 60 80

30 35 58 59 63 70 73 100

52 54 61 62

57

55 56

A 4-way tree (book notation)

Is not a 4-way B-tree:
for instance the node
with one key (100) should have two children; will
introduce B-trees later



Multiway Search Trees (continued)

A 4-way tree (book notation)
The same 4-way tree in a fourth notation

.100..30.35. .58.59. .50.60.80.

.50.60.80.

.52.54. .61.62.

.55.56.

.57.



The Family of B-Trees
access time = seek time + rotational delay (latency) + transfer time

• Seek time depends on the mechanical 

movement of the disk head to position the 

head at the correct track of the disk

• Latency is the time required to position the 

head above the correct block and is equal to 

the time needed to make one-half of a 

revolution

• No matter how you go about it the upshot is:

• Roughly 100 disk accesses per second 

correspond to 500,000,000 instructions per 

second (order of magnitude difference 106)



The Family of B-Trees (continued)

Nodes of a binary tree can be located in 
different blocks on a disk



Definition: B-Tree of Order m 
• A multiway search tree of order m

• The root has at least two children, unless it is 

a leaf

• Each nonroot and each nonleaf nodes holds

k-1 keys and k pointers to subtrees, where

ceiling(m/2) ≤ k ≤ m

• All leaves are on the same level
• (NB  ceiling(m/2) = (m+1) div 2); usual notation for ceiling:  m/2



B-Tree of Order m, slightly more 

precise definition
• A multiway tree of order m (m ≥ 3)

• The root has at least two children, unless it is 

a leaf

• Each nonroot and each nonleaf nodes holds

k-1 keys and k pointers to subtrees (more 

abstractly: has k children), where

ceiling(m/2) ≤ k ≤ m (we emphasize: each

nonleaf node with k-1 keys has precisely k 

children)

• All leaves are on the same level



50

70 80

10 15 20

6 8 11 12 16 18 21 25 27 29

54 56 71 76 81 89

Example of B-Tree of order 5

NB the node with keys 10,15,20 and the node with keys 70, 80 are on the same level; 
Of course the same is true for the children of these two nodes. (Key Tallies are omitted)



B-Trees

One node of a B-tree of order 7 (a) without and (b) with 
an additional indirection

Key tally

Discussion of additional indirection

AB123 PQ12 SF012 ST023

In our notation (a) looks as follows: 

4

Key tally



Height h of B-trees of order m:

• h ≤ logq ((n+1)/2)  + 1,  n is the number of 

keys, q = ceiling(m/2)

• Discussion and derivation of this formula



B-Trees (continued)

A B-tree of order 5 shown in an abbreviated form



Inserting a Key into a B-Tree

• There are three common situations 

encountered when inserting a key into a B-

tree:

– A key is placed in a leaf that still has 

some room

– The leaf in which a key should be 

placed is full

– If the root of the B-tree is full then a new 

root and a new sibling of the existing root 

have to be created



Inserting a Key into a B-Tree of order 5 

(continued)

A B-tree (a) before and (b) after insertion of the 
number 7 into a leaf that has available cells

ceiling(5/2)-1=    2 ≤ (#of keys) ≤ 4 = 5-1 
ceiling(5/2) =  3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree of order 5 

(continued)

Inserting the number 6 into a full leaf

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree of order 5 

(continued)

Inserting the number 13 into a full leaf

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree of order 5 

(continued)

Inserting the number 13 into a full leaf (continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree of order 5 

(continued)

Building a B-tree of order 5 with the BTreeInsert() algorithm

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree of order 5 

(continued)

Building a B-tree of order 5 with the BTreeInsert() algorithm
(continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree of order 5 

(continued)

Building a B-tree of order 5 with the BTreeInsert() algorithm
(continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Inserting a Key into a B-Tree 

• See page 306 in Drozdek for the algorithm in 

words

• See page 307 for its implementation in C++



Inserting a Key into a B-Tree of order 

m

• Find a leaf where the key should be placed

according to the search tree property

• In case this leaf has fewer than m-1 the key is 

placed in order in this leaf

• If the leaf overflowed (i.e., it contains m-1

keys) it is split in two. The median key is 

moved to the father; there one continues in 

the same fashion. 



Deleting a Key from a B-Tree

• Avoid allowing any node to be less than half 

full after a deletion

• In deletion, there are two main cases: 

– Deleting a key from a leaf 

– Deleting a key from a nonleaf node



Deleting a Key from a B-Tree of order 5 

(continued)

Deleting keys from a B-tree

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Deleting a Key from a B-Tree of order 5 

(continued)

Deleting keys from a B-tree (continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Deleting a Key from a B-Tree of order 5 

(continued)

Deleting keys from a B-tree (continued)

2 ≤ (#of keys) ≤ 4
3 ≤ (#of children) ≤ 5



Deleting a key from a B-tree of order  m
• If the key is not a leaf swap it with the biggest smaller key

present in the B-tree – this predecessor will be in a leaf. 

• Remove the key from the leaf.

• If the node from which the key is removed is not

underflowing (i.e., contains at least ceiling(m/2)-1 keys), then

we are done. 

• If the node from which the key is deleted underflows, then try

each of the following:

a. Try to borrow a key of the immediate left brother (in case the node 

has a left brother)

b. If no success in a): Try to borrow a key of the immediate right brother

(if the node has a right brother)

c. If no success in b): merge the node with its immediate left brother (if

the node has a left brother

d. If no success in c): merge the node with the immediate right brother

(if you come this far, there will always be a right brother)

e. Merging two brothers will cause the father to have one less key; now

we apply a-d to the father node


