
Data Structures

October 12 A

Topics

• Global balancing of binary (search) trees

• Local balancing of binary (search) trees (finish

up today)

• Self-organizing (binary search) trees

• Heaps

• Postfix expressions

Recall Definitions
• Height-balanced (aka balanced) binary tree: for any node in

the tree the height of the node’s subtrees differ by at most 1.

• Page 251 Drozdek: a perfectly balanced tree, is a balanced

tree such that all leaves are on one level or on two levels.

(Exercise: construct a balanced tree such that the leaves are

in more than two levels.)

• A binary tree has the Symmetric Search property, if

• Each node contains a key

• Different nodes will have different keys

• There is an ordering on the keys

• For each node in the tree, the key of the node is strictly

bigger than any key in the left subtree and strictly smaller

than any key in the right subtree

4

AVL Trees

• An AVL tree is one in which the height of the

left and right subtrees of every node differ by

at most one

Examples of AVL trees

5

AVL Trees (continued)

Balancing a tree after insertion of a node in the right
subtree of node Q

6

AVL Trees (continued)

Balancing a tree after insertion of a node in the left
subtree of node Q

7

AVL Trees (continued)

An example of inserting a new node (b) in an AVL tree (a), which
requires one rotation (c) to restore the height bal ance

8

AVL Trees (continued)

In an AVL tree (a) a new node is inserted
(b) requiring no height adjustments

9

AVL Trees (continued)

Rebalancing an AVL tree after deleting a node

10

AVL Trees (continued)

Rebalancing an AVL tree after deleting a node (con tinued)

11

AVL Trees (continued)

Rebalancing an AVL tree after deleting a node (cont inued)

Self-Restructuring Trees

• Aka: self-adjusting trees

• Support the same operations as BSTs or

balanced BSTs:

• the main ones: find key, insert key, delete

key, find for a natural number i, the i-th key

(in size)

• The strategy in self-adjusting trees is to

restructure trees by moving up the tree with

only those elements that are used more often,

and creating a priority tree

13

Self-Restructuring Trees

• Single rotation – Rotate a child about its
parent if an element in a child is accessed,
unless it is the root

Restructuring a tree by using

(a) a single rotation or

(b) (b) moving to the root when accessing node R

14

Self-Restructuring Trees (continued)

• Moving to the root – Repeat the child–parent

rotation until the element being accessed is in

the root

Restructuring a tree by using (a) a single rotation or
(b) moving to the root when accessing node R (conti nued)

15

Self-Restructuring Trees (continued)

(a–e) Moving element T to the root and
then (e–i) moving element S to the root

16

Splaying

• A modification of the move-to-the-root

strategy is called splaying

• Splaying applies single rotations in pairs in an

order depending on the links between the

child, parent, and grandparent

• Semisplaying requires only one rotation for a

homogeneous splay and continues splaying

with the parent of the accessed node, not

with the node itself

17

Splaying (continued)

Examples of splaying

18

Splaying (continued)

Examples of splaying (continued)

19

Splaying (continued)

Restructuring a tree with splaying (a–c) after
accessing T and (c–d) then R

20

Splaying (continued)

(a–c) Accessing T and restructuring the tree with
semisplaying; (c–d) accessing T again

Splay Trees
• Tarjan and Sleator

• Article (by Sleator and Tarjan, 1985) or gem of a book by R. E. Tarjan,

Data Structures and Network Algorithms, Society for Industrial and

Applied Mathematics (1983) available upon request

• Support the same operations as BSTs or balanced BSTs or Self-

structuring trees: the main ones: find key, insert key, delete key, find

for a natural number i, the i-th key (in size)

• A modification of the move-to-the-root strategy is called

splaying

• Splaying applies single rotations in pairs in an order

depending on the links between the child, parent, and

grandparent

• Semisplaying requires only one rotation for a homogeneous

splay and continues splaying with the parent of the accessed

node, not with the node itself

Costs?

• Any operation could still require Θ(n) time,

this degenerate behavior cannot occur

repeatedly for splay trees, and Sleator and

Tarjan proved that any sequence of m

operations takes O(m log(n)) worst case time

total (n the number of nodes):

• In the long run this data structure behaves as

though each operation takes O (log (n)) – this

called the amortized time bound

• See the aforementioned article or book by

Tarjan

25

Heaps

• A particular kind of binary tree, called a heap,

has two properties:

– The value of each node is greater than or

equal to the values stored in each of its children

– The tree is perfectly balanced, and the leaves in

the last level are all in the leftmost positions

• These two properties define a max heap

• If “greater” in the first property is replaced

with “less,” then the definition specifies a min

heap

26

Heaps (continued)

Figure 6-51 Examples of (a) heaps and (b–c) nonheap s

27

Heaps (continued)

Figure 6-52 The array [2 8 6 1 10 15 3 12 11] seen as a tree

28

Heaps (continued)

Figure 6-53 Different heaps constructed with the sa me elements

ADT Priority Queue

PQueueAdd(newItem) // adds a new item to

//the priority queue

PQueueRemove(priorityItem) // removes and

//retrieves from a priority queue the item

//with the highest priority value

createPQueue()

destroyPQueue()

isPQueueEmpty()

29

Implementations of ADT Priority

Queue

• With an array of pointers

30

31
Operating Systems

. . .

0

1

n-1

i

.

.

.

.

.

.

front
rear

. . .

Queue
Pointer

. . .

P
r i

o
ri

t y
 Q

u
eu

e
w

it
h

 f
ix

ed
n

u
m

b
e r

 o
f

p
ri

o
ri

ti
e s

an
d

 n
u

m
b

er
 o

f
p

ri
o

ri
ti

e s
 is

 r
el

a t
iv

e l
y

sm
al

l :
A

R
R

A
Y

 in
d

ex
e d

 b
y

p
ri

o
ri

ti
es

Priority headers

. . .

32

Heaps as Priority Queues

Figure 6-54 Enqueuing an element to a heap

33

Heaps as Priority Queues (continued)

Figure 6-55 Dequeuing an element from a heap

34

Organizing Arrays as Heaps

Figure 6-57 Organizing an array as a heap with a to p-down method

35

Organizing Arrays as Heaps

Figure 6-57 Organizing an array as a heap with a to p-down method
(continued)

36

Organizing Arrays as Heaps

Figure 6-57 Organizing an array as a heap with a to p-down method
(continued)

37

Organizing Arrays as Heaps

(continued)

Figure 6-58 Transforming the array [2 8 6 1 10 15 3 12 11] into
a heap with a bottom-up method

38

Organizing Arrays as Heaps

(continued)

Figure 6-58 Transforming the array [2 8 6 1 10 15 3 12 11] into
a heap with a bottom-up method (continued)

39

Organizing Arrays as Heaps

(continued)

Figure 6-58 Transforming the array [2 8 6 1 10 15 3 12 11] into
a heap with a bottom-up method (continued)

40

Polish Notation and

Expression Trees

• Polish notation is a special notation for

propositional logic that eliminates all

parentheses from formulas

• The compiler rejects everything that is not

essential to retrieve the proper meaning of

formulas rejecting it as “syntactic sugar”

41

Polish Notation and

Expression Trees (continued)

Figure 6-59 Examples of three expression trees and results
of their traversals

Summary

• A tree is a data type that consists of nodes

and arcs.

• The root is a node that has no parent; it can

have only child nodes.

• Each node has to be reachable from the root

through a unique sequence of arcs, called a

path.

• An orderly tree is where all elements are

stored according to some predetermined

criterion of ordering.

Summary (continued)

• A binary tree is a tree whose nodes have two

children (possibly empty), and each child is

designated as either a left child or a right

child.

• A decision tree is a binary tree in which all

nodes have either zero or two nonempty

children.

• Tree traversal is the process of visiting each

node in the tree exactly one time.

• Threads are references to the predecessor

and successor of the node according to an

inorder traversal.

Summary (continued)

• An AVL tree is one in which the height of the

left and right subtrees of every node differ by

at most one.

• A modification of the move-to-the-root

strategy is called splaying.

• The complexity of the top-down array-heapify

is O(n log (n)); the bottom-up version has

complexity O(n).

• Polish notation is a special notation for

propositional logic that eliminates all

parentheses from formulas.

