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Topics

• Global balancing of binary (search) trees

• Local balancing of binary (search) trees (finish 

up today)

• Self-organizing (binary search) trees

• Heaps

• Postfix expressions



Recall Definitions
• Height-balanced (aka balanced) binary tree: for any node in 

the tree the height of the node’s subtrees differ by at most 1. 

• Page 251 Drozdek: a perfectly balanced tree, is a balanced

tree such that all leaves are on one level or on two levels. 

(Exercise: construct a balanced tree such that the leaves are 

in more than two levels.)

• A binary tree has the Symmetric Search property, if

• Each node contains a key

• Different nodes will have different keys

• There is an ordering on the keys

• For each node in the tree,  the key of the node is strictly

bigger than any key in the left subtree and strictly smaller 

than any key in the right subtree 
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AVL Trees

• An AVL tree is one in which the height of the 

left and right subtrees of every node differ by 

at most one

Examples of AVL trees
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AVL Trees (continued)

Balancing a tree after insertion of a node in the right 
subtree of node Q  
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AVL Trees (continued)

Balancing a tree after insertion of a node in the left 
subtree of node Q
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AVL Trees (continued)

An example of inserting a new node (b) in an AVL tree (a),  which 
requires one rotation (c) to restore the height bal ance



8

AVL Trees (continued)

In an AVL tree (a) a new node is inserted
(b) requiring no height adjustments
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AVL Trees (continued)

Rebalancing an AVL tree after deleting a node  
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AVL Trees (continued)

Rebalancing an AVL tree after deleting a node  (con tinued)
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AVL Trees (continued)

Rebalancing an AVL tree after deleting a node (cont inued)



Self-Restructuring Trees

• Aka: self-adjusting trees

• Support the same operations as BSTs or 

balanced BSTs: 

• the main ones: find key, insert key, delete 

key, find for a natural number i, the i-th key 

(in size)

• The strategy in self-adjusting trees is to 

restructure trees by moving up the tree with 

only those elements that are used more often, 

and creating a priority tree
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Self-Restructuring Trees

• Single rotation – Rotate a child about its 
parent if an element in a child is accessed, 
unless it is the root

Restructuring a tree by using 

(a) a single rotation or  

(b) (b) moving to the root when accessing node R
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Self-Restructuring Trees (continued)

• Moving to the root – Repeat the child–parent 

rotation until the element being accessed is in 

the root

Restructuring a tree by using (a) a single rotation  or  
(b) moving to the root when accessing node R (conti nued)
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Self-Restructuring Trees (continued)

(a–e) Moving element T to the root and 
then (e–i) moving element S to the root
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Splaying

• A modification of the move-to-the-root 

strategy is called splaying

• Splaying applies single rotations in pairs in an 

order depending on the links between the 

child, parent, and grandparent

• Semisplaying requires only one rotation for a 

homogeneous splay and continues splaying 

with the parent of the accessed node, not 

with the node itself
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Splaying (continued)

Examples of splaying  
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Splaying (continued)

Examples of splaying (continued)   
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Splaying (continued)

Restructuring a tree with splaying (a–c) after 
accessing T and (c–d) then R
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Splaying (continued)

(a–c) Accessing T and restructuring the tree with 
semisplaying; (c–d) accessing T again



Splay Trees 
• Tarjan and Sleator

• Article (by Sleator and Tarjan, 1985) or gem of a book by R. E. Tarjan, 

Data Structures and Network Algorithms, Society for Industrial and 

Applied Mathematics (1983) available upon request

• Support the same operations as BSTs or balanced BSTs or Self-

structuring trees: the main ones: find key, insert key, delete key, find 

for a natural number i, the i-th key (in size)

• A modification of the move-to-the-root strategy is called 

splaying

• Splaying applies single rotations in pairs in an order 

depending on the links between the child, parent, and 

grandparent

• Semisplaying requires only one rotation for a homogeneous 

splay and continues splaying with the parent of the accessed 

node, not with the node itself



Costs?

• Any operation could still require Θ(n) time, 

this degenerate behavior cannot occur 

repeatedly for splay trees, and Sleator and 

Tarjan proved that any sequence of m 

operations takes O(m log(n) ) worst case time 

total (n the number of nodes):  

• In the long run this data structure behaves as 

though each operation takes  O (log (n)) – this 

called the amortized time bound

• See the aforementioned article or book by 

Tarjan
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Heaps

• A particular kind of binary tree, called a heap, 

has two properties:

– The value of each node is greater than or 

equal to the values stored in each of its children

– The tree is perfectly balanced, and the leaves in 

the last level are all in the leftmost positions

• These two properties define a max heap 

• If “greater” in the first property is replaced 

with “less,” then the definition specifies a min 

heap
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Heaps (continued)

Figure 6-51 Examples of (a) heaps and (b–c) nonheap s
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Heaps (continued)

Figure 6-52 The array [2 8 6 1 10 15 3 12 11] seen as a tree
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Heaps (continued)

Figure 6-53 Different heaps constructed with the sa me elements



ADT Priority Queue

PQueueAdd(newItem) // adds a new item to

//the priority queue

PQueueRemove( priorityItem) // removes and 

//retrieves from a priority queue the item 

//with the highest priority value

createPQueue()

destroyPQueue()

isPQueueEmpty()
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Implementations of ADT Priority

Queue

• With an array of pointers 
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Operating Systems
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Heaps as Priority Queues

Figure 6-54 Enqueuing an element to a heap
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Heaps as Priority Queues (continued)

Figure 6-55 Dequeuing an element from a heap
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Organizing Arrays as Heaps

Figure 6-57 Organizing an array as a heap with a to p-down method
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Organizing Arrays as Heaps

Figure 6-57 Organizing an array as a heap with a to p-down method 
(continued)



36

Organizing Arrays as Heaps

Figure 6-57 Organizing an array as a heap with a to p-down method 
(continued)
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Organizing Arrays as Heaps 

(continued)

Figure 6-58 Transforming the array [2 8 6 1 10 15 3  12 11] into 
a heap with a bottom-up method
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Organizing Arrays as Heaps 

(continued)

Figure 6-58 Transforming the array [2 8 6 1 10 15 3  12 11] into 
a heap with a bottom-up method (continued)
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Organizing Arrays as Heaps 

(continued)

Figure 6-58 Transforming the array [2 8 6 1 10 15 3  12 11] into 
a heap with a bottom-up method (continued)
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Polish Notation and 

Expression Trees

• Polish notation is a special notation for 

propositional logic that eliminates all 

parentheses from formulas

• The compiler rejects everything that is not 

essential to retrieve the proper meaning of 

formulas rejecting it as “syntactic sugar”
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Polish Notation and 

Expression Trees (continued)

Figure 6-59 Examples of three expression trees and results 
of their traversals





Summary

• A tree is a data type that consists of nodes 

and arcs.

• The root is a node that has no parent; it can 

have only child nodes.

• Each node has to be reachable from the root 

through a unique sequence of arcs, called a 

path.

• An orderly tree is where all elements are 

stored according to some predetermined 

criterion of ordering.



Summary (continued)

• A binary tree is a tree whose nodes have two 

children (possibly empty), and each child is 

designated as either a left child or a right 

child.

• A decision tree is a binary tree in which all 

nodes have either zero or two nonempty 

children.

• Tree traversal is the process of visiting each 

node in the tree exactly one time.

• Threads are references to the predecessor 

and successor of the node according to an 

inorder traversal.



Summary (continued)

• An AVL tree is one in which the height of the 

left and right subtrees of every node differ by 

at most one.

• A modification of the move-to-the-root 

strategy is called splaying.

• The complexity of the top-down array-heapify

is O(n log (n)); the bottom-up version has 

complexity O(n).

• Polish notation is a special notation for 

propositional logic that eliminates all 

parentheses from formulas.


