Data Structures

November 9

Graphs

Objectives
Discuss the following topics:

e Minimum Spanning Trees (Kruskal’s and Prim’s
algorithms)

 Union-find data structure

* Priority queues for implementation of Prim’s
algorithm

* Clustering
¢ Shortest Paths

Minimum Spanning Tree Problem
e Abstractly: G=(V,E, w) is a weighted graph

(i.e., w: E = R* (strictly positive real numbers,
say)). Sometimes denoted by c (for cost).

e Find a subset T of E such that (V, T) is
connected, and the total weight/cost
w(e,)+w(e,)+...+w(e), where T={e ,e,,..., .} is
minimal. (Of course, we assume that G is
connected from the outset, otherwise there
are no solutions

e Statement: if T is a minimum weight
(minimum cost) solution, then (V,T) is a tree —
in other words, have MIST

Minimum Spanning Tree Problem

e Also the weight function (cost function) could
be non-negative, that is, the weights are
either positive or zero can also be dealt with

 Assume first that no two weights are equal; a
simple argument will also take care of the
case of equal weights, once you know how to
deal with mutually unequal weights.

A Spanning Tree

A Minimum Spanning Tree
(aka MST)

1

(there are more MSTs
and spanning trees)

Definition: Spanning Tree and MST

e Let G=(V,E) be connected undirected graph: a
spanning tree of the graph G is a subgraph G’ = (V’,
E’) of GsuchthatV' =V and G’ is a tree.

* Incase Gis also weighted: A minimum spanning
tree or minimum weight spanning tree is then a
spanning tree with weight less than or equal to the
weight of every other spanning tree. (Weight of a
tree: sum of the weights of all its edges.)

Some reasons to study MSTs

Gives rise to one of the methods to cluster data (will be discussed next
time)

Connection with Traveling Salesman Problem: find a Hamilton Cycle in a
graph with positive weights assigned to its edges that the sum of the
weights of its edges of the cycle is minimal (Hamilton cycle of a graph is a
cycle which visits each node of the graph). It is not known whether this
problem possesses a polynomial time algorithm. (Since day and age a
polynomial time algorithm is dubbed efficient algorithm by computer
scientists.) Let the length/weight of minimal Hamilton cycle be denoted
by h and by m we denote the weight of an MST, then m < h. It is easy to
see that an MST gives rise to a tour with weight/length 2m; in this tour
each road is traveled twice. (An MST of a graph can be computed
efficiently as we will see below.)

And many more apps

Minimum Spanning Tree Problem
e Many greedy algorithms

e Kruskal: start without any edges, build
spanning tree by successively inserting edges
from E in order of increasing cost — always
insert an edge unless it creates a cycle, in this
case discard the edge and proceed with the
next cheapest edge available.

 Prim: start with root s and grow a tree from s
outward. At each step add the node that can
be attached as cheaply as possibly to the
partial tree we already have.

Minimum Spanning Tree Problem

 Prim: start with root node s and grow a tree from s
outward. At each step add the node that can be
attached as cheaply as possibly to the partial tree we
already have.

* Maintain a subset S of V on which a spanning tree
T _S has been constructed so far. Initially, S={s}. In
each iteration, S grows by one node that has the
smallest attachment cost:

Given S we consider: A¢ = { weight((u,v)) | uin S and
(u,v) is an edge of G and v not in S}. Let (ug,v) in E
with ucin S and v in V\S be such that weight ((ug,v<))
= min(Aq). Then we add v, to S and the edge (ug,vq) is
added to the growing spanning tree T_S.

Minimum Spanning Tree Problem

e Third way: start with the full graph (V,E) and
begin deleting edges in order of decreasing
cost; starting from the most expensive edge,
we encounter edge e; delete it, if the remains
are still connected

 Cut Property: assume all edge weights are
different. Let S be a subset of V such that S # ¢
and V\S # ¢; among edges with oneend in S
and the other in V\S, the edge e has the
smallest weight. Then e belongs to every
minimum spanning tree

CO rre Ct n ess Of K ru S ka I (in words; skipped in the lecture; see

pictures further on)

e Using the Cut property it is not difficult to show that Kruskal’s
and Prim’s algorithms are correct

e Correctness Kruskal’s algorithm (see pictures on the chalk
board!): Let G=(V,E) — (we assume that |V| > 1) -- be a undirected,
connected graph. Clearly a connected, undirected graph has a
spanning tree (for instance, take the bsf-tree); hence, in case
the graph is weighted, the graph will have an Minimum

Spanning Tree (MST). (in case the weights on the edges are mutually
distinct, we will have a unique MST for the graph; a fact we are not going to use in

our correctness proof.) Pick an MST of G: M=(V, E_.,). Kruskal algo
takes as the set of vertices also V, and let E, = {e,,e,,..., e,} be
set of edges produced by Kruskal algo. We will show that E is
a subset of E_ .. Without loss of generality we assume
weight(e,) < weight(e,) < ... < weight(e,). (This is the order in
which Kruskal has added the edges.)

CO rre Ct n ess Of K ru S ka I (in words; skipped in the lecture; see

pictures further on)

* Lete, =(v,w,) be the first edge chosen by Kruskal. This
means that e, is the edge with the smallest weight. Claim: e,
isin E . We will show this by using the cut property: Let
S={v,} and V\S; since V is not a singleton, we also have that
V\S is non-empty. Since e, is the edge with the smallest
weight in the graph, it will a forteriori be, among the edges
with one end point in S and the other in V\S, the one with the
smallest weight; by the cut property it belongs to any MST;
hencee,isinE ...

CO rre Ct n ess Of K ru S ka I (in words; skipped in the lecture; see

pictures further on)

Next we consider (i+1)st edge e, = (v,w) which is chosen by Kruskal. Prior
to this Kruskal has chosen the edges e,,e,,...,e,. Let N={ninV | (n,x)= e
or (x,n)=e.for some j, 1<j <i}. “all nodes which belong to one of the edges
e;,1<j<I”. Consider N U {v}. Let S be the connected component
containing v of (N U {v}, {e,e,,..., € }). Clearly w does not belong to S (for
at stage i+1, (v,w) is chosen and w in S means that (v,w) will create a
cycle).Thus e,,, =(v,w) is an edge with vin S and w in V\S. We will show
that e, is the edge with the smallest weight among all the edges with one
end in S and the other in V\S: let e’=(p,q) be an edge of G such that p is in
S and weight(e’) < weight(e,,,). Kruskal has considered e’ earlier than e, ;;
if gis notin S, then it would not create a cycle by adding it now or earlier
(1) (earlier S may have been split up into more subcomponents which all
the more would favor e’ for addition!); in short: such an e’ must have
been already added. Thus: e, is the edge with the smallest weight

among all the edges with one end in S and the other in V\S; hence: e, is
inE_. OrE,isasubsetof E

mst* mst

CO rre Ct n ess Of K ru S ka I (in words; skipped in the lecture; see

pictures further on)

 We have shown that E, is a subset of E_, . Secondly, (V, E)
does not have cycles (Kruskal always adds edges which do not
introduce cycles!) and thirdly (V, E,) is connected. (Suppose

by way of contradiction it is not, then V=S U V\S withS # @

and V\S# @. Since G is connected, there is an edge in G from S

to V\S. But then such an edge with the lowest weight would
have been added by Kruskal to E,.)

* So(V, E;)isaspanning tree and therefore an MST (since E, is
a subset of E__. of some MST).

mst

e ged

Correctness of Kruskal in pictures:

show E, is subset of E, .. for some MST of
G

e.,e,,..., € (blue edges below) are already added
(Kruskal is about to add edge e, ; =(v,w), thus adding
does not introduce cycles):

M Two cases: a) v is already a node in the blue
b) v is not part of the blue picture

A 18

Correctness of Kruskal in pictures:

e.,e,,..., & (blue edges below) are already added (Kruskal is about to add
edge e,,; =(v,w), thus adding does not introduce cycles):

CASE a):
S Where is w?

((not in the same blue component

where v resides

((v,w) is approved for adding

by Kruskal (if w in the same blue component

as v, adding edge (v,w) would introduce a cycle))

e

w, also possible for w

A

We consider the connected component of v made with the blue edges = S= upper,blue
component

Correctness of Kruskal in pictures:

e.,e,,..., & (blue edges below) are already added (Kruskal is about to add
edge e,,; =(v,w), thus adding does not introduce cycles):

CASE b): v in none of the blue components

o) e’
w, possible
for w

w, also possible for w (could be in any of the three blue
Components)

A

We consider the connected component of v made with the blue edges = S= {v}
will be a singleton

' 20

Correctness of Kruskal in pictures:

e.,e,,..., & (blue edges below) are already added (Kruskal is about to add
edge e,,; =(v,w), thus adding does not introduce cycles):

Summary: in all cases we get

vin S and w in V\S, and no edge with one end in S
and its other in VAS has been encountered before
by Kruskal

(i.e., none of the edges e’ with

weight(e’) < weight (e,,,)

are straddled over S and V\S),

otherwise Kruskal would have already added them,

since such and edge e’ would not have created a cycle

at the moment, and a forteriori also not earlier in the game;)

That means: (v,w) is the cheapest edge with vin S and w in V\S
, by the Cut Property (v,w) belongs to any MST of the graph G

\A Still need to show:

(V, E,) does not cycles (by construction) and also connected (easy,

Correctness of Prim

e |tis straightforward from Cut Property that Prim’s algorithm adds edges
belonging to every MST.

e Recall that at each stage the set S and tree T_S are grown as follows:

Given S we consider: A ={ weight((u,v)) | uin Sand (u,v) is an edge of G and
vnotinS}. Let (ugv) in E with ugin S and vg in V\S be such that weight
((ug,vs)) = min(A;). Then we add v to S and the edge (u.,V) is added to the
growing spanning tree T_S.

This means: Given S we look at the edge e with one end in S and the other in
V\S such that its weight is the smallest among edges of G with onein S
and the other in V\S. And by the Cut Property we know that e belongs to
any MST. In other words, the set of edges produced by Prim is a subset of
the edges of any MST.

Clearly at each stage no cycles are introduced, and the T_S of each stage is
connected as well. Thus upon termination T_S is connected and has no
cycles. Upon termination all nodes of G have been included in S (T_S).
Upon termination we have a spanning tree T_S whose weight is smaller or
equal to the weight of any MIST. Thus T_S is an MST.

Implementation of Kruskal: use Union-
find (aka disjoint set data structure)

e Kruskal algorithm and the Union-Find data structure which
can be used for the implementation

 Union-Find. Maintain disjoint sets: given a node u the
operation find(u) will return the name of the set containing u.

e Find can be used to test whether nodes u and v are in the
same set (test: find(v) == find(u)).
e The data structure has also an implementation of an

operation union(A,B) which takes two sets A and B and
merges them to a single set.

e These operation can be used to maintain connected
components of an evolving graph.

23

Union-find and Kruskal

e For a node u, find(u) will return the connected
component containing u

e If we add an edge (u,v) to the graph (that is, forest in
Kruskal’s algorithm), test first whether u and v are in
the same connected component (test f(u)==f(v)). If
not, then merge find(u) and find(v):
union(find(v),find(u)).

* |In summary Union-Find data structure:

— makeUnionFind(S) on a set S: returns a data structure
where all elements of S are in separate sets. Make it O(n)
with n=|S].

— find(u), in O(log(n))

— union(A,B) (in O(log(n)))

Discussion of three implementations
Union-find (aka disjoint set data
structure)

 As an array: (universe has n elements: {1,2,..,n})

Contzins name of a set

¥
Name of array:

component

1 2 n-1 n
Elemerblwt} the universe

Find: O(1)

makeUnionFind: O(n)

Union: any sequence of k operations
Takes at most O(k log(k))

25

Discussion of three implementations
Union-find (second way)

Alternate implementation: use pointers.

Each node v of the universe S will be contained in a record with pointer to
the name of the set containing v.

As names use elements of S (universe)

MakeUnionFind(S): intialize a record for each element v in S with a pointer
to itself (or if you wish a null pointer), to indicate that v is in its own set

Union for sets A and B: assume for the name of A we used node vin A;
name of set B is node u in B; we let either v or u be the name of the
combined set; assume v will be the name: we update u’s pointer to point
to v—don’t update pointers at the other nodes of set B.

Union is now O(1)
Find O(log(n))

23

12

a7

45

Three sets with names 23, 45, 66

J
o |

66

]

22

44

55

7]

/

12

4

AN

a7

J
o |

66

19

22

Union of sets with names 23, 45 has been
carried out name of unlon 45

t
a

$

55

44

Discussion of three implementations
Union-find (third way: optimization in the second w ay)

66

AT HENE
FANS .
44 // "

After operation find(44) with path

Instance of union find data structure .
compression

Implementation of Prim’s MST algo

* |In order to find the node v not in currently in S (and
edge) which needs to be added to the current S
(respectively current tree T_S) quickly, maintain the
attachment cost

a(V):=min .,) with uins, e ine Weight(u,v), for

each node v in V\S. Keep the nodes v in a priority queue with
attachment costs a(v) as keys.

In case a node v in V\S is added to the current S: update the keys
of w in V\SU{v} as follows: if

(v,w) is not an edge a(w) of G a(w) is the same as before; if (v,w)
is an edge of the graph G, then update as follows

a(w) € min(a(w), weight((v,w)))

;. use priority queue implemerﬁed with a heap; use also the
operation exchangeKey (and extractMin, insert)

Eliminating the assumption of
mutually unequal weights in the MST
algo’s

e Suppose we have a graph in which it fappens that some edges have the same
weight

e What we can do add extremely small numbers to edges of equal weight so that
they will have different weight

e ((Example: suppose you have three edges with weight 1 and all other edges have
mutually different weights. Let m be the minimum absolute difference between
unequal weights (suppose 1,1,1, 3, 4.5, 7, 10; then minimum: is 1.5 among pairs of
unequal weight). 1,

1+211.5, 2+11,5 3, 4.5, 7, and 10 are the new weights for extremely large number L.
)

Denote the old weight function by weight(..) and the new by

weight,(..). We now find MST T with respect to the perturbed weight function
weight,(..). Now suppose T’ is a spanning tree and suppose with respect to the old
weight function weight(T) > weight(T’) but then it cannot be weight,(T) <
weight,(T’) for a small enough perturbation. In other words T is not an MST wrt to
the weight,(..) function, contradiction. Thus T is MST also with respect to old
weight function.

30

