
1

Data Structures

November 9

2

Graphs

33

Objectives
Discuss the following topics:

• Graphs; Graphs as ADT

• Graph Representation

• Graph Traversals (breadth first, depth first)

• Connectivity

• Bipartiteness

• Topological Sort (aka topological ordering)

• Minimum Spanning Trees (Kruskal’s and Prim’s
algorithms)

• Union-find data structure

• Priority queues for implementation of Prim’s
algorithm

• Clustering

• Shortest Paths

4

Minimum Spanning Tree Problem
• Abstractly: G=(V,E, w) is a weighted graph

(i.e., w: E � R+ (strictly positive real numbers,

say)). Sometimes denoted by c (for cost).

• Find a subset T of E such that (V, T) is

connected, and the total weight/cost

w(e1)+w(e2)+…+w(es), where T={e1,e2,…, es} is

minimal. (Of course, we assume that G is

connected from the outset, otherwise there

are no solutions

• Statement: if T is a minimum weight

(minimum cost) solution, then (V,T) is a tree –

in other words, have MST

5

Minimum Spanning Tree Problem

• Also the weight function (cost function) could

be non-negative, that is, the weights are

either positive or zero can also be dealt with

• Assume first that no two weights are equal; a

simple argument will also take care of the

case of equal weights, once you know how to

deal with mutually unequal weights.

6

1

1

1

1

4

4 3

1

2

1

1

1

1

4

4 3

1

2

A Spanning Tree

A Minimum Spanning Tree
(aka MST)

(there are more MSTs
and spanning trees)

7

9

4 4

3
1

5

9
10

18

89

9

8

79

2

2

46

3

9

9

4 4

3
1

5

9
10

18

89

9

8

79

2

2

46

3

9

An MST

A Spanning Tree

(More elaborate examples)

8

Definition: Spanning Tree and MST

• Let G = (V,E) be connected undirected graph: a

spanning tree of the graph G is a subgraph G’ = (V’,

E’) of G such that V’ = V and G’ is a tree.

• In case G is also weighted: A minimum spanning

tree or minimum weight spanning tree is then a

spanning tree with weight less than or equal to the

weight of every other spanning tree. (Weight of a

tree: sum of the weights of all its edges.)

9

Some reasons to study MSTs

• Gives rise to one of the methods to cluster data (will be discussed next
time)

• Connection with Traveling Salesman Problem: find a Hamilton Cycle in a
graph with positive weights assigned to its edges that the sum of the
weights of its edges of the cycle is minimal (Hamilton cycle of a graph is a
cycle which visits each node of the graph). It is not known whether this
problem possesses a polynomial time algorithm. (Since day and age a
polynomial time algorithm is dubbed efficient algorithm by computer
scientists.) Let the length/weight of minimal Hamilton cycle be denoted
by h and by m we denote the weight of an MST, then m ≤ h. It is easy to
see that an MST gives rise to a tour with weight/length 2m; in this tour
each road is traveled twice. (An MST of a graph can be computed
efficiently as we will see below.)

• And many more apps

10

Minimum Spanning Tree Problem
• Many greedy algorithms

• Kruskal: start without any edges, build

spanning tree by successively inserting edges

from E in order of increasing cost – always

insert an edge unless it creates a cycle, in this

case discard the edge and proceed with the

next cheapest edge available.

• Prim: start with root s and grow a tree from s

outward. At each step add the node that can

be attached as cheaply as possibly to the

partial tree we already have.

11

Minimum Spanning Tree Problem
• Prim: start with root node s and grow a tree from s

outward. At each step add the node that can be

attached as cheaply as possibly to the partial tree we

already have.

• Maintain a subset S of V on which a spanning tree

T_S has been constructed so far. Initially, S={s}. In

each iteration, S grows by one node that has the

smallest attachment cost:

Given S we consider: AS = { weight((u,v)) | u in S and

(u,v) is an edge of G and v not in S}. Let (uS,vS) in E

with uS in S and vS in V\S be such that weight ((uS,vS))

= min(AS). Then we add vS to S and the edge (uS,vS) is

added to the growing spanning tree T_S.

12

Minimum Spanning Tree Problem

• Third way: start with the full graph (V,E) and

begin deleting edges in order of decreasing

cost; starting from the most expensive edge,

we encounter edge e; delete it, if the remains

are still connected

• Cut Property: assume all edge weights are

different. Let S be a subset of V such that S ≠ ø

and V\S ≠ ø; among edges with one end in S

and the other in V\S, the edge e has the

smallest weight. Then e belongs to every

minimum spanning tree

13

a b

vu

y

e’

e

f

14

Correctness of Kruskal (in words; skipped in the lecture; see

pictures further on)

• Using the Cut property it is not difficult to show that Kruskal’s

and Prim’s algorithms are correct

• Correctness Kruskal’s algorithm (see pictures on the chalk

board!): Let G=(V,E) – (we assume that |V| > 1) -- be a undirected,

connected graph. Clearly a connected, undirected graph has a

spanning tree (for instance, take the bsf-tree); hence, in case

the graph is weighted, the graph will have an Minimum

Spanning Tree (MST). (In case the weights on the edges are mutually

distinct, we will have a unique MST for the graph; a fact we are not going to use in

our correctness proof.) Pick an MST of G: M=(V, Emst). Kruskal algo

takes as the set of vertices also V, and let EK = {e1,e2,…, er} be

set of edges produced by Kruskal algo. We will show that EK is

a subset of Emst. Without loss of generality we assume

weight(e1) < weight(e2) < … < weight(er). (This is the order in

which Kruskal has added the edges.)

15

Correctness of Kruskal (in words; skipped in the lecture; see

pictures further on)

• Let e1 = (v1,w1) be the first edge chosen by Kruskal. This

means that e1 is the edge with the smallest weight. Claim: e1

is in Emst. We will show this by using the cut property: Let

S={v1} and V\S; since V is not a singleton, we also have that

V\S is non-empty. Since e1 is the edge with the smallest

weight in the graph, it will a forteriori be, among the edges

with one end point in S and the other in V\S, the one with the

smallest weight; by the cut property it belongs to any MST;

hence e1 is in Emst.

16

Correctness of Kruskal (in words; skipped in the lecture; see

pictures further on)

• Next we consider (i+1)st edge ei+1 = (v,w) which is chosen by Kruskal. Prior

to this Kruskal has chosen the edges e1,e2,…, ei . Let N = { n in V | (n,x)= ej

or (x,n)=ei for some j, 1≤ j ≤ i }. “all nodes which belong to one of the edges

ej ,1≤ j ≤ I”. Consider N U {v}. Let S be the connected component

containing v of (N U {v}, {e1,e2,…, ei }). Clearly w does not belong to S (for

at stage i+1, (v,w) is chosen and w in S means that (v,w) will create a

cycle).Thus ei+1 =(v,w) is an edge with v in S and w in V\S. We will show

that ei+1 is the edge with the smallest weight among all the edges with one

end in S and the other in V\S: let e’=(p,q) be an edge of G such that p is in

S and weight(e’) < weight(ei+1). Kruskal has considered e’ earlier than ei+1;

if q is not in S, then it would not create a cycle by adding it now or earlier

(!) (earlier S may have been split up into more subcomponents which all

the more would favor e’ for addition!); in short: such an e’ must have

been already added. Thus: ei+1 is the edge with the smallest weight

among all the edges with one end in S and the other in V\S; hence: ei+1 is

in Emst. Or EK is a subset of Emst

17

Correctness of Kruskal (in words; skipped in the lecture; see

pictures further on)

• We have shown that EK is a subset of Emst . Secondly, (V, EK)

does not have cycles (Kruskal always adds edges which do not

introduce cycles!) and thirdly (V, EK) is connected. (Suppose

by way of contradiction it is not, then V = S U V\S with S ≠ ø

and V\S≠ ø. Since G is connected, there is an edge in G from S

to V\S. But then such an edge with the lowest weight would

have been added by Kruskal to EK.)

• So (V, EK) is a spanning tree and therefore an MST (since EK is

a subset of Emst of some MST).

• qed

18

Correctness of Kruskal in pictures:

show EK is subset of EMST for some MST of

G
e1,e2,…, ei (blue edges below) are already added
(Kruskal is about to add edge ei+1 =(v,w), thus adding
does not introduce cycles):

Two cases: a) v is already a node in the blue
b) v is not part of the blue picture

19

Correctness of Kruskal in pictures:

e1,e2,…, ei (blue edges below) are already added (Kruskal is about to add

edge ei+1 =(v,w), thus adding does not introduce cycles):

CASE a):
Where is w?

((not in the same blue component
where v resides
((v,w) is approved for adding
by Kruskal (if w in the same blue component
as v, adding edge (v,w) would introduce a cycle))

v
w

w, also possible for w

We consider the connected component of v made with the blue edges = S= upper blue
component

S

20

Correctness of Kruskal in pictures:

e1,e2,…, ei (blue edges below) are already added (Kruskal is about to add

edge ei+1 =(v,w), thus adding does not introduce cycles):

CASE b): v in none of the blue components

w, also possible for w (could be in any of the three blue
Components)

v

w, possible
for w

We consider the connected component of v made with the blue edges = S= {v},
will be a singleton

s

21

Correctness of Kruskal in pictures:

e1,e2,…, ei (blue edges below) are already added (Kruskal is about to add

edge ei+1 =(v,w), thus adding does not introduce cycles):

Summary: in all cases we get
v in S and w in V\S, and no edge with one end in S
and its other in V\S has been encountered before
by Kruskal

(i.e., none of the edges e’ with
weight(e’) < weight (ei+1)
are straddled over S and V\S),
otherwise Kruskal would have already added them,
since such and edge e’ would not have created a cycle
at the moment, and a forteriori also not earlier in the game;)

That means: (v,w) is the cheapest edge with v in S and w in V\S
, by the Cut Property (v,w) belongs to any MST of the graph G

Still need to show:
(V, EK) does not cycles (by construction) and also connected (easy)

22

Correctness of Prim
• It is straightforward from Cut Property that Prim’s algorithm adds edges

belonging to every MST.

• Recall that at each stage the set S and tree T_S are grown as follows:

Given S we consider: AS = { weight((u,v)) | u in S and (u,v) is an edge of G and

v not in S }. Let (uS,vS) in E with uS in S and vS in V\S be such that weight

((uS,vS)) = min(AS). Then we add vS to S and the edge (uS,vS) is added to the

growing spanning tree T_S.

This means: Given S we look at the edge e with one end in S and the other in

V\S such that its weight is the smallest among edges of G with one in S

and the other in V\S. And by the Cut Property we know that e belongs to

any MST. In other words, the set of edges produced by Prim is a subset of

the edges of any MST.

Clearly at each stage no cycles are introduced, and the T_S of each stage is

connected as well. Thus upon termination T_S is connected and has no

cycles. Upon termination all nodes of G have been included in S (T_S).

Upon termination we have a spanning tree T_S whose weight is smaller or

equal to the weight of any MST. Thus T_S is an MST.

23

Implementation of Kruskal: use Union-

find (aka disjoint set data structure)

• Kruskal algorithm and the Union-Find data structure which

can be used for the implementation

• Union-Find. Maintain disjoint sets: given a node u the

operation find(u) will return the name of the set containing u.

• Find can be used to test whether nodes u and v are in the

same set (test: find(v) == find(u)).

• The data structure has also an implementation of an

operation union(A,B) which takes two sets A and B and

merges them to a single set.

• These operation can be used to maintain connected

components of an evolving graph.

24

Union-find and Kruskal
• For a node u, find(u) will return the connected

component containing u

• If we add an edge (u,v) to the graph (that is, forest in

Kruskal’s algorithm), test first whether u and v are in

the same connected component (test f(u)==f(v)). If

not, then merge find(u) and find(v):

union(find(v),find(u)).

• In summary Union-Find data structure:

– makeUnionFind(S) on a set S: returns a data structure

where all elements of S are in separate sets. Make it O(n)

with n=|S|.

– find(u), in O(log(n))

– union(A,B) (in O(log(n)))

25

Discussion of three implementations

Union-find (aka disjoint set data

structure)

• As an array: (universe has n elements: {1,2,..,n})

1 2 n-1 n

Element of the universe

Contains name of a set

………………..
Name of array:
component

Find: O(1)
makeUnionFind: O(n)
Union: any sequence of k operations
Takes at most O(k log(k))

26

Discussion of three implementations

Union-find (second way)

• Alternate implementation: use pointers.

• Each node v of the universe S will be contained in a record with pointer to
the name of the set containing v.

• As names use elements of S (universe)

• MakeUnionFind(S): intialize a record for each element v in S with a pointer
to itself (or if you wish a null pointer), to indicate that v is in its own set

• Union for sets A and B: assume for the name of A we used node v in A;
name of set B is node u in B; we let either v or u be the name of the
combined set; assume v will be the name: we update u’s pointer to point
to v – don’t update pointers at the other nodes of set B.

• Union is now O(1)

• Find O(log(n))

27

12

23

47 34

45

19 22

44

66

55

Three sets with names 23, 45, 66

$
\
b
e
t
a
$

$
\
b
e
t
a
$

$
\
b
e
t
a
$

12

23

47 34

45

19

Union of sets with names 23, 45 has been
carried out; name of union: 45

22

44

66

55

28

Discussion of three implementations
Union-find (third way: optimization in the second w ay)

66

44

66

44

Instance of union find data structure After operation find(44) with path
compression

29

Implementation of Prim’s MST algo

• In order to find the node v not in currently in S (and
edge) which needs to be added to the current S
(respectively current tree T_S) quickly, maintain the
attachment cost

a(v):= min e=(u,v) with u in S, e in E weight(u,v), for

each node v in V\S. Keep the nodes v in a priority queue with
attachment costs a(v) as keys.

In case a node v in V\S is added to the current S: update the keys
of w in V\SU{v} as follows: if

(v,w) is not an edge a(w) of G a(w) is the same as before; if (v,w)
is an edge of the graph G, then update as follows

a(w)  min(a(w), weight((v,w)))

::: use priority queue implemented with a heap; use also the
operation exchangeKey (and extractMin, insert)

∈

30

Eliminating the assumption of

mutually unequal weights in the MST

algo’s
• Suppose we have a graph in which it happens that some edges have the same

weight

• What we can do add extremely small numbers to edges of equal weight so that
they will have different weight

• ((Example: suppose you have three edges with weight 1 and all other edges have
mutually different weights. Let m be the minimum absolute difference between
unequal weights (suppose 1,1,1, 3, 4.5, 7, 10; then minimum: is 1.5 among pairs of
unequal weight). 1,

1+2-L1.5, 2-(L+1)1.5, 3, 4.5, 7, and 10 are the new weights for extremely large number L.
))

Denote the old weight function by weight(..) and the new by

weightP(..). We now find MST T with respect to the perturbed weight function
weightP(..). Now suppose T’ is a spanning tree and suppose with respect to the old
weight function weight(T) > weight(T’) but then it cannot be weightP(T) ≤
weightP(T’) for a small enough perturbation. In other words T is not an MST wrt to
the weightP(..) function, contradiction. Thus T is MST also with respect to old
weight function.

