
Data Structures

November 30

2

Objectives

Discuss the following topics:

• Data Compression and Huffman Codes

• Hashing
• Hash Functions
• Collision Resolution
• Deletion
• Perfect Hash Functions

Hashing

4

Objectives

Discuss the following topics:

• Data Compression and Huffman Codes

• Hashing
• Hash Functions
• Collision Resolution
• Deletion
• Perfect Hash Functions

5

Hashing

• To find a function (h) that can transform a

particular key (K) (a string, number or record)

into an index in the table used for storing

items of the same type as K, the function h is

called a hash function

• If h transforms different keys into different

numbers, it is called a perfect hash function

• To create a perfect hash function, the table

has to contain at least the same number of

positions as the number of elements being

hashed

keys

addresses

S

K

h

synonyms ⇒ collisions (botsingen)
choice of address function (hash function)

easy to compute
good spread (little clustering)

clustering
primary, secondary

search in O(1) time
provided few collisions and little clustering

• table size
• address function (hash function)
• given keys

Hashing

7

A linear example

0 1 2 3 4 5 6 7 8 9 10

MOD

11

3 8 60 29 74

60,29

,74,3

8

23 3 8 60 19 29 74 19,23

23 40 3 8 60 19 29 74 40

addresses

S

K

h

keys

Static Hashing:
S known
h to be determined such that no collisions

x ∈∈∈∈ S ?
compute h(x)
look at address h(x):

x present ⇒ x ∈∈∈∈ S
other key ⇒ x ∉ S

Perfect Hashing

2 do
3 end
4 else
5 case
6 downto
7 goto
8 to
9 otherwise

10 type
11 while
12 const
13 div
14 and
15 set
16 or
17 of
18 mod
19 file

20 record
21 packed
22 not
23 then
24 procedure
25 with
26 repeat
27 var
28 in
29 array
30 if
31 nil
32 for
33 begin
34 until
35 label
36 function
37 program

g:

a 11 l 15 u 14
b 15 m 15 v 10
c 1 n 13 w 6
f 15 p 15 y 13
g 3 r 14
h 15 s 6
i 13 t 6

(remaining such as z 0)

h(key) = L + g(key[1]) + g(key[L]) Cichelli

length

CichelliCichelliCichelliCichelli’’’’s Perfect Hashs Perfect Hashs Perfect Hashs Perfect Hash

perfect hash table example perfect hash table example perfect hash table example perfect hash table example
(an aside)(an aside)(an aside)(an aside)

• This example is actually also an example of a

minimal perfect hash (minimality means that the

number of keys, n, is equal to the table size, m;

recall for perfect hash need n ≤ m).

• Note in general you can have mn hash functions

(the number of functions from a finite set A to a

finite set B is |B||A|). -- |.| is num of elements.

• The number of perfect hash functions is m*(m-

1)*…*(m-n) = m!/(m-n)! (that is the number of

injections from a finite set A to a finite set B is:

|B|∙(|B|-1)∙(|B|-2)∙…∙(|B|-|A|))

11

Perfect Hash Functions

• If a function requires only as many cells in the

table as the number of data so that no empty

cell remains after hashing is completed, it is

called a minimal perfect hash function

• Cichelli’s method is an algorithm to construct

a minimal perfect hash function

• It is used to hash a relatively small number of

reserved words

Cichelli’s perfect hash by example

Compute for each
character ch occurring in
first or last position of the
keywords how times this
happens for such an ch;

2 A

1 B

2 C

8 D

9 E

5 F

1 G

1 H

2 I

J

K

4 L

2 M

6 N

7 O

Q

3 P

5 R

1 S

7 T

1 U

2 V

2 W

X

1 Y

Z

For the example:

Cichelli’s perfect hash by example
Sort the keys on the sum of frequencies of first and last:

ELSE 18

END 17

OTHERWISE 16

TYPE 16

DO 15

DOWNTO 15

TO 14

FILE 14

RECORD 13

NOT 13

THEN 13

OR 12

OF 12

PROCEDURE 12

REPEAT 12

CASE 11

WHILE 11

PACKED 11

FUNCTION 11

DIV 10

AND 10

MOD 10

NIL 10

FOR 10

CONST 9

GOTO 8

SET 8

IN 8

LABEL 8

VAR 7

IF 7

BEGIN 7

UNTIL 5

PROGRAM 5

WITH 3

ARRAY 3

Cichelli’s perfect hash by example
Modify the previous list once more according to the
following:
Make sure that any word whose hash value is
determined by assigning the associated character
values already determined by previous words is placed
next:

ELSE 18

END 17

OTHERWISE 16

D0 15

DOWNTO 15

TYPE 16

TO 14

…… etc ………. etc

Determine hash value conflicts as early as possible!

Cichelli’s perfect hash by example
ELSE 18

END 17

OTHERWISE 16

D0 15

DOWNTO 15

TYPE 16

TO 14

FILE 14

OF 12

THEN 13

NOT 13

FUNCTION 11

RECORD 13

REPEAT 12

OR 12

FOR 10

PROCEDURE 12

PACKED 11

WHILE 11

CASE 11

CONST 9

DIV 10

VAR 7

AND 10

MOD 10

PROGRAM 5

NIL 10

LABEL 8

SET 8

IN 8

IF 7

GOTO 8

BEGIN 7

UNTIL 5

ARAY 3

WITH 3

Cichelli’s perfect hash by example

Backtracking search procedure: attempts to find a set of
associated values which will permit the unique
referencing of all members of the key word list.

It does this by trying the words one by one in order.

Cichelli’s perfect hash by
example

If both the first and last letter of the keyword have an
associated value, try the word.

If either the first or last letter has an associated value,
vary the associated value of the unassigned character
from zero to the maximum allowed associated value,
trying each occurrence.

If both letters are as yet unassigned, vary the first and
then the second, trying each possible combination.

Cichelli’s perfect hash by example

Each “try” tests whether the given hash value is already
assigned and, if not, reserves the value and assigns the
letters.

If all keywords have been processed, stop;
Otherwise invoke the search procedure recursively to
place the next word.

If the “try” fails (i.e., is assigned), remove the word by
backtracking.

See also pages 538-542 in Drozdek

19

Cichelli’s Method summary

• Where g is the function to be constructed

h(word) = (length(word) + g(firstletter(word)) + g(lastletter(word)))

mod TSize

• The algorithm has three parts:

– Computation of the letter occurrences

– Ordering the words

– Searching

20

Hash Functions

• The division method is the preferred choice

for the hash function if very little is known

about the keys

TSize =sizeof(table), as in h(K) = K mod TSize

• In the folding method, the key is divided into

several parts which are combined or folded

together and are often transformed in a

certain way to create the target address

21

Hash Functions (continued)

• In the mid-square method, the key is squared

and the middle or mid part of the result is

used as the address

• In the extraction method, only a part of the

key is used to compute the address

• Using the radix transformation, the key K is

transformed into another number base; K is

expressed in a numerical system using a

different radix

22

Hash Functions (continued)

• Truncation

• Multiplication: h(k) = fract(φK)⋅M, where φ
is irrational; Knuth suggests φ = (√5-1)/2 ≈
0.6180339887

23

Collision Resolution; open hashing

• In open addressing, all elements are stored in

the hash table itself

• That is each entry is either a key or nil.

• Avoids pointers altogether: compute the

sequence of slots to be examined

• Larger number of slots for the same memory:

potentially fewer collisions and faster retrieval

• Insertion: successively examine, or probe the

hash table until you find an empty slot in

which you put the key – same sequence is also

followed by the search

24

Collision Resolution

• The sequence of addresses to be probed may

depend on the key

• When the probing sequence is specified for

each key, we are dealing with open

addressing. The probing sequence can be

specified by a probing function.

• h(K), h(K)+p(1), h(K)+p(2), …, h(K)+p(M-1),

where M is the Tsize (table size)

25

Collision Resolution

• h(K), h(K)+p(1), h(K)+p(2), …, h(K)+p(M-1),

where M is the Tsize (table size)

• The numbers h(K) through h(K)+p(M-1) are

also normalized, usually by mod M:

• h(K) mod M, h(K)+p(1) mod M , … ,

h(K)+p(M-1) mod M; require that it generates

a permutation of {0,…,M-1}

26

Collision Resolution

• The simplest method is linear probing, for

which p(i) = i, and for the ith probe, the

position to be tried is (h(K) + i) mod Tsize

• Recall that (a,b) denotes the gcd of a and b

• Or slightly more general: h(K) - i⋅c (mod

Tsize), with (c,Tsize)=1 – guarantees

permutation, such linear probings are called

permissible

• In the sequel we denote Tsize also by M or m
0 1 2 3 54 6 7 8 9

x x x x x x

Clustering
Check what happens with
inserting a random key

27

Collision Resolution

• pseudo-random: h(K) + r0 mod M, h(K)+r1

mod M, ..., h(K)+rM-1, wherer0 = 0, r1,..., rM-1 is

pseudo random permutation

• Quadratic: h(K) ± i2 (mod M) provided M is

prime, M ≡ 3 (mod 4); again to guarantee

permutation

• Double Hashing: h(K) - i⋅p(K) (mod M)

– p probe function

– h hash function

– independent : p is not derived from h

– Permutation iff (M,p(K)) =1 (no common factors,

such probe is called permissible

28

Collision Resolution

• Claim: h(K)- i p(K) mod M, all different for

0 ≤ i ≤ M-1 iff (p(K),M)=1

• Recast: a-ib mod M, 0 ≤ i < M are mutually

different numbers iff (b,M)=1

• Proof: a) assume (b,M)=1 and a-i1b=a-i2b mod

M, 0≤i1, i2 < M. We see: (i2-i1)b=s*M for some

integer s. M divides evenly into (i2-i1), as

(M,b)=1 . Or (i2-i1)=0 mod M. I.e., i2-i1 = s2*M,

for integer s2. Hence,

0 ≤ |s2*M |=|i2-i1 | ≤ M-1 or

0 ≤ |s2|*|M |=|i2-i1 | < M, thus s2=0

29

Collision Resolution

• Proof: b) we will show (b,M)=1 ⇒ different or

equivalently (b,M) ≠ 1 ⇒ not all different.

• Let d= (b,M) (we know d>1). Consider i1:=0,

and i2:=M/d; clearly: 0 ≤ i2, i1 < M and (i2-i1) =

M/d; hence, b* (i2-i1) =b* M/d = b’ M or b* (i2-

i1) = 0 mod M, or a-b* i1 = a -b* i2 mod M, for

some 0 ≤ i2, i1 < M. Hence, not all different.

30

Collision Resolution (continued)

Linear

Resolving collisions with the linear probing method .

Subscripts indicate the home positions of the keys
being hashed.

31

Collision Resolution (continued)

Linear example

0 1 2 3 4 5 6 7 8 9 10

MOD

11

38 60 29 74

60,29

,74,3

8

23 38 60 19 29 74 19,23

23 40 38 60 19 29 74 40

32

Collision Resolution (continued)

Using quadratic probing for collision resolution

33

Collision Resolution (continued)

Double Hashing example

key 60 29 74 38 19 23 40 K

hash

address 5 7 8 5 8 1 7 h(K) = K mod 11

probe 1 2 3 3 4 4 1 p(K) = (K mod 4) + 1

Insert 60, 29,74, 38, 19, 23, 40;

0 1 2 3 4 5 6 7 8 9 10

38 60 29 74

23 38 19 60 29 74

23 40 38 60 40 29 74

60,29,74,38

19, 23

40

34

Collision Resolution (continued)

Formulas approximating, for different hashing metho ds,
the average numbers of trials for successful and
unsuccessful searches (Knuth, 1998)

Clustering in Open Hashing

• linear: primary clustering, neighbors in each

other’s paths

• secondary clustering: synonyms follow the

same path (pseudorandom, quadratic)

• double:

– ‘ independent’

– step size (p(K))

Chaining

• In chaining, each position of the table is

associated with a linked list or chain of

structures whose info fields store keys or

references to keys

• This method is called separate chaining, and a

table of references (pointers) is called a

scatter table

Chaining (continued)

In chaining, colliding keys are put on
the same linked list

Chaining (continued)

• A version of chaining called coalesced hashing

(or coalesced chaining) combines linear

probing with chaining

• An overflow area known as a cellar can be

allocated to store keys for which there is no

room in the table

Chaining (continued)

Coalesced hashing puts a colliding key in the last
available position of the table

41

Chaining (continued)

Coalesced hashing that uses a cellar

42

Bucket Addressing

• To store colliding elements in the same

position in the table can be achieved by

associating a bucket with each address

• A bucket is a block of space large enough to

store multiple items

43

Bucket Addressing (continued)

Collision resolution with buckets and
linear probing method

44

Bucket Addressing (continued)

Collision resolution with buckets and overflow area

45

Deletion

Linear search in the situation where both insertion
and deletion of keys are permitted

46

Summary

• Hash functions include the division, folding,

mid-square, extraction and radix

transformation methods

• Collision resolution includes the open

addressing, chaining, and bucket addressing

methods

• Cichelli’s method is an algorithm to construct

a minimal perfect hash function

