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Objectives

Discuss the following topics: 

• Graphs; Graphs as ADT

• Graph Representation

• Graph Traversals (breadth first, depth first)

• Connectivity

• Bipartiteness

• Topological Sort (aka topological ordering)

• Minimum Spanning Trees (Kruskal’s and Prim’s
algorithms)

• Shortest Paths
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Graphs

• A graph is a collection of vertices (or nodes) 
and the connections between them

• A simple graph G = (V, E) consists of a 
nonempty set V of vertices and a possibly 
empty set E of edges, each edge being a set of 
two vertices from V

• A directed graph, or a digraph, G = (V, E) 
consists of a nonempty set V of vertices and a 
set E of edges (also called arcs), where each 
edge is a pair of vertices from V
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Graphs (continued)

• A multigraph is a graph in which two vertices 

can be joined by multiple edges

• A pseudograph is a multigraph with the 

condition vi ≠ vj removed, which allows for 

loops to occur

• A graph is called a weighted graph if each 

edge has an assigned number
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Graphs (continued)

• A path from v1 to vn is a sequence of edges 

edge(v1,v2), edge(v2,v3), …, edge(vn-1,vn) 

• If v1=vn, and no edge is repeated, then the 

path is called a circuit

• If all vertices in a circuit are different, then it is 

called a cycle. 
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Graphs (continued)

• An undirected graph is connected if for every 

pair of nodes u and v, there is a path from u to 

v

• Any two connected components of an 

undirected graph either coincide or are 

disjoint.

• A directed graph is strongly connected if for 

every pair of nodes u and v, there is a path 

from u to v and a path from v to u

• Any two strongly connected components 

coincide or are disjoint
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Graphs (continued)

Examples of graphs: (a–d) simple graphs; (c) a complete graph K4; 

(e) a multigraph; (f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the 

digraph



9

Graph as an ADT

• Insertion and deletion somewhat different for 

graphs than for other ADTs: they can either 

apply to edges or vertices

• Can define the ADT graph so that its vertices 

contain or don’t contain any values

• Not uncommon: graph representing only 

relationships among vertices – vertices don’t 

contain values

• Our definition of ADT graph operations do 

assume that the graph’s vertices contain 

values
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Graph as an ADT (cont’d)
• createGraph(G) // creates empty 

//graph

• destroyGraph(G) // destroys the 
//graph

• graphIsEmpty(G) // returns true if 
//the graph is empty; otherwise 
// false

• insertVertex(G, v, success) // 
//inserts a vertex v into the graph 
// G whose vertices have distinct 
//search keys that differ from v’s
//search key. Success indicates 
//whether the insertion was 
//successful
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Graph as an ADT (cont’d)

• insertEdge(G, v1, v2, success) // 
//inserts an edge between vertices 
// v1 and v2 in the graph G and sets 
// success to true . However, if an 
//edge already exists between 
//specified vertices, sets success 
//to false

• deleteVertex(G,v, success) // 
//Deletes the vertex v from the 
//graph G, and sets success to true . 
//However, if no such vertex exists, 
//sets success to false
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Graph as an ADT (cont’d)

• deleteEdge(G, v1,v2,success) // 
//deletes the edge between vertices 
// v1 and v2 in the graph G and sets 
// success to true . However, if no 
//edge exists between the specified 
//vertices, sets success to false

• retrieveVertex(G, searchKey, v, 
success) // copies into v the 
//vertex, if any, of G that contains 
//the searchKey . Sets success to 
//true if the vertex was found; 
//otherwise sets it to false
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Graph as an ADT (cont’d)
• replaceVertex(G,searchKey, v, 
success) //replaces the vertex that 
contains searchKey with v. Sets 
success to true if the vertex was 
found; otherwise sets it to false .

• isEdge(G, v1, v2) // returns true , 
if an edge between vertices v1 and 
v2 exists; otherwise returns false .

• NB several variations of this ADT are possible, of course. For 

example, if the graph is directed, you can replace instances of 

“edges” in the previous specification with “directed edges”.  

Can also add traversal operations. Very often graph is also 

weighted, so need to deal with retrieving, updating, inserting 

of weights on edges. 
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Graph Representation
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m  ≤ n(n-1)/2!  ≤ n2  (m=#edges=|E|; n=#nodes = |V|)

G connected:        n-1 ≤ m  ≤ n(n-1)/2!  ≤ n2

G sparse:       m   <<   n(n-1)/2! 

Adjacency matrix requires O(n2 ) space;  process neighbors of v needs |V| steps.

Adjacency list: O(m+n) space;   steps;  process neighbors of v needs deg(v) steps 
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Graph Representation (continued)

Graph representations (d) an adjacency matrix, and 

(e) an incidence matrix 
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Graph Traversal: breadth first search 

and depth first search

• Let G = (V, E) be a graph and let s and t be two 

particular nodes. Is there a path from s to t in 

G? 

• Two high level solutions: breadth first search 

and depth first search

• Breadth-first search:
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Graph traversal: bsf

• Define the layers L1, L2, L3, … more precisely

• Layer L1 consists of all nodes that are 
neighbors of node s. (Denote the set {s} by L0)

• Assume we have defined L1, … , Lj, then layer  
Lj+1 consists of all nodes that do not belong to 
an earlier layer and that have an edge to a 
node in layer Lj.

• Distance between two nodes: minimum 
number of edges on a path joining them
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Graph traversal: bsf

• For each j ≥ 1, layer Lj produced by BFS 

consists of all nodes at distance exactly j from 

s.

• There is a path from s to t if and only if t

appears in some layer.

• BFS � a tree T rooted at s on the set of nodes 

reachable from s.  Breadth first search tree.
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Building up of the layers and BSF tree

We also introduce an array   bool discovered[] of size 13
Initialized as follows: discovered[1] = true; discovered[i]=false, for i>1.

After layer  L1 has been built, discovered[2]  ==  true and 
discovered[3] == true, remaining are still false
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Building up of the layers and BSF tree: the building of layer L2; we start by looking
at the edges of node 2:  node 3 will not be in layer L2 since it has been sighted already 

in layer L1 ;  for the same reason edge (2,3) will not be part of the bfs-tree; node 4 
and 5 are part of L2 , since they have not been sighted  yet; for building the 
bsf-tree it is important to set

discovered[4]  = true and discovered[5]  = true
immediately, as we shall on the next slide
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Building up of the layers and BSF tree: the building of layer L2; we process the next
Node in layer L1: node 3 and look at the edges of this node;
node  5 gets a second reason to be included in layer L2  but it does not have to be followed up since node 5 is 
already marked as a sighted node. For the edge (3,5) it is important that node 5 is already marked as sighted, 
and fortunately does not have to be included in the bsf-tree (it would kill the tree property otherwise); nodes 8 
and 7 are marked as sighted and included in layer L2, and the edges (3,8)and (3,7) will become part of the bsf-
tree . Also the array discovered is updated:  discovered[8]  = true; discovered[7]  = true
Once more:  1) in constructing the bsf-tree it is important to have a sighted node be marked as such 
IMMEDIATELY 2) for layering the nodes this is not necessary, but it does not hurt to do this either. 
NB dashed edges are not included in the bsf-tree;   (I marked edge (3,5) in red because it is an example where 
sighting of a node should be marked without delay.)  
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Building up of the layers and BSF tree: the building of layer L3; we process node 4, 5, 8, and 7 
in layer L2:  Only node 6 is taken up in layer L3, others 4,5,8,7
are already sighted; edge (5,6) will also be part of the bsf-tree. The dashed edges are not included.
discovered[6]  = true
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It is now easy to answer the question:
Is there a path from 1 to 8? We look
At the array; discovered[8] is true, thus
There is a path. Discovered[9] is false so 
There is no path; 
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Graph traversal: bsf
• Let T be a breadth-first search tree, let x and y

be nodes in T belonging to Li and Lj, and let 

(x,y) be an edge of G. Then i and j differ by at 

most 1.

• Proof: Let x be in Li . Then it is clear that y is  

at the latest in Li+1 (as (x,y) is an edge of G) or

y is in an earlier layer Lk with k ≤ i; thus j ≤ i+1. 

We assume that G is undirected: we get by 

symmetry (since we can consider (y,x) as an 

edge in G) i ≤ j+1 (or i-1 ≤ j). Thus we get 

i-1 ≤ j  ≤ i+1 (which is equivalent to |i-j|≤ 1 or i

and j differ by at most one)
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Graph traversal: bsf

• It needs to be stressed that we assumed that 

the graph G is undirected; for directed graphs 

the previous statement does not hold: see the 

following slide for a counter example
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Directed graph

BSF for this graph starting
in node d:

L0 = { d }
L1 = { c,h,y }
L2 = { b }
L3 = { a }
L4 = { x }

y is in L1
x is in L4
We see that |1-4| = 3 > 1, despite
the fact that 
there is an edge (x,y).
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Use array discovered[], and for each layer Li we have a list L[i], i=0, 1, 2, …. 

BFS(s):

discovered[s]  true;  

discovered[v]  false    // for all other nodes of G

set layer counter i=0

initialize L[0] to consist of the single element s

set current BFS tree T to ø. 

while ( L[i] ≠ ø )
initialize empty list L[i+1]

for each node  u ε L[i] 

consider each edge (u,v) incident to u

if (!discovered[v] ) {

discovered[v]  true;

add edge (u,v) to T

add v to the list L[i+1]

}

endfor

increment layer counter i

endwhile G
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Can use queue; 
Get single list then
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Graph Traversal: BFS 

The algorithm will visit each node in the 

connected component of s. In order to visit 

nodes in the other connected components 

you need run the above algorithm on a node 

for which discovered[] is false (by scanning 

the list after a run of the above algorithm)
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Graph Traversal: BFS 

• Can implement the algorithm using a single 

list which is maintained as queue

• Each time a node is discovered it is added to 

the end of the queue, algorithm will process 

edges out of the node that is currently first in 

the queue (see next slide)

• G=(V,E). BFS runs in O(|E|+|V|)
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Use array discovered[], and for each layer Li we have a list L[i], i=0, 1, 2, …. 

BFS(s):

discovered[s]  true;  

discovered[v]  false    // for all other nodes of G

initialize queue Q to consist of the single element s

set current BFS tree T to ø. 

while ( Q ≠ ø )
u=dequeue(); 

consider each edge (u,v) incident to u

if (!discovered[v] ) {

discovered[v]  true;

add edge (u,v) to T

enqueue(v)

}

endwhile
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Can use queue; 
Get single list then
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App of BSF: Testing Bipartiteness

• A graph G=(V,E) is bipartite, if V can be split up 

into two subsets X and Y such that

– X ≠ ø and Y≠ ø

– V = X U Y

– Every edge has one end in X and the other in Y. 
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App of BSF: Testing Bipartiteness

• If a graph G=(V,E) is bipartite, then it cannot 

contain an odd cycle. 

• Containing an odd cycle is the only obstacle to 

not being bipartite.

• Can assume G is connected (otherwise 

investigate each connected component 

separately: each connected component needs 

to have the bipartite property)

•
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App of BSF: Testing Bipartiteness
• Start in arbitrary node and color it red

• Its neighbors blue

• Their neighbors red etc etc. until the whole 

graph is colored: either we have a valid red-

blue coloring of G, in which every edge has 

ends of opposite colors, or there is an edge 

with ends of the same color. 

• It is essentially the bsf: color L0 red, layer L1 

blue, layer L2 red etc, can be implemented on 

top of bsf: when adding a vertex to an even 

numbered layer color it red, and when it is 

added to an odd numbered layer color it blue
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App of BSF: Testing Bipartiteness
• Let G be a connected graph, and let L1, L2, …

be the layers produced by bsf starting at node 

s. Then exactly one of the following two things 

must occur.

– There is no edge of G joining two nodes in the 

same layer. In this case the graph is bipartite: 

nodes in even layers are colored red and nodes in 

odd layers are colored blue.

– There is an edge of G joining two nodes in the 

same layer. In this case G, contains an odd length 

cycle, and so it cannot be bipartite
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Graph Traversal: Depth First Search

• Recursive version

• A list (array) which records whether a node has been 

explored or not: explored[]; a set S of visited nodes; 

Initialize: explored[i]  false, for all i; S  ø;

DSF (s) 

visit(s);

explored[s]  true; S S U {s};

for ( each v s.t. (s,v) is an edge of the graph G)

if (!explored[v]) {

DSF(v)

}

endfor // mark the node as “explored” instead of array
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Graph Traversal: Depth First Search

• Depth-first search tree of G:

• Initialize: explored[i]  false, for all i; S  ø ; T  ø;

DSF (s) 

visit(s);

explored[s]  true; S S U {s};

for ( each v s.t. (s,v) is an edge of the graph G)

if (!explored[v]) {

add edge(s,v) to T

DSF(v)

}

endfor
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• Iterative version of DFS

• A list (array) which records whether a node has been explored or not : 

list[i].explored

DSF (s) 

Initialize: list[i].explored  false, for all i; 

Initialize S to be a stack with one element s

while  (S ≠ ø )

take a node u from S

if (!explored[u].explored) {

list[u].explored  true;

for (each v s.t. (u,v) edge of G)

add v to stack S

endfor

} // endif

endwhile
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• Iterative version includes the building of the DFS-tree

• A list (array) which records whether a node has been explored or not and also 

the parent of the node: list[i].explored, list[i].parent

DSF (s)  

Initialize: list[i].explored  false, for all i;  list[i].parent  null, , for all i ;

T  {s} tree; Initialize S to be a stack with one element s

while  (S ≠ ø )

take a node u from S

if (!explored[u]) {

list[u].explored  true;

if (u != s) { add edge (list[u].parent, u) to T}

for (each v s.t. (u,v) edge of G)

add v to stack S

list[v].parent  u

endfor

} // endif

endwhile G
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Graph traversal for graphs which 

are not connected
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Directed Acyclic Graphs and 

Topological Ordering

• A directed graph with no cycles is called a 

directed acyclic graph (DAG).

• For instance a node represents a task and a 

directed edge (i,j) is used to record that job i 

must be done before job j. 

• Precedence relations: given a set of tasks with 

dependencies it would be natural to seek a 

valid order in which the tasks could be 

performed, so that all dependencies are 

respected
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Directed Acyclic Graphs and 

Topological Ordering

• Definition. Let G be a directed graph. A 

topological ordering of G is an ordering of its 

nodes as v1, v2, …, vn so that if a pair (vi, vj) is 

an edge of G, then i<j.

• a topological ordering on tasks  provides an 

order in which they can be safely performed; 
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Directed Acyclic Graphs and 

Topological Ordering
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Directed Acyclic Graphs and 

Topological Ordering

v5

v3v2

v4

v1v7

v6

v1 v2 v3 v4 v5 v6 v7

All edges point
from left to right
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Directed Acyclic Graphs and 

Topological Ordering

• Thm. (G is a directed graph.) If G has a 

topological ordering, then G is a DAG.

• Proof: Assume G has a topological ordering 

v1,…, vn and G has a cycle. From this we derive 

a contradiction. Let vi be the edge on the cycle 

C with lowest index; now consider vj on this 

cycle C which just comes before vi, in other 

words (vj, vi) is an edge of G; topological 

sorting implies:  j<i; on the other hand, i was 

the lowest index on C: i<j; contradiction
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Directed Acyclic Graphs and 

Topological Ordering

• If G has a topological ordering, then G is a DAG.

• The converse of this statement also holds:

• If G is a DAG, then it has a topological ordering.

• Follows from: In every DAG, there is a node v with 

no incoming edges. 

• This latter statement is the basis for an algorithm

• Discussion of efficiency, O(n2) easily; can achieve 

O(m+n)


