
1

Data Structures

November 2

2

Graphs

33

Objectives

Discuss the following topics:

• Graphs; Graphs as ADT

• Graph Representation

• Graph Traversals (breadth first, depth first)

• Connectivity

• Bipartiteness

• Topological Sort (aka topological ordering)

• Minimum Spanning Trees (Kruskal’s and Prim’s
algorithms)

• Shortest Paths

44

Graphs

• A graph is a collection of vertices (or nodes)
and the connections between them

• A simple graph G = (V, E) consists of a
nonempty set V of vertices and a possibly
empty set E of edges, each edge being a set of
two vertices from V

• A directed graph, or a digraph, G = (V, E)
consists of a nonempty set V of vertices and a
set E of edges (also called arcs), where each
edge is a pair of vertices from V

55

Graphs (continued)

• A multigraph is a graph in which two vertices

can be joined by multiple edges

• A pseudograph is a multigraph with the

condition vi ≠ vj removed, which allows for

loops to occur

• A graph is called a weighted graph if each

edge has an assigned number

66

Graphs (continued)

• A path from v1 to vn is a sequence of edges

edge(v1,v2), edge(v2,v3), …, edge(vn-1,vn)

• If v1=vn, and no edge is repeated, then the

path is called a circuit

• If all vertices in a circuit are different, then it is

called a cycle.

77

Graphs (continued)

• An undirected graph is connected if for every

pair of nodes u and v, there is a path from u to

v

• Any two connected components of an

undirected graph either coincide or are

disjoint.

• A directed graph is strongly connected if for

every pair of nodes u and v, there is a path

from u to v and a path from v to u

• Any two strongly connected components

coincide or are disjoint

88

Graphs (continued)

Examples of graphs: (a–d) simple graphs; (c) a complete graph K4;

(e) a multigraph; (f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the

digraph

9

Graph as an ADT

• Insertion and deletion somewhat different for

graphs than for other ADTs: they can either

apply to edges or vertices

• Can define the ADT graph so that its vertices

contain or don’t contain any values

• Not uncommon: graph representing only

relationships among vertices – vertices don’t

contain values

• Our definition of ADT graph operations do

assume that the graph’s vertices contain

values

10

Graph as an ADT (cont’d)
• createGraph(G) // creates empty

//graph

• destroyGraph(G) // destroys the
//graph

• graphIsEmpty(G) // returns true if
//the graph is empty; otherwise
// false

• insertVertex(G, v, success) //
//inserts a vertex v into the graph
// G whose vertices have distinct
//search keys that differ from v’s
//search key. Success indicates
//whether the insertion was
//successful

11

Graph as an ADT (cont’d)

• insertEdge(G, v1, v2, success) //
//inserts an edge between vertices
// v1 and v2 in the graph G and sets
// success to true . However, if an
//edge already exists between
//specified vertices, sets success
//to false

• deleteVertex(G,v, success) //
//Deletes the vertex v from the
//graph G, and sets success to true .
//However, if no such vertex exists,
//sets success to false

12

Graph as an ADT (cont’d)

• deleteEdge(G, v1,v2,success) //
//deletes the edge between vertices
// v1 and v2 in the graph G and sets
// success to true . However, if no
//edge exists between the specified
//vertices, sets success to false

• retrieveVertex(G, searchKey, v,
success) // copies into v the
//vertex, if any, of G that contains
//the searchKey . Sets success to
//true if the vertex was found;
//otherwise sets it to false

13

Graph as an ADT (cont’d)
• replaceVertex(G,searchKey, v,
success) //replaces the vertex that
contains searchKey with v. Sets
success to true if the vertex was
found; otherwise sets it to false .

• isEdge(G, v1, v2) // returns true ,
if an edge between vertices v1 and
v2 exists; otherwise returns false .

• NB several variations of this ADT are possible, of course. For

example, if the graph is directed, you can replace instances of

“edges” in the previous specification with “directed edges”.

Can also add traversal operations. Very often graph is also

weighted, so need to deal with retrieving, updating, inserting

of weights on edges.

14
14

Graph Representation

G
ra

p
h

 r
e

p
re

se
n

ta
ti

o
n

s
(a

)
A

 g
ra

p
h

re
p

re
se

n
te

d
 a

s
(b

–
c)

 a
n

 a
d

ja
ce

n
cy

 l
is

t

m ≤ n(n-1)/2! ≤ n2 (m=#edges=|E|; n=#nodes = |V|)

G connected: n-1 ≤ m ≤ n(n-1)/2! ≤ n2

G sparse: m << n(n-1)/2!

Adjacency matrix requires O(n2) space; process neighbors of v needs |V| steps.

Adjacency list: O(m+n) space; steps; process neighbors of v needs deg(v) steps

1515

Graph Representation (continued)

Graph representations (d) an adjacency matrix, and

(e) an incidence matrix

16

Graph Traversal: breadth first search

and depth first search

• Let G = (V, E) be a graph and let s and t be two

particular nodes. Is there a path from s to t in

G?

• Two high level solutions: breadth first search

and depth first search

• Breadth-first search:

17

1 7

2

5

3

4

6

8

9

13

11

1210

Layers, flooding; more precisely:

18

Graph traversal: bsf

• Define the layers L1, L2, L3, … more precisely

• Layer L1 consists of all nodes that are
neighbors of node s. (Denote the set {s} by L0)

• Assume we have defined L1, … , Lj, then layer
Lj+1 consists of all nodes that do not belong to
an earlier layer and that have an edge to a
node in layer Lj.

• Distance between two nodes: minimum
number of edges on a path joining them

19

Graph traversal: bsf

• For each j ≥ 1, layer Lj produced by BFS

consists of all nodes at distance exactly j from

s.

• There is a path from s to t if and only if t

appears in some layer.

• BFS � a tree T rooted at s on the set of nodes

reachable from s. Breadth first search tree.

20

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

node 1 (rooted at node 1).

1 L0

1

2 3

L1

L0

Building up of the layers and BSF tree

We also introduce an array bool discovered[] of size 13
Initialized as follows: discovered[1] = true; discovered[i]=false, for i>1.

After layer L1 has been built, discovered[2] == true and
discovered[3] == true, remaining are still false

21

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

node 1.

1

2

5

3

4

L0

L1

Building up of the layers and BSF tree: the building of layer L2; we start by looking
at the edges of node 2: node 3 will not be in layer L2 since it has been sighted already

in layer L1 ; for the same reason edge (2,3) will not be part of the bfs-tree; node 4
and 5 are part of L2 , since they have not been sighted yet; for building the
bsf-tree it is important to set

discovered[4] = true and discovered[5] = true
immediately, as we shall on the next slide

22

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

node 1.

1

2

5

3

4 8 7

L0

L1

Building up of the layers and BSF tree: the building of layer L2; we process the next
Node in layer L1: node 3 and look at the edges of this node;
node 5 gets a second reason to be included in layer L2 but it does not have to be followed up since node 5 is
already marked as a sighted node. For the edge (3,5) it is important that node 5 is already marked as sighted,
and fortunately does not have to be included in the bsf-tree (it would kill the tree property otherwise); nodes 8
and 7 are marked as sighted and included in layer L2, and the edges (3,8)and (3,7) will become part of the bsf-
tree . Also the array discovered is updated: discovered[8] = true; discovered[7] = true
Once more: 1) in constructing the bsf-tree it is important to have a sighted node be marked as such
IMMEDIATELY 2) for layering the nodes this is not necessary, but it does not hurt to do this either.
NB dashed edges are not included in the bsf-tree; (I marked edge (3,5) in red because it is an example where
sighting of a node should be marked without delay.)

23

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

node 1.

1

2

5

3

4 8 7

L0

L1

L2

24

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

node 1.

1

2

5

3

4 8 7

L0

L1

Building up of the layers and BSF tree: the building of layer L3; we process node 4, 5, 8, and 7
in layer L2: Only node 6 is taken up in layer L3, others 4,5,8,7
are already sighted; edge (5,6) will also be part of the bsf-tree. The dashed edges are not included.
discovered[6] = true

L2

6

25

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Bfs tree starting from

node 1.

1

2

5

3

4 8 7

L0

L1

L2

6
L3

It is now easy to answer the question:
Is there a path from 1 to 8? We look
At the array; discovered[8] is true, thus
There is a path. Discovered[9] is false so
There is no path;

26

1 7

2

5

3

4

6

8

9

1

3

1

1

1

2

1

0

�Another Bfs tree starting

from node 1.

1

2

5

3

4 8 7

L0

L1

L2

6
L3

27

Graph traversal: bsf
• Let T be a breadth-first search tree, let x and y

be nodes in T belonging to Li and Lj, and let

(x,y) be an edge of G. Then i and j differ by at

most 1.

• Proof: Let x be in Li . Then it is clear that y is

at the latest in Li+1 (as (x,y) is an edge of G) or

y is in an earlier layer Lk with k ≤ i; thus j ≤ i+1.

We assume that G is undirected: we get by

symmetry (since we can consider (y,x) as an

edge in G) i ≤ j+1 (or i-1 ≤ j). Thus we get

i-1 ≤ j ≤ i+1 (which is equivalent to |i-j|≤ 1 or i

and j differ by at most one)

28

Graph traversal: bsf

• It needs to be stressed that we assumed that

the graph G is undirected; for directed graphs

the previous statement does not hold: see the

following slide for a counter example

29

d

c

b

a

x

y

h

Directed graph

BSF for this graph starting
in node d:

L0 = { d }
L1 = { c,h,y }
L2 = { b }
L3 = { a }
L4 = { x }

y is in L1
x is in L4
We see that |1-4| = 3 > 1, despite
the fact that
there is an edge (x,y).

30

Use array discovered[], and for each layer Li we have a list L[i], i=0, 1, 2, ….

BFS(s):

discovered[s]  true;

discovered[v]  false // for all other nodes of G

set layer counter i=0

initialize L[0] to consist of the single element s

set current BFS tree T to ø.

while (L[i] ≠ ø)
initialize empty list L[i+1]

for each node u ε L[i]

consider each edge (u,v) incident to u

if (!discovered[v]) {

discovered[v]  true;

add edge (u,v) to T

add v to the list L[i+1]

}

endfor

increment layer counter i

endwhile G
ra

ph
 T

ra
ve

rs
al

: B
re

ad
th

-f
irs

t s
ea

rc
h

Can use queue;
Get single list then

31

Graph Traversal: BFS

The algorithm will visit each node in the

connected component of s. In order to visit

nodes in the other connected components

you need run the above algorithm on a node

for which discovered[] is false (by scanning

the list after a run of the above algorithm)

32

Graph Traversal: BFS

• Can implement the algorithm using a single

list which is maintained as queue

• Each time a node is discovered it is added to

the end of the queue, algorithm will process

edges out of the node that is currently first in

the queue (see next slide)

• G=(V,E). BFS runs in O(|E|+|V|)

33

Use array discovered[], and for each layer Li we have a list L[i], i=0, 1, 2, ….

BFS(s):

discovered[s]  true;

discovered[v]  false // for all other nodes of G

initialize queue Q to consist of the single element s

set current BFS tree T to ø.

while (Q ≠ ø)
u=dequeue();

consider each edge (u,v) incident to u

if (!discovered[v]) {

discovered[v]  true;

add edge (u,v) to T

enqueue(v)

}

endwhile

G
ra

ph
 T

ra
ve

rs
al

: B
re

ad
th

-f
irs

t s
ea

rc
h

Can use queue;
Get single list then

34

App of BSF: Testing Bipartiteness

• A graph G=(V,E) is bipartite, if V can be split up

into two subsets X and Y such that

– X ≠ ø and Y≠ ø

– V = X U Y

– Every edge has one end in X and the other in Y.

35

App of BSF: Testing Bipartiteness

• If a graph G=(V,E) is bipartite, then it cannot

contain an odd cycle.

• Containing an odd cycle is the only obstacle to

not being bipartite.

• Can assume G is connected (otherwise

investigate each connected component

separately: each connected component needs

to have the bipartite property)

•

36

App of BSF: Testing Bipartiteness
• Start in arbitrary node and color it red

• Its neighbors blue

• Their neighbors red etc etc. until the whole

graph is colored: either we have a valid red-

blue coloring of G, in which every edge has

ends of opposite colors, or there is an edge

with ends of the same color.

• It is essentially the bsf: color L0 red, layer L1

blue, layer L2 red etc, can be implemented on

top of bsf: when adding a vertex to an even

numbered layer color it red, and when it is

added to an odd numbered layer color it blue

37

App of BSF: Testing Bipartiteness
• Let G be a connected graph, and let L1, L2, …

be the layers produced by bsf starting at node

s. Then exactly one of the following two things

must occur.

– There is no edge of G joining two nodes in the

same layer. In this case the graph is bipartite:

nodes in even layers are colored red and nodes in

odd layers are colored blue.

– There is an edge of G joining two nodes in the

same layer. In this case G, contains an odd length

cycle, and so it cannot be bipartite

38

Graph Traversal: Depth First Search

• Recursive version

• A list (array) which records whether a node has been

explored or not: explored[]; a set S of visited nodes;

Initialize: explored[i]  false, for all i; S  ø;

DSF (s)

visit(s);

explored[s]  true; S S U {s};

for (each v s.t. (s,v) is an edge of the graph G)

if (!explored[v]) {

DSF(v)

}

endfor // mark the node as “explored” instead of array

39

Graph Traversal: Depth First Search

• Depth-first search tree of G:

• Initialize: explored[i]  false, for all i; S  ø ; T  ø;

DSF (s)

visit(s);

explored[s]  true; S S U {s};

for (each v s.t. (s,v) is an edge of the graph G)

if (!explored[v]) {

add edge(s,v) to T

DSF(v)

}

endfor

40

• Iterative version of DFS

• A list (array) which records whether a node has been explored or not :

list[i].explored

DSF (s)

Initialize: list[i].explored  false, for all i;

Initialize S to be a stack with one element s

while (S ≠ ø)

take a node u from S

if (!explored[u].explored) {

list[u].explored  true;

for (each v s.t. (u,v) edge of G)

add v to stack S

endfor

} // endif

endwhile

G
ra

p
h

 T
ra

ve
rs

al
:

D
ep

th
 F

ir
st

 S
ea

rc
h

, i
te

ra
ti

ve
 v

er
si

o
n

41

• Iterative version includes the building of the DFS-tree

• A list (array) which records whether a node has been explored or not and also

the parent of the node: list[i].explored, list[i].parent

DSF (s)

Initialize: list[i].explored  false, for all i; list[i].parent  null, , for all i ;

T  {s} tree; Initialize S to be a stack with one element s

while (S ≠ ø)

take a node u from S

if (!explored[u]) {

list[u].explored  true;

if (u != s) { add edge (list[u].parent, u) to T}

for (each v s.t. (u,v) edge of G)

add v to stack S

list[v].parent  u

endfor

} // endif

endwhile G
ra

p
h

 T
ra

ve
rs

al
:

D
ep

th
 F

ir
st

 S
ea

rc
h

, i
te

ra
ti

ve
 v

er
si

o
n

42

Graph traversal for graphs which

are not connected

43

Directed Acyclic Graphs and

Topological Ordering

• A directed graph with no cycles is called a

directed acyclic graph (DAG).

• For instance a node represents a task and a

directed edge (i,j) is used to record that job i

must be done before job j.

• Precedence relations: given a set of tasks with

dependencies it would be natural to seek a

valid order in which the tasks could be

performed, so that all dependencies are

respected

44

Directed Acyclic Graphs and

Topological Ordering

• Definition. Let G be a directed graph. A

topological ordering of G is an ordering of its

nodes as v1, v2, …, vn so that if a pair (vi, vj) is

an edge of G, then i<j.

• a topological ordering on tasks provides an

order in which they can be safely performed;

45

Directed Acyclic Graphs and

Topological Ordering

46

Directed Acyclic Graphs and

Topological Ordering

v5

v3v2

v4

v1v7

v6

v1 v2 v3 v4 v5 v6 v7

All edges point
from left to right

47

Directed Acyclic Graphs and

Topological Ordering

• Thm. (G is a directed graph.) If G has a

topological ordering, then G is a DAG.

• Proof: Assume G has a topological ordering

v1,…, vn and G has a cycle. From this we derive

a contradiction. Let vi be the edge on the cycle

C with lowest index; now consider vj on this

cycle C which just comes before vi, in other

words (vj, vi) is an edge of G; topological

sorting implies: j<i; on the other hand, i was

the lowest index on C: i<j; contradiction

48

Directed Acyclic Graphs and

Topological Ordering

• If G has a topological ordering, then G is a DAG.

• The converse of this statement also holds:

• If G is a DAG, then it has a topological ordering.

• Follows from: In every DAG, there is a node v with

no incoming edges.

• This latter statement is the basis for an algorithm

• Discussion of efficiency, O(n2) easily; can achieve

O(m+n)

