
Data Structures

November 9



Graphs



3

Objectives
Discuss the following topics: 

• Minimum Spanning Trees (Kruskal’s and Prim’s
algorithms)

• Union-find data structure

• Priority queues for implementation of Prim’s
algorithm

• Clustering

• Data Compression and Huffman Codes

• Shortest Paths



Wrap Up of Kruskal and Union 

Find



Wrap Up of Prim and Priority 

Queue



Eliminating the assumption of 

mutually unequal weights in the MST 

algo’s
• Suppose we have a graph in which it happens that some edges have the same

weight

• What we can do add  extremely small numbers to edges of equal weight so that 
they will have different weight

• ((Example: suppose you have three edges with weight 1 and all other edges have 
mutually different weights. Let m be the minimum absolute difference between 
unequal weights (suppose 1,1,1, 3, 4.5, 7, 10; then minimum: is 1.5 among pairs of 
unequal weight). 1, 

1+2-L1.5,  2-(L+1)1.5, 3, 4.5, 7, and 10 are the new weights for extremely large number L. 
))

Denote the old weight function by weight(..) and the new by 

weightP(..).  We now find MST  T with respect to the perturbed weight function 
weightP(..).  Now suppose T’ is a spanning tree and suppose with respect to the old 
weight function  weight(T) > weight(T’) but then it cannot be weightP(T) ≤
weightP(T’) for a small enough perturbation. In other words T is not an MST wrt to 
the weightP(..) function, contradiction. Thus T is MST also with respect to old 
weight function. 



Clustering: an application of Kruskal’s

MST algo

• Clustering: organizing a collection of objects 

into coherent groups

• Examples of collections you want to organize: 

photographs, artwork, documents, 

microorganisms etc

• First task: find / construct a measure of how 

similar or dissimilar each pair of objects is

• One common approach: define distance 

function (dissimilarity function would be a 

better name which is also used by the way)



Clustering

• Objects at larger distance from one another 

are less similar to each other



Clustering

• Distance often a more abstract meaning than 

physical distance

– Distance between species number of years since 

they diverged in the course of evolution

– Distance between images in a video stream:  the 

number of corresponding pixels at which their 

intensity differ by at least some threshold.



Clustering

• Clustering Problem: given a distance function 

on the objects, divide the objects into groups 

so that, intuitively, objects within the same 

group are “close”, and objects in different 

groups are “far apart.”

• Vague set of goals;  has given rise to a vast 

number of different  approaches



Clustering

• Clusterings of Maximum Spacing

• Let U be a set of n objects (labeled as p1, …, 

pn). 

• For each pair (pi,pj) a numerical distance is 

given d(pi,pj)    -- sometimes also called 

distance matrix (dissimilarity matrix)

• Requirements: 

– d(pi,pi) =0

– pi ≠ pj ⇒ d(pi,pj) > 0

– symmetry: d(pi,pj) = d(pj,pi)



Clustering

• Recall that a partition of a nonempty set D is a 

set of subsets Si ⊆⊆⊆⊆ D, i ∈ J such that for 

– all i,j ∈ J, i ≠ j, [Si ∩Sj = ∅] and 

– ∪ i ∈∈∈∈ J Si = D, moreover 

– for all i ∈ J [Si ≠ ∅] 

• Problem divide the objects in U into k groups 

(k is a given parameter).  (The division into 

groups  should have maximum spacing (see 

below).)

• Definition: a k-clustering is any partition of U 

into k nonempty sets C1, …, Ck. 

• ∀∃∋&%.≅≤≥∞↔←↑→↓ℵℑℜ℘⊗⊕∅∩∪⊃⊇



Clustering

• Definition: a k-clustering is any partition of U 

into k nonempty sets C1, …, Ck. The Ci’s are 

also referred to as clusters. 

• Definition: spacing of a k-clustering is the 

minimum distance between any pair of points 

lying in different clusters. 

• Alternatively: one can define the distance 

between two subsets S1 and S2 of U as follows: 

d(S1,S2) := min (e,f) ∈∈∈∈ S1xS2
d(e,f). The spacing of a 

k-clustering can then be defined as  

spacing(C1, …, Ck) := min (i,j) ∈∈∈∈ JxJ and i ≠ j d(Ci, Cj), 

where J={1,…, k}



Hierarchical agglomerative clustering: 

single-link clustering:   the algo

– Bring close by points into a common cluster as 

rapidly as possible: “this way different clusters will 

not be close”; 

– Draw an edge between closest pair of points, then 

draw an edge between the next pair of closest 

points, keep doing this in order of increasing 

distance d(pj,pi).

– We are actually growing a graph H on U edge by 

edge



Hierarchical agglomerative clustering: 

single-link clustering:      the algo

– Note: need only connected components, not the 

full set of edges: if we are about to add edge (pj,pi) 

and find that pj and pi already belong to the same 

cluster, we will refrain from adding this edge, it 

does not change the set of connected 

components. Note that it does not hurt though to 

add edges (pj,pi) with pj and pi in the same cluster: 

refraining opens up the way to fall back on a 

modified version of Kruskal’s MST algorithm! 

– Hence, we never create a cycle; H will be a forest ( 

a union of trees)



Single-link clustering
algo

Graph of Distances

We run the algorithm with
k = 3
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Single-link clustering
algo

Graph of Distances

Result of step 1
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Single-link clustering
algo

Graph of Distances

Result of steps 1 and 2

numOfConnectedComp ���� 3

Can stop number of 
Connected components is 3

7

10

9

2

6

3

1
p1 p2

p3

p4p5

12

11

p1 p2

p3

p4p5

8

1

2



Hierarchical agglomerative clustering: 

single-link clustering:      the algo

• The graph growing procedure we are using is 

nothing else than Kruskal’s MST algo for a 

graph G on U in which there is a weight edge 

d(pj,pi) between each pair of nodes (pj,pi). 

• The only difference: we seek k-clustering, so 

we can stop, once we obtain k connected 

components.



Hierarchical agglomerative clustering: 

single-link clustering:      the algo

• In other words: we are running Kruskal’s

algorithm but stopping it just before it adds its 

last k-1 edges

• So we have another equivalent way of getting 

the k-cluster:  take the full MST  T (as Kruskal

would have produced it), delete the k-1 most 

expensive edges (these are the ones the 

single-link clustering algo never adds in the 

first place). Define the resulting connected 

components C1, …, Ck as the k-cluster.



Hierarchical agglomerative clustering: 

single-link clustering:      the algo

• In summary:

• Iteratively merging clusters is equivalent to 

computing an MST (=minimum spanning tree) 

and deleting the most expensive edges. 



single-link clustering: correctness of the 

algo

The components C1, …, Ck formed by deleting 

the k-1 most expensive edges of the minimum 

spanning tree T constitute a k-clustering of 

maximum spacing.

Proof.  Let C denote the clustering C1, …, Ck

produced by our clustering algorithm. The 

spacing of C is precisely the length d* of the 

(k-1)-st  most expensive edge that Kruskal’s

algo would have added next, at the moment 

we stopped it. 



single-link clustering: correctness of the 

algo

Let C’ be another k-clustering, which partitions 

U into nonemtpy sets C’1, …, C’k . Must show: 

spacing of C’ is at most d*. 

The two clusterings C and C’ are different. So 

there is a cluster Cr in C which is not a subset 

of any of the k sets C’s in  C’. (Remember C

and C’ are partitions both of which contain 

precisely k sets.) Hence, there are  points pi

and pj in Cr that belong to different clusters in 

C’ -- say pi ∈∈∈∈ C’s and pj ∈∈∈∈ C’t with C’s ≠ C’t.



p’ pj

pi
p

Cluster  Cr

Cluster C’tCluster  C’s

pi and pj in same component Cr; Kruskal added all the edges of a 
pi – pj path P in Cr before it stopped. Thus each edge on this path 
has length at most d*. As said before pi ∈∈∈∈ C’s and pj ∈∈∈∈ C’ t with C’s
≠ C’ t . Hence pi ∈∈∈∈ C’s and pj ∉∉∉∉ C’s ; so let p’ be node on P that 
does not belong to C’s and let p on P be the node that just comes 
before p’.  We know d(p,p’) ≤ d*, since this edge (p,p’) was added 
by Kruskal.  But p and p’ belong to different sets of C’. Hence, 
spacing of C’ is at most d(p,p’)  (≤ d*).



single-link clustering, algo

• Implementation discussion

• see also: http://nlp.stanford.edu/IR-

book/html/htmledition/hierarchical-

clustering-1.html also for other clustering 

approaches (not just hierarchical)

• Implementation discussion

• see also: http://nlp.stanford.edu/IR-

book/html/htmledition/hierarchical-

clustering-1.html also for other clustering 

approaches (not just hierarchical)

• Implementation discussion

• see also: http://nlp.stanford.edu/IR-

book/html/htmledition/hierarchical-

clustering-1.html also for other clustering 

approaches (not just hierarchical)


