
Datastructuren

2009-10

André Deutz

Datastructuren 2009-10

Docent: André Deutz; kamer 116; tel.: 071 527 7071;
deutz@...

Werkgroep/practicum: Minh Tran Ngod; kamer 142; tel.:
071 527 7037 minhtn@...

Werkgroep & programming: Simon Zaaijer; szaaijer@...

Book: Adam Drozdek

Data Structures and Algorithms in C++

Third Edition, 2005; isbn: 0-534-49182-0

Handouts

Datastructuren 2009-10

Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein
Introduction to Algorithms , The MIT Press, second
edition (possibly already third edition!), 2002 (Third
Edition: September 30, 2009)

S. Dasgupta, Ch. Papadimitriou, U. Vazirani, Algorithms,
McGraw Hill of Higher Education, 2008

Kurt Mehlhorn, Peter Sanders, Algorithms and Data
Structures, Springer, 2008

Steven S. Skiena, The Algorithm Design Manual,
Springer,Second Edition, 2008

Datastructuren 2009-10

Tentamen

Programmeeropdrachten: ±4 kleine en 1 grote (eerste
programmeeropdracht wordt vandaag uitgedeeld)

Werkgroep/practicum: eerste vandaag (31 aug; 13.45)

Programmeertaal

Website: will be up today

Meer info: watch site and emails

v
e
r
w
a
n
t
e

c
o
l
l
e
g
e
s

datastructuren

complexiteit

fund.informatica 1

(discrete wiskunde)

concepten

progtalen

databases

software

engineering

complexiteit

sorteeralgoritmes

programmeermethoden

algoritmiek*

Data Structures

What will we learn in this course?

• Datastructures and Algorithms (so the course
name is a little bit of a misnomer)

• Continue to learn to design and understand
algorithms – at least the standard algorithms
which should be in any computing expert’s
baggage

• Data/Datastructures and Algorithms work in
tandem: so we devote also considerable time
to datastructures (again at least the standard
ones)

Data Structures
What will we learn in this course? Continued:

• We will also experience the interplay between
datastructures and algorithms:

– often carefully chosen data structures will allow
the use of the most efficient algorithm

– After the data structures are chosen, the
algorithms to be used often become relatively
obvious.

– Sometimes things work in the opposite direction
data structures are chosen because certain key
tasks have algorithms that work best with
particular data structures.

•

Data Structures
What will we learn in this course? Continued:

• The interplay between datastructures and
algorithms:

– How much intelligence do you put into the data
and how much in the algorithm?

– the choice of the datastructure is often done via
the choice of an abstract data type (ADT) : we will
learn this way of thinking

– A well-designed data structure allows a variety of
critical operations to be performed, using as few
resources, both execution time and memory
space, as possible : we are also going after
efficiency!

Data Structures
Summary of what we will learn:

Understanding and use of standard data
structures and associated algorithms, some
understanding of efficiency issues, learn to
think abstractly (that is, distinguish use and
implementation)

How can you implement the “undo” for the following situation.

When you type a line of text at a keyboard, you are likely to make mistakes.

We assume that you can use the usual ascii characters to enter lines of

text except the asterisk „*‟. With this character you can announce the wish

for the undo in case you made a typo. The understanding is that you

use the asterisk key to correct these mistakes, each asterisk erases

the previous character entered. Consecutive asterisks are applied in

sequence and so erase several characters.

For instance, if you type the line

abcc*ddde***ef*fg

the corrected input would be

abcdefg

How can a program read the original line and get the corrected input?

From Problem to Abstract Data Type

Design of Solution

• Eventually must decide how to store the input
line

• ADT approach: postpone this decision until
you have a better idea what the operations
you will need to perform on the data.

• People who are accostomed to use ADTs
naturally adhere to this approach

First Attempt
//read the line, correcting mistakes along the way

while (not end of line) {

read a new character ch

if (ch is not ‘*’) {

add ch to ADT

} else {

remove from the ADT the item that was
added most recently

}

}

First attempt
From this pseudo code we see that we need two

operations to work on the data:

1) Add an item to the ADT

2) Remove the item most recently added to the
ADT

Second Attempt
• What happens when you type ‘*’ and the ADT is

empty?

– Terminate program with error message? No we will not do
this

– We let the program ignore ‘*’ in this case and continue

We modify our first attempt:

while (not end of line) {

read a new character ch

if (ch is not „*‟)

add ch to ADT

} else {

if (ADT is not empty) {

remove from the ADT the item that was added

most recently

} else {

ignore the „*‟

}

}

}

Second Attempt

Second Attempt

From this pseudo code we identify a third
operation:

3) Determine whether the ADT is empty

This solution places the correct input line in the
ADT

Suppose that you want to display the corrected
line or process it (in order entered)??

Writing or Processsing the Line

// write the line (or process it in some other way)

While (the ADT not empty) {

remove from the ADT the item that was added
most recently

write(or process) Nou-nee!

}

Wrong: 1) remove the item from the ADT, it is
gone! Cannot write it. Should have done: retrieve

2) the most recently added item is the last
character of input line; don’t want to write it first

Writing (or Processsing) the Line in
Reverse Order

While (the ADT not empty) {

retrieve from the ADT the item that was added
most recently and put it in ch

write/process ch

remove from the ADT the item that was added
most recently }

A fourth operation is required by the ADT:

return from the ADT the item that was added most
recently without removing it (retrieve == return
without removing)

Operations required for our ADT:

• Determine whether ADT is empty

• Add new item to the ADT

• Remove from the ADT the item that was added
most recently

• Retrieve from the ADT the item that was added
most recently (Retrieve == return without
removing it from the ADT)

• It is customary to include initialization and
destruction operations for an ADT

ADT Stack:

• createStack() // creates an empty stack

• destroyStack() // destroys a stack

• stackIsEmpty() // determines whether the stack
is empty

• push(newItem) // Adds NewItem to a stack.

• pop() // Removes from a stack the
item that was added most recently.
getStackTop(stackTop)// Retrieves into var stackTop
the item that was added most recently to a stack,
leaving the stack unchanged.

Can use the ADT stack without knowing the

implementation of the ops
S.createStack() ; //in C++ declare S as instance of the stack class, since

//createStack() is implemented as the class’s constructor

Read newChar;

While (newChar not eoln){

if (newChar is not ‘*’){

S.push(newChar);

} else {

if (! S.stackIsEmpty){

S.pop();

}

}

read newChar

} //end while
P

ro
g
ra

m
 R

e
a
d
 in

p
u
t
lin

e
 a

n
d

c
o
rr

e
c
t
a
lo

n
g

T
h
e
 w

a
y

Can use the ADT stack without knowing the

implementation of the operations:

tempS.createStack();

While (!S.isEmptyStack()) {

S.getTopStack(ch);

S.pop();

tempS.push(ch);

}

// top of the stack tempS holds the first char of the line

// entered !!

P
ro

g
ra

m
 R

e
a
d
 in

p
u
t
lin

e
 a

n
d

c
o
rr

e
c
t
a
lo

n
g

T
h
e
 w

a
y

c
o
n
ti
n
u
e
d

class StackClass {

public:

StackClass();

StackClass(const StackClass & S); //copy constructor

~StackClass();

// stack operations

bool stackIsEmpty();

// determines whether the stack is empty.

// precondition: the constructor has been called

// postcondition: Returns TRUE if the stack was empty, otherwise returns FALSE

void push(stackItemType newItem);

// adds an item to the top of the stack

// precondition: the constructor has been called. newItem is the item to be

// added.

// postcondition: if insertion was successful, newItem is on top of the

// stack.

void pop();

// Removes the top of stack.

// precondition: the constructor has been called.

// postcondition: if the stack was not empty, the item that was added

// MOST RECENTLY is removed.

void getStackTop(stackItemType & topItem);

// Retrieves the top of the stack.

// If the stack was not empty, topItem contains the item

// that was added MOST RECENTLY.

private:

// belongs to implementation!

};

A
D

T
 S

ta
c
k
 s

p
e
c
 i
n
 C

+
+

Resembles too much C programming, since typedef is used.

Use templates (generic programming) instead

// header file; array based implementation

#ifndef _ARRAYIMPLSTACK_ // or use the directive #pragma once

#define _ARRAYIMPLSTACK_

#include <iostream>

using namespace std;

const int MAX_STACK = 100;

typedef char stackItemType;

class StackClass {

public:

StackClass();

StackClass(const StackClass & S); //copy constructor

~StackClass();

// stack operations

bool stackIsEmpty();

void push(stackItemType newItem);

void pop();

void getStackTop(stackItemType & topItem);

private:

stackItemType items[MAX_STACK]; // information hiding, only accessible throuhg public interface/contract

int top; // information hiding

};

#endif

Im
p

p
le

m
tin

g
 A

D
T

 S
ta

c
k
 i
n

 C
+

+
,P

a
rt

 1

Resembles too much C programming, since typedef is used.

Use templates (generic programming) instead

// implementation file arrayImplStack.cpp for the ADT Stack; array-based

//implementation

#include “arrayImplStack.h”

StackClass::StackClass(): top(-1) {}

StackClass::StackClass(const StackClass & S): top(S.top) {

for(int i=0; i<=S.top; i++){

items[i] = S.items[i];

}

}

StackClass::~StackClass() {}

bool StackClass::stackIsEmpty() {return bool (top<0);}

void StackClass::push(stackItemType newItem) {

if (top<(MAX_STACK-1)){

++top;

items[top]=newItem;

}

}

void StackClass::pop() {

if (!stackIsEmpty()) {

--top;

}

}

void StackClass::getStackTop(stackItemType& topItem){

if (!stackIsEmpty()){

topItem=items[top];

}

}

Im
p

p
le

m
tin

g
 A

D
T

 S
ta

c
k
 i
n

 C
+

+
,P

a
rt

 2

// a client program that uses stack(s)

// (i.e., an algorithm

// that uses a stack, actually two

//stacks)

#include “arrayImplStack.h”

#include <iostream>

using namespace std;

int main (){

stackItemType anItem;

StackClass S;

cin.get(anItem);

while (anItem!='\n'){

if (anItem!='*'){

S.push(anItem);

}else{

if (!S.stackIsEmpty()){

S.pop();

}

cin.get(anItem);

cout << "\n"<<"\n";

StackClass tempS;

while(!S.stackIsEmpty()){

S.getStackTop(anItem);

S.pop();

tempS.push(anItem);

}

// top of the stack tempS now contains

//the first char of the entered line

// you can print, for instance to the

//screen

while (!tempS.stackIsEmpty()){

tempS.getStackTop(anItem);

cout << anItem;

tempS.pop();

}

cout << "\n";

cout << "\n";

return 1;

}

C
lie

n
t

p
ro

g
ra

m
 o

f
S

ta
c
k
,

i.e
.
A

lg
o

ri
th

 w
h

ic
h

 u
s
e
s
 S

ta
c
k

A
D

T
 S

ta
c
k
 S

p
e

c
 in

 C
+

+
,

u
s
in

g
 t
e
m

p
la

te
s

Better yet: T & getStackTop(); // see Chapter 4 in

Drozdek

Does not belong to spec

spec

Implementing ADT Stack in C++

Client program of Stack,

i.e. Algorithm which uses Stack

Discussion of Uses of Stacks

edgser dijkstra: invented stacks to implement
recursively defined functions/programs

CA: stack frames used in function calls

visiting nodes in a tree

Ubiquitous! (see also Chapter 4 for more apps)

The end . This means read and study

Chapter 4 (emphasize pages 137-144) in Drozdek

(Review Chapter 1 in Drozdek)

