
Component Specialization∗

Gustavo Bobeff
Ecole des Mines

OBASCO Group - EMN/INRIA
rue Alfred Kastler - 44307
Nantes Cedex 3, France

Gustavo.Bobeff@emn.fr

Jacques Noyé
INRIA

OBASCO Group - EMN/INRIA
rue Alfred Kastler - 44307
Nantes Cedex 3, France

Jacques.Noye@emn.fr

ABSTRACT
Component-Based Software Development (CBSD) is an at-
tractive way to deliver generic executable pieces of program,
ready to be reused in many different contexts. Component
reuse is based on a black-box model that frees component
consumers from diving into implementation details. Adapt-
ing a generic component to a particular context of use is then
based on a parameterized interface that becomes a specific
component wrapper at runtime. This shallow adaptation,
which keeps the component implementation unchanged, is
a major source of inefficiency. By building on top of well-
known specialization techniques, it is possible to take ad-
vantage of the genericity of components and adapt their im-
plementation to their usage context without breaking the
black-box model. We illustrate these ideas on a simple com-
ponent model, considering dual specialization techniques,
partial evaluation and slicing. A key to not breaking en-
capsulation is to use specialization scenarios extended with
assumptions on the required services and to package com-
ponents as component generators.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—reuse
models; D.3 [Programming Languages]: Processors—
code generation, optimization, translator writing systems and
compiler generators

General Terms
Languages

Keywords
Component-Based Software Development, Partial Evalua-
tion, Program Slicing, Component Generator

∗This work was partially funded by the European Commis-
sion in the FET Open Domain of the IST Programme under
contract no. IST-1999-14191 (EASYCOMP - Easy Compo-
sition in Future Generation Component Systems).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM’04, August 24–25, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008 ...$5.00.

1. INTRODUCTION
We are at a point in history where software development is

changing of scale, switching from programming in the small
to programming in the large. Component-Based Software
Development [10, 21] is a major element of this trend. The
hope is to produce better-quality software faster and with
less effort by assembling prefabricated customizable com-
ponents. Component-based software development relies on
clearly distinguishing two roles in the production of software:
component producers build components for reuse while com-
ponent consumers create new applications by reusing com-
ponents. The strong decoupling between producers and con-
sumers relies on making the implementation of a component,
provided by the producer as a black box, out of reach of the
consumer. However, in order for the consumer to reuse a
component, an interface is provided by the producer. The
component interface describes the functionality or a set of
functionalities required or provided by the component, com-
monly known as the component services. The role of this
interface is to guide composition by rejecting, for instance,
incorrect compositions. This role can be seen from two main
points of view: a structural point of view (or interconnec-
tions) and a behavioral point of view (or interactions) [6,
21]. But, on top of this syntactic role, this interface also has
a semantic role, being transformed at composition time (at
least conceptually) into a wrapper. This wrapper encapsu-
lates the core of the component that can be either the related
implementation (source code) or the result of the transfor-
mation of the implementation (compiled code). Whereas the
implementation is a black box, the interface is a white box :
it can be modified in order to produce a wrapper adapted
to the specific usage context of the component.

A

B

C

PRODUCTION

interface

implementation

A

B

C

CONSUMPTION

C

B

C

B

construction packaging (delivery)
assembly/

configuration execution

repository application

Figure 1: CBSD: Standard approach

39

This approach, shared by all the industrial component in-
frastructures (e.g. [7, 20]), is represented in Figure 1. At
production time, the component interface, represented by
a hatched border, encapsulates the implementation, repre-
sented by a black box. At consumption time, the consumer
configures and assembles components, using the component
interfaces, to build a particular application. In the resulting
running application, while the interface is transformed into
a component wrapper (represented with a gray border), the
implementation remains unchanged (it is still the same ini-
tial black box, or a straightforward compilation of it). This
makes it possible to adapt components with respect to pre-
defined technical services (persistence, security,...) but only
results in a shallow adaptation of these components.

In this paper, we revisit and go deeper into the idea evoked
in [19] that program specialization can be applied to compo-
nent implementations while preserving the black-box model
of reuse inherent to components. The key is to give to the
producer, who has access to the details of the implemen-
tation, the means to identify meaningful specialization op-
portunities and to publish them as part of the component
interface. Specifically, we consider a combination of off-line
partial evaluation [13, 14] and slicing [17, 22] to prepare the
work at production time and package the components as
component generators. We suggest to describe the special-
ization opportunities as specialization scenarios [15]. The
scenarios must also take the possible usage contexts, here
configuration and assembly contexts, into account. As these
contexts are not known at production time, this takes the
form of assumptions on the possible specializations of the
services required but not provided by the component, in-
cluding the availability of configuration data and the useful-
ness of the services. At production time, the scenarios are
used to build the component generator. They are also made
part of the component interface. At consumption time, the
scenarios are used to select the components, actually compo-
nent generators, to assemble. The configuration and assem-
bly of these generators triggers the generation of the target
application. The generators interact to select the applica-
ble scenarios and generate, in a modular way and without
any help from the component consumer, the corresponding
specialized implementation code.

A

B

C A

PRODUCTION

construction
assembly/

configuration execution

B

C

B

C

B

C
Gen_A

Gen_C

Gen_B

packaging (delivery)

interface

implementation

spec. opport.

CONSUMPTION

repository
application

Figure 2: CBSD: an approach based on component
generators

To identify clearly the difference between the standard ap-
proach and our approach, let us contrast Figure 1 and Fig-
ure 2. In the former case, the interfaces are the only source
of adaptation (interfaces can be seen as wrapper generators)

whereas in the latter case the component generators (en-
tirely hatched boxes) make it possible to extend adaptation
to the implementation.

In summary, this paper shows how to integrate a combi-
nation of partial evaluation and slicing within component-
based software development in order to get a deeper adap-
tation of software components, and therefore slimmer and
faster component-based applications. The whole develop-
ment life cycle of a component is covered. The key points
are the introduction of assumptions capturing sensible spe-
cialization scenarios to be provided by required services,
and the packaging of components as component generators.
The architecture of a prototype implementing these ideas is
sketched.

The rest of this paper is organized as follows. Section 2
introduces the simple component model used for presenting
our approach. Based on this model, Section 3 explains how
specialization opportunities are described. The generation
of the specialized components is described in Section 4. Sec-
tion 5 discusses related work and Section 6 introduces future
work and concludes.

2. COMPONENT MODEL
In order to illustrate our proposal, let us capture the ba-

sic features of a component model in the following simple
model. We consider a component as an independently de-
ployed unit defined by both an interface representing an ex-
plicit contract of required and provided services, and an im-
plementation of the provided services. For the sake of sim-
plicity, we consider that a service has a single entry point.
At the interface level, this entry point is represented by a
function signature. Figure 3 shows the component Compu-
tationUnit designed to perform basic computations typically
found in a calculator. The service interfaces are represented
as triangle-ended boxes. Required services come into the
interface border (e.g. AdderI in the component Multiplier),
while provided services leave the interface border (e.g. Mul-
tiplierI in the component Multiplier). The implementation
is presented as a black box inside a component interface (e.g.
MultiplierImpl).

Component assembly is performed by connecting compo-
nents, more precisely by connecting provided services of one
component to required services of another component. Con-
sumers can build hierarchical architectures by connecting
two kinds of components: primitive components and com-
pound components. A primitive component is built from an
interface definition and an implementation block (e.g. Adder
+ AdderImpl), while a compound component is built by
connecting other primitive or compound components (e.g.
ComputationUnit). Components included in an enclosing
compound component are called subcomponents (e.g. Adder,
Multiplier and Power). A compound component has also
an associated implementation that implements the provided
services.

2.1 Component Description Language
Producers and consumers use a component description

language (CDL) to describe the architecture of a component-
based application as a set of port interfaces and component
descriptions. A port interface is a named set of services
grouped according to their intended use. A component de-
scription declares the services, required or provided by the
component, as ports. A port associates an identifier to a

40

Adder

AdderImpl

AdderI: p_adder

Multiplier Power

ComputationUnit

AdderI: p_helper

MultiplierImpl

MultiplierI:p_multMultiplierI:p_mult

PowerImpl

PowerI:p_power

ComputationUnitI:p_cUnit

ComputationUnitImpl

Figure 3: Component Model: Computation Unit example

(a) Port Interfaces

interface AdderI {
int add(int x, int y);

}
interface MultiplierI {
int multiply(int x, int y);

}
interface PowerI {
int raise(int base, int exp);

}

(b) Component descriptions

component Adder {
provides AdderI p adder;

}
component Multiplier {
requires AdderI p helper;

provides MultiplierI p mult;

}
component Power {
requires MultiplierI p mult;

provides PowerI p power;

}

Figure 4: CDL: Description of the subcomponents
in the component ComputationUnit

port interface, which makes it possible to have several oc-
currences of a single port interface in the same component.
The description of a compound component includes the
references to its subcomponents, and the port connections
for connecting subcomponent ports together. For instance,
Figure 4 gives the port interfaces and component descrip-
tions corresponding to the subcomponents of the component
ComputationUnit of Figure 3. In the example, the decla-
ration included in the component description Multiplier,
shown in Figure 4(b), means that Multiplier provides the
services specified by the port interface MultiplierI under
the name p mult and requires the services specified by the
port interface AdderI under the name p helper. Looking
at the description of the compound component Computatio-
nUnit , shown in Figure 5, we observe that, in addition to
the provided service clause, the component also includes two

clauses, contains and connects. The clause contains lists
its subcomponents. The clause connects declares how the
ports of the subcomponents are connected to each other and
to ports of the enclosing component. Each subcomponent is
an instance of the given component type.

(a) Port Interfaces

interface ComputationUnitI {
int add(int x, int y);

int subtract(int x, int y);

int multiply(int x, int y);

DivResult divide(int x, int y);

int raise(int base, int exp);

}

(b) Component descriptions

component ComputationUnit {
provides ComputationUnitI p cUnit;

contains

Adder adder,

Multiplier multiplier,

Power power;

connects

adder.p adder to multiplier.p helper,

multiplier.p mult to power.p mult;

}

Figure 5: CDL: Component description of the com-
ponent ComputationUnit

2.2 Component Implementation
The component description (including port interfaces) and

its implementation are associated through a configuration
file provided by the component producer (see section 4.1).
This makes it possible to decouple architectural issues from
implementation issues and, in particular, to use different
implementation languages. This has to be compared with
a language such as ArchJava [3] where a single language is
used for the architectural description and the implementa-
tion of a component. Moreover, in ArchJava, the description
and the implementation cannot be defined separately: the
implementation is not a black box any longer. To facili-

41

tate prototyping, we have however made it easy to choose
Java as the implementation language. It suffices to follow
simple conventions that can be checked automatically: the
port interfaces directly correspond to Java interfaces; there
is a Java class, called the component class, per component
declaration; a component class implements every interface
of the provided services; each requires declaration adds to
the component class a field of the same Java type as the re-
quired interface; in a compound component, each provides
declaration of each subcomponent adds to the component a
field of the same type as the provided interface, etc. The
implementation of a compound component can directly use
the service provided by its subcomponent. This is repre-
sented by dashed lines in Figure 3 (these lines do not belong
to the component description).

3. SPECIALIZATION SCENARIOS
The objective of a component producer is to build a

component applicable to the widest possible range of con-
texts (without forgetting that maximizing reuse minimizes
use [21]). This injects a high dose of genericity into com-
ponents, which, in the context presented in Section 1, is
a major source of inefficiency. For instance, the fact that
the implementation is not stripped of its unused services (or
part of services) results in fat software. Component config-
uration (the setting at assembly time of configuration pa-
rameters) corresponds to a useless layer of interpretation at
runtime. . . However, as part of the development of a generic
component, the producer, who has access to all the details
of the component implementation, can identify parts of the
implementation that may be optimized under specific con-
ditions. For instance, let us consider a possible implementa-
tion of the component Multiplier as shown in Figure 6. In
the implementation of the service multiply, particularly in
the conditional and loop structure, we observe that the pa-
rameter x is used in both the test of the conditional and the
test of the loop. If the value of x is known at specialization
time, then it is possible to specialize the conditional and
loop by partial evaluation. Similar reasoning can be applied
to the input parameter y.

class MultiplierImpl implements MultiplierI {
AdderI p helper;

Multiplier(AdderI adder) {
this.p helper = adder;

}

int multiply(int x, int y) {
int out = 0;
if (x >= 0) {
for (int i = 1; i <= x; i++)

out = helper.add(out, y);
} else if (y >= 0) {
for (int i = 1; i <= y; i++)

out = helper.add(x, out);
} else {...}
return out;

}
}

Figure 6: Multiplier: Implementation.

specialization MultiplierS
specializes MultiplierI {
int multiply(int x, int y) {
scenario S multiply(S x, S y); //(1)
scenario S multiply(S x, D y); //(2)
scenario S multiply(D x, S y); //(3)
scenario S multiply(D x, D y); //(4)
scenario D multiply(S x, S y); //(5)
scenario D multiply(S x, D y); //(6)
scenario D multiply(D x, S y); //(7)
scenario D multiply(D x, D y); //(8)

}
}

Figure 7: Multiplier: Exhaustive list of specializa-
tion scenarios.

Thus, it makes sense that the producer exposes these spe-
cialization opportunities to the consumer, in order to pro-
vide more efficient alternatives to the generic version of the
component. To this end the producer describes such oppor-
tunities by defining specialization scenarios. This is done
by annotating component services with specialization infor-
mation according to the aforementioned specialization tech-
niques, namely partial evaluation and slicing. A scenario can
be seen as a constraint defining the dependencies between
the input and the output parameters of the component ser-
vices. For instance, the producer can define a scenario by
constraining the parameters with binding-time annotations,
that is, static parameters as S and dynamic parameters as
D. For example, D multiply(D x, S y) indicates that there
exists a specialization opportunity when the input param-
eters of the service multiply are dynamic and static, re-
spectively, while the return value is dynamic. Note that the
parameters can be of object type (e.g. the type of return
value of service divide in Figure 5), then also partially-static
declarations can be possible.

As specialization opportunities are strongly tied to a par-
ticular implementation, a scenario cannot be defined with-
out taking the corresponding implementation into account.
Moreover, the scenarios are only written in terms of services
specified in the port interfaces simply because port inter-
faces are the only information available at assembly time.
Indeed, any reference to implementation details would break
the black box.

In our context, the producer extends the component de-
scription with the specialization scenarios. The producer
encloses the scenarios, related to a given port interface, into
a specialization description. Since the producer does not
know the concrete usage contexts of the component, then a
possibility would be to include all the combinations on the
binding times of the service parameters. For example, the
specialization description MultiplierS, shown in Figure 7,
encloses all the specialization scenarios that can be defined
for the component Multiplier with respect to the port in-
terface MultiplierI. This would mean that the component
generator could generate all the possible specializations of
the component. Such a systematic policy is not realistic in
practice due to potential negative effects on both the time
spent at the construction and the size of such a component
generator.

To avoid these problems, the producer may reduce the

42

specialization MultiplierS
specializes MultiplierI {
int multiply(int x, int y) {
scenario S multiply(S x, S y); //(1)

scenario D multiply(S x, D y); //(6)

scenario D multiply(D x, S y); //(7)
}

}

Figure 8: Multiplier: Reduced list of specialization
scenarios.

number of specialization scenarios by considering their con-
sistency and benefit in terms of specialization opportunities.
Firstly, the scenario (2) in Figure 7 is considered inconsis-
tent as we observe in the implementation that it is not pos-
sible to return a static value when at least one of the input
parameters is dynamic. The same can be said of scenarios
(3) and (4). Secondly, the scenario (5) is redundant with
(1) as the return parameter can be lifted to dynamic if re-
quired. It can therefore be removed (we shall come back to
this point in Section 3.1). Thirdly, the scenario (8) is also
excluded since it does not lead to any kind of specialization.
Finally, the producer considers only the scenarios (1), (6),
and (7) as making sense (see Figure 8).

3.1 Making assumptions
The producer of Multiplier does not have access to the

implementation of the component that provides the ser-
vices add, consequently she does not know the specializa-
tion scenarios available at assembly time. This informa-
tion would be useful for the producer to define scenarios
that maximize specialization opportunities. For instance,
in the implementation shown in Figure 6, it would be use-
ful that the service add return a static value to obtain a
better specialization of the loop structure. Therefore, even
though it is not possible to reason in terms of concrete
specialization scenarios for the required services, the pro-
ducer should be able to make assumptions about them.
For instance, the producer of Multiplier can define a sce-
nario S multiply(S x, S y) that assumes the availability
of the scenario S add(S x, S y). In this case, the as-
sumption only takes into account the return value of the
service add, given that its input parameters can be in-
ferred from the propagation of the binding times of the
input parameters of the service multiply throughout the
code. One problem here is that assuming at least one
static parameter may, if the parameter turns out to be dy-
namic in the provided scenarios, invalidate the enclosing
scenario. For instance, no specialization associated with the
scenario S multiply(S x, Sy) can take place if the scenario
S add(S x, S y) is not available, not even specializations
that concern computations of the service multiply based
only on x and y (e.g. specialization of the conditional test).
To avoid this problem, the producer may include other sce-
narios by relaxing the assumptions. Figure 9 shows the list
of specialization scenarios that include assumptions with re-
spect to the required service add. The scenario (1’) is the
relaxed version of the scenario (1). Compared to (1), the

specialization MultiplierS
specializes MultiplierI {
int multiply(int x, int y) {
scenario S multiply(S x, S y) //(1)
in AdderI assumes { S add(S x, S y)};

scenario D multiply(S x, S y) //(1’)
in AdderI assumes { D add(S x, S y)};

scenario D multiply(S x, D y) //(6)
in AdderI assumes { D add(S x, D y)};

scenario D multiply(D x, S y) //(7)
in AdderI assumes { D add(D x, S y)};

}
}

Figure 9: Multiplier: Specialization scenarios with
assumptions.

return value of the service multiply is relaxed to dynamic
due to the propagation of the return value of the service add.
For the scenarios (6) and (7) there is no benefit to make
assumptions on the staticness of the return value of the ser-
vice add. In both cases the service call will be residualized
because one of the parameters is dynamic.

3.2 Slicing Components
Slicing automatically decomposes a program by analyzing

its data and control flow, and the dependencies between its
statements [22]. Slicing can be seen as complementing par-
tial evaluation in the sense that backward slicing propagates
backward information on the output of a program whereas
partial evaluation propagates forward information on the in-
put of the program [17]. Actually, the integration of partial
evaluation and backward slicing is very natural as soon as
partial evaluation is made use sensitive [11]. This is further
discussed in Section 3.3.1. From a user point of view, a new
annotation K (for Kill) is introduced. This annotation, to be
interpreted as “neither static nor dynamic” is used to define
the slicing criterion by telling which part of a service output
should be sliced away.

At assembly time, it may turn out that a component pro-
vides more services than really needed. A component im-
plementation may not use (or at most partially) some of the
services included in a port interface of a required port. In
this case, the unused services (or part of them) can be sliced
away according to specialization scenarios defined explicitly
to guide the slicing process.

Let us consider the service divide provided by the com-
ponent ComputationUnit shown in Figure 10. This service
not only returns the quotient value, but also returns the re-
mainder value and an error value (i.e. to check the division-
by-zero error). Now, let us also consider a target usage con-
text where only the remainder value is useful. In this case,
the producer can specify a specialization scenario with the
quotient declared as useless while the remainder and error
are declared as useful. Consequently, only the computa-
tions associated with the calculation of the remainder value
will be residualized in the resulting specialized implementa-
tion. The description of such a scenario needs to reference
the fields of the returning object, as shown in Figure 11.

43

class DivResult {
int quotient; int remainder; boolean error;

}

class ComputationUnitImpl
implements ComputationUnitI {
...
int add(int x, int y) {
return adder.add(x, y);

}
int multiply(int x, int y) {
return multiplier.multiply(x, y);

}
int subtract(int x, int y) {

return this.add(x,this.multiply(-1, y));
}
int raise(int base, int exp) {

return power.raise(base,exp);
}
...

...
DivResult divide(int x, int y) {
...
if (y != 0) {
error = false;
if (x >= 0) {
if (y > 0) {
quotient = 0;
while (x >= y) {
quotient = this.add(quotient, 1);
x = this.subtract(x, y);

}
remainder = x;

} else { ... }
} else { ... }

} else error = true;
return new DivResult(quotient, remainder, error);

}
}

Figure 10: ComputationUnit: Implementation.

This scenario purely concerns slicing, but it is possible to
combine both specialization techniques annotating some of
the parameters static. Note also that fully unused services
are automatically sliced away as component generators only
generate code for used services.

specialization ComputationUnitS
specialize ComputationUnitI {
DivResult divide(int x, int y) {
scenario (K quotient, D remainder, D error)
divide(D x, D y);

}
}

Figure 11: ComputationUnit: Specialization scenarios
for slicing.

3.3 Defining Scenarios
Both (off-line) partial evaluation and slicing involve com-

plex program analysis. Such an analysis is necessary for
identifying specialization opportunities in order to create the
scenarios as well as for applying them. Since it is hard and
error-prone to do manually we assume that the producer is
provided with a proper tool to help with this task, the an-
alyzer. This analyzer can also be used to build the assump-
tions. The analyzer is applied to verify the consistency of
scenarios for provided services with respect to assumptions
on the required services. It can be used to complete partial
scenarios, for instance to derive the binding time of the re-
turn value of a provided service from the binding times of
its input arguments. Finally, it also helps the producer to
assess the benefit of some scenarios and improve the imple-
mentation. That is, new or better specialization opportu-
nities may be possible if the implementation (programming
style) is modified accordingly.

3.3.1 Integrating Slicing and Partial Evaluation
The integration of partial evaluation and backward slicing

is very natural as soon as the binding-time analysis is made
use sensitive [11].

The idea of use sensitivity is to allow different uses of a
given variable definition to have different binding times. In
order to do so, binding-time analysis is divided in two steps.
A first step propagates forward use binding times, corre-
sponding to “standard” binding times with a basic domain
UBt = {S, D}. A second analysis propagates backwards the
use binding times computed during the first step in order to
determine definition binding times. The definition binding
time of a location (a variable, an object field. . .) can be seen
as a summary of its uses. It belongs to a new domain defined
as the powerset of the UBt domain. The greatest element of
the associated lattice {S, D} corresponds to a location that
has both static and dynamic uses. The smallest element {}
corresponds to a location that has no use. The definition of
such a location can therefore be considered as dead code and
the uses involved in this definition ignored, leading in turn
to other dead definitions. Backward slicing of a service is
then simply obtained by not including in the use summaries
the uses corresponding to the part of the return expression
to be sliced away.

A drawback of this approach is that slicing takes place af-
ter an important part of the binding-time analysis has been
done and cannot be used to prune the analysis. Another
alternative is therefore to perform slicing first, which cor-
responds to performing the backward analysis mentioned
above on a program with all constructs annotated dynamic.
Of course, it can make sense to implement a specific analysis,
but this analysis is simply a specialization of the binding-
time analysis, no additional specific technology is required.

4. FROM COMPONENTS TO GENERATORS
Packaging components with specialization scenarios is key

to making component specialization compatible with a black-
box model. Let us first consider a simple case where all the
components are implemented using the same language, de-

44

class GenMultiplier extends Generator
implements GenMultiplierI{
GenAdderI gen p helper;
String[] listOfScenarios = ...

GenMultiplier(GenAdderI helper){
this.gen p helper = helper;

}

String gen multiply(String aScenario,
Hashtable[] staticValues,
Hashtable[] dynamicParams){
...
// case aScenario do {
// ...
// "D multiply(D x, S y)":
// return "D multiply Dx 3y(x)";
// (in the case the static value
// of parameter y is 3)
// }
...

}

String S multiply Sx Sy(...) {
...
}
...

...
String D multiply Sx Dy(

Hashtable[] staticValues,
Hashtable[] dynamicParams){

String stream;
int x = ... // bound to the value stored

// in staticValues
stream = "int D multiply " + x + "x Dy";
stream += "(" + ... unfolding of dynamicParams ...

+ ")";
stream += "int output = 0";
if (x >= 0) {

for(int i=1; i<= x; i++)
stream += "output = spc p helper."

+ gen p helper.gen add(
"D add(S x, D y)",
staticValues,
dynamicParams);

} else {
stream += "if (y > 0) { ..."

}
stream += "return output;"
return stream;

}
...

}

Figure 12: GenMultiplier: Component generator of component Multiplier (simplified version).

livered as source code (or even high-level bytecode). We as-
sume that each component consumer has access to the same
analyzer and specializer. Then, the assembly can be ana-
lyzed and specialized as a whole, with the analysis guided
by the specialization scenarios. The main point here is that
the consumer does not need to care about the details of
the analysis, which simply replays the analysis performed
at production time to build and validate the specialization
scenarios. An assembly could be rejected because some as-
sumptions cannot be fulfilled, but this would relate to com-
ponent interfaces available to the consumer.

This case can be refined and its hypotheses relaxed in the
following ways. As a first step, each packaged component
could include one (or several) annotated version(s) of the
implementation, corresponding to the specialization scenar-
ios (the analyzer is no longer needed) as well as a specific
specializer. This makes it easier to deal with several imple-
mentation languages, although a shared specializer interface
still has to be agreed upon. The problem is that this makes
packaged components heavy-weight. As a second step, a
component can be packaged as a component generator. As
a first approximation, a component generator takes as input
concrete values for the component scenarios and produces
the corresponding specialized component. Such a compo-
nent generator comprises at the same time the initial com-
ponent, its specialization opportunities, and specialization
technology.

Instead of assembling and configuring components per se,
a component consumer assembles component generators and
provides them with configuration values. Once a concrete
usage context has been established, the component gener-
ators interact in order to build the specialized application.
This interaction involves two phases, negotiation and spe-
cialization. In the first phase, component generators ne-

gotiate about the availability of required services (see Sec-
tion 4.2). This phase finishes when all the requests for pro-
vided services have been satisfied throughout the component
architecture. In the second phase, the component genera-
tors interact to produce the specialized version of services
(see Section 4.3), using the information gathered in the ne-
gotiation phase.

4.1 Generating Component Generators
Component generation can be interpreted or compiled

(there is nothing specific to components here). In the
first case, a generic generator builds the component from a
binding-time annotated abstract syntax tree 1 and concrete
specialization values. In the second case, a specific gener-
ator, which can be seen as a specialization of the generic
generator with respect to the annotated abstract syntax is
generated by a hand-written component generator genera-
tor [4], which takes as input the abstract syntax tree. In
both cases, the component generator can be compiled to be
delivered as compiled code. In the literature, program gen-
erators usually produce source code, but producing bytecode
or even native code can be envisioned if source code should
be hidden to the component consumer for security reasons.

In the following, we assume a component generator gen-
erator (CGG) approach but the ideas would apply to the
case of a generic generator as well. To illustrate what a
component generator looks like, let us take the component
implementation Multiplier and its specialization scenarios
shown in Figure 6 and Figure 9, respectively. The input of
the CGG is an annotated version of the services for each
specialization scenario, created by the analyzer. The CGG

1We are talking about binding times for the sake of simplic-
ity. We actually use an action tree [5].

45

creates one method, called service generator , for each an-
notated version. A service generator is responsible for gen-
erating a specialized version of the service based on the us-
age context passed through its parameters. The CGG uses
the binding-time information to define the code of the ser-
vice generator as follows: static constucts are simply copied
into the body of such a method since it should be evalu-
ated when the service generator is run, whereas dynamic
constructs are included as strings in order to be residualized
when the service generator is run. The set of the service
generators are collected into a class that represents the im-
plementation of the component generator, for example the
class GenMultiplier in Figure 12.

Each component generator relies on some other compo-
nent generators to generate specialized versions of the re-
quired services. For example, an instance of GenMultiplier
will rely on an instance of GenAdderI, gen p helper in Fig-
ure 12, to provide a proper version of the AdderI service.
Both interfaces GenAdderI and GenMultiplierI, shown in
Figure 13, define a method (gen add and gen multiply,
respectively) called here the service generator dispatcher.
They are generated automatically at production time as ex-
plined in Section 4.4. The component generator class imple-
ments this method to provide the signature of the special-
ized version of a given service, based on the specialization
scenarios.

4.2 Negotiation between Component Genera-
tors

The question here is what happens if a component gener-
ator asks another generator for a service generator that does
not exist because the corresponding scenario was not con-
sidered at production time? This can be fixed if there exists
a smaller scenario with respect to the partial order obtained
by extending the partial order defined on binding times (�
with S � D) to scenarios, using the usual covariant rule on
the return value and contravariant rule on the arguments.
Similarly to subtyping, a scenario S1 can replace a scenario
S2 if S1 � S2, i.e. if the arguments of S1 are equal or more
dynamic than the arguments of S2 and the return value of
S1 is equal or more static than the return value of S2. The
selection of a concrete scenario for replacing an unavailable
assumed scenario tries to maximize specialization by select-
ing one of the greatest concrete scenarios smaller than the
assumed one, i.e. the one with the most static arguments
with respect to the assumed scenario. Binding-time mis-
matches between a static assumed argument and a dynamic

interface GenAdderI {
String gen add(String aScenario,

Hashtable[] staticValues,
Hashtable[] dynamicParams);

}

interface GenMultiplierI {
String gen multiply((String aScenario,

Hashtable[] staticValues,
Hashtable[] dynamicParams);

}

Figure 13: Generator interfaces

provided argument, or between a dynamic assumed return
value and a static provided return value, are solved by lifting
static values to dynamic. It is also possible to replace a K in
the return parameter by an S or a D.

class AdderImpl implements AdderI {
int add(int x, int y) {
return x + y;

}
}

specialization AdderS specializes AdderI {
int add(int x, int y) {
scenario S add (S x, S y);

}
}

Figure 14: Adder: Implementation and Scenarios.

To illustrate this situation, let us consider the implemen-
tation of Adder and the specialization scenario in Figure 14.
Figure 15 shows the negotiation between the component
generators GenAdder and GenMultiplier. The component
generator uses the method negotiate inherited from the class
Generator. This method implements the algorithm of sce-
nario substitution described above. Note that both gen-
erators include one additional scenario, D add (D,D) and
D multiply(D,D), respectively. This scenario, called iden-
tity, is included by the GCC. The systematic inclusion of
this identity scenario guarantees that component genera-
tion will always be possible (by systematically generating
generic components). The interaction takes place as fol-
lows: (1) given a usage context associated with the sce-
nario D multiply(S,D), (2) the selection algorithm checks
whether the assumed scenario D add(S,D) is provided by
the component Add. Since no scenario satisfies these con-
straints, the algorithm searches for a smaller scenario and
selects D add(D,D) (3). The binding-time mismatch on the
argument x is solved by lifting the parameter x of the ser-
vice add when called from the service multiply. In this case,
the scenario D add(D,D) satisfies the assumption (4), and
the scenario initially required from GenMultiplier can be
provided (5).

Due to the ordering established between scenarios, there
is no scenario smaller than the scenario S add(S,S), even
the identity scenario, D add(D,D). A smaller scenario should
keep a static return value and have at least one dynamic
argument, but those scenarios are rejected by the ana-
lyzer (see Section 4). What happens then when the sce-
nario S add(S,S) is required, for instance by the scenario
S multiply(S,S), and it is not actually provided by Adder?
As there is no smaller scenario, the specialization must back-
track and find an alternative to S multiply(S,S). As there
is no smaller scenario either, it is then up to the caller of
GenMultiplier to consider an alternative. An issue here is
to organize the search in order to explore the most static
scenarios first. When two or more provided scenarios are
smaller than an assumed one, a possible heuristic consists
of taking into account the number of static parameters, in-
cluding the return value, in order to improve specialization.
In the case where this number is the same, the selection
is done based on the position of the first static parame-

46

D add(S,D) D multiply(S,D) D add(D,S) D multiply(D,S)

D add(D,D) D multiply(D,D)

S multiply(S,S)S add(S,S)

D add(S,S) D multiply(S,S)

S add(S,S)

D add(D,D)

D add(D,S)D add(S,D)

negotiate("D add(S,D)") { GenAdderI

(1)(2)

(3)

(4)

scenario initially
required from Multiplier

scenarios actually
provided by Multiplier

GenAdder GenMultiplier

}

negotiate("D multiply(S,D)") {

}

not includednot included

(5)

D add(S,S)

not included

Figure 15: Negotiation process.

ter. For instance, if the search space includes the scenarios
D add(S x, D y) and D add(D x, S y), the fist scenario is
selected. The quantification of the specialization associated
with each service parameters is considered as future work.

4.3 Performing the Specialization
To illustrate how the specialization phase takes place, we

consider the case where the component ComputationUnit is
used to translate numbers from the binary to the decimal
system. This operation can be implemented as the addition
of powers of 2. It then makes sense to consider a specializa-
tion scenario for the service raise (see Figure 10) since the
base parameter is static. The computation of the service
raise provided by the component ComputationUnit is ac-
tually performed by the service raise of component Power.
For the sake of illustration we also consider the implementa-
tion and the specialization scenarios of the component Power
as shown in Figure 16.

class Power implements PowerI {
int raise(int base, int exp) {
int output = 0;
if (exp == 0) return 1;
if (exp == 1) return base;
for (int i=1; i < exp, i++){
output = output

+ multiplier.multiply(base,base);
}
return output;

}
}

specialization PowerS specialize PowerI {
int raise(int base, int exp) {
scenario S raise (S base, S exp)
in MultiplierI assumes S multiply(S x, S y);

...
scenario S raise (D base, S exp)
in MultiplierI assumes D multiply(D x, D y);

}
}

Figure 16: Power: Implementation and Scenarios.

Firstly, the consumer of the component ComputationUnit
selects a specialization scenarios and gives concrete

values for the static parameters, in our example
D raise(S base, D exp) and base = 2, respectively. Sec-
ondly, as described in Section 4.2, the component gen-
erators negotiate to know whether the assumed scenarios
are available. Figure 17 shows the negotiation between
the generators GenAdder, GenMultiplier, GenPower, and
GenComputationUnit. In this example, no backtracking is
needed. This is because all the assumed scenarios have been
either included in the required services, or replaced by a
smaller one. Thirdly, the specialization of the involved ser-
vices takes place. The component generator creates a class
that contains the specialized versions of the services by prop-
agating the concrete values. Figure 18 shows the resulting
specialization for the component ComputationUnit.

For the time being, the initial structure of a compound
component remains in the specialized component. This can
change in the future when component fusion is introduced
(see Section 6). But, by default, the interfaces are not re-
tained. This may sometime be an issue as far as external
interfaces are concerned. For instance, in the case where
a specialized component is generated in order to replace
a generic version of the component. Similarly to the spe-
cialization classes approach presented by Volanschi [24], an
adapter is then needed to relate the published interfaces to
the specialized implementations of the services. Since a sin-
gle service description may relate to several specialized ver-
sions, the adapter can be seen as a switch that selects the
proper specialized version based on the usage context.

4.4 Development Tool
Based on the idea presented in this paper, we are cur-

rently working on the implementation of a development tool
depicted in Figure 19. This development tool interacts with
the producer and consumer through a GUI implemented
as a plug-in integrated to the programming environment
Eclipse [1]. At production time, the producer builds a com-
ponent by writing the component description, the imple-
mentation and the specialization scenarios. Also, she can
select component generators from the Repository to build
compound components. This information is written in a
configuration file, as mentioned in Section 2.2. Figure 20
shows the configuration file of the compound component
ComputationUnit. This gives the name of the generator
class, the name of the package where the component gener-
ator will be stored in, which of the classes involved in the

47

GenAdder GenMultiplier GenPower GenComputationUnit

?:"D add(D,S)"

!:"D add(D,D)"

?:"D multiply(D,S)"

!:"D multiply(D,S)"

?:"D raise(S,D)"

!:"D raise(S,D)"

Figure 17: ComputationUnit: Scenario negotiation

class SpecAdder {
int D add Dx Dy(int x, int y) {
return x + y;

}
}

class SpecPower {
SpecMultiplier specMultiplier;
...
int D raise 2base Dexp(int exp) {
int output = 0;
if (exp == 0) return 1;
if (exp == 1) return 2;
for(int i = 1; i <= exp, i++)
output = output

+ specMultiplier.D multiply 2x Dy(2);
return output;

}
}

class SpecMultiplier {
SpecAdder specAdder;
...
int D multiply 2x Dy(int y) {
int output = 0;
output = specAdder.D add Dx Dy(output, y);
output = specAdder.D add Dx Dy(output, y);
return output;

}
}

class SpecComputationUnit {
SpecAdder specAdder;
SpecMultiplier specMultiplier;
SpecPowed specPower;
...
int D raise 2base Dexp(int exp) {
return D raise 2base Dexp(exp);

}
...

}

Figure 18: ComputationUnit: Specialization result.

implementation is the component class, the names and loca-
tions of the packages that contain the component generator
of the subcomponents, etc. The CDL compliance of the con-
figuration file is verified by the CDL Processor. The CDL
Processor also checks that the component implementation
conforms to the component description. Once the compo-
nent information has been checked, the Analyzer analyzes
(and annotates) the component implementation using the
information expressed in the specialization scenarios. In our
case, the analyzer relies on a constraint-based approach, and
uses REQS [2] as the constraint solver. The annotated com-
ponent implementation is taken by the component generator
generator in order to produce the corresponding component
generator. The component generators are stored in compo-
nent repositories, which are handled by a Repository man-
ager. At consumption time, the consumer chooses a compo-
nent generator from a component repository and provides
the usage context by telling which of the provided scenarios
will be used and by giving the corresponding specialization
values. The Coordinator is responsible for triggering the
specialization and retrieving the data produced by the dif-
ferent component generators.

5. RELATED WORK
Black-box specialization was first proposed by Schultz

in [19]. The basic assumption of this work is the same as

ours: a component is a black box. In order to be able to
specialize a component, its producer should have specified
specialization opportunities and published them in the com-
ponent interface. Some implementation ideas are sketched
in the context of the JavaBeans, where we can find tracks of
some of the solutions we have presented here. In particular,
the propagation of configuration information and special-
ization opportunities can be related to the propagation of
assumptions in our proposal, and the notion of conflict de-
tection during the propagation can be related to scenario
substitution.

The module-based language proposed by Le Meur et
al. [16] allows a developer to declare specialization scenarios
associated with procedures of modules defined in a target
program written in C. Even though a scenario may depend
on scenarios defined in different specialization modules, the
notion of assumption does not exist. Instead, a specialization
module compiler verifies the correct referencing of scenarios
across specialization modules.

The specialization techniques described here have been
combined in a component setting, based on an extension on
the CORBA Component Model (CCM), by Hatcliff et al. [8].
Various forms of slicing on the component dependency graph
can be used to reason about the system design. A form of
partial evaluation is also used to obtain projections of the
CCM designs [9]. Specialization is applied at another level

48

implementation
[Java]

port interface
[CDL]

specialization scenarios
[CDL]

configuration file
(xml)

GUI
(Eclipse’s

plugin)

CDL processor

Parser
[SableCC]

Implementation
Checker

[SableCC]

Graphical Editor
[JHotDraw]

AST Manipulator
[Eclipse’s Java

Development Tooling]

Constraint Solver
[REQS]

Component Generator
Generator (cogen)

[Java]

Coordinator
[Java]

configuration file
(xml)

usage context
(specialization scenarios

and
specialization values)

producer

consumer

Analyzer
[Java]

Component Generator
(generating extension)

[Java]

Component Generator
(generating extension)

[Java]

repository

Repository Manager
[Java]

Application
[Java]

Application
[Java]

Application
[Java]

Development Tool

Figure 19: Development Tool

<component name="ComputationUnit"
file="computationUnit.cdl"
generatorName="GenComputationUnit"
output="genComputationUnit.jar">

<implementation main="ComputationUnit.java">
<source>ComputationUnit.java</source>
<source>ComputationUnitI.java</source>

</implementation>
<subcomponent name="adder"

file="genAdder.jar"
location=".">

<provides port="p adder" type="AdderI.java">
</subcomponent>
<subcomponent name="multiplier"

file="genMultiplier.jar"
location=".">

<requires port="p helper" type="AdderI.java">
<provides port="p mult" type="Multiplier.java">

</subcomponent>
<subcomponent name="power"

file="genPower.jar"
location=".">

...
<specialization name="ComputationUnitS"

file="computationUnitS.cdl"/>
...

</component>

Figure 20: ComputationUnit: Configuration file.

of component development.
A limited form of partial evaluation has also been used

for configuration purposes in Koala [23], a component model
dedicated to product lines. But specialization is only applied
superficially to the component connectors.

Parameterised contracts, introduced by Reussner in [18],
map required and provided services of components. They
can be used to compute the functionality a component really
needs or the functionality provided by the component that
is really used. This approach is presented as a generaliza-
tion of interoperability checks between components in order
to enhance the component reusability. Although parame-
terised contracts can be applied to dynamically recompute
a component interface, the component implementation re-
mains unchanged. However, parameterised contracts could
be used to perform component slicing at the implementa-

tion level since they gather information about the requires-
provides relations.

6. CONCLUSION
This work is at an early stage and much remains to be

done. We are currently working on a first version of the
prototype making it possible to experiment with the whole
process and more interesting applications. This first version
is based on a minimal component implementation language,
namely Featherweight Java [12], with a fairly straightfor-
ward binding-time analysis. In particular, we do not con-
sider class polyvariance (all the instances of the same class
have the same binding time). Also, only the services are
polyvariant, not the methods within a component imple-
mentation. We hope that our architecture, through the use
of Eclipse and a contraint-based analysis, will make it possi-
ble to improve the quality of the analysis without too much
effort.

We expect further work on applications to show us that
our current definition of scenarios is not sufficiently struc-
tured and should be revised, with the possibility of link-
ing scenarios corresponding to different port interfaces. An
interesting way to link scenarios would be to complement
port interfaces with protocols describing valid service call
sequences. This would bring our simplistic component lan-
guage closer to a real component language (one may ar-
gue that such a language does not exist yet). We have
also mentioned the possibility of switching between a black-
box model and an architectural view of components. This
leads to attaching specialization scenarios to an architecture
rather than to a component. This is important in order
to deal with Software Product Lines, a major application
of CBSD. Finally, dynamically reconfigurable architectures
could benefit from runtime specialization.

With respect to basic specialization technology, two is-
sues still to be considered are means to define the quality
of a scenario and the introduction of structure (i.e. class or
component) fusion. The first point should give the compo-
nent producer the possibility of at least ordering the different
scenarios. This would help improving the quality of an as-
sembly when several specializations can be considered. The
second point refers to modifying the structure of the pro-

49

gram by merging classes (within an atomic component) or
components. This would be very useful in order to eliminate
indirections due to component wrappers (typically used to
extend components with technical services, including remote
communication).

To conclude, we have shown that, by building on top of
well-known specialization techniques, it is possible to take
advantage of the genericity of components and still adapt
their implementation to their usage context without break-
ing their black-box model of reuse. A key to not break-
ing encapsulation is to use specialization scenarios extended
with assumptions on the required services and to package
components as component generators. We hope that we
have also given some clues that program specialization tech-
niques have a key role to play in Component-Based Software
Development with many interesting challenges.

7. ACKNOWLEDGMENTS
The authors would like to thank Julia Lawall and Anne-

Françoise Le Meur for their comments on a preliminary ver-
sion of this work.

8. REFERENCES
[1] http://www.eclipse.org.

[2] http://www.irisa.fr/lande/reqs.

[3] J. Aldrich, C. Chambers, and D. Notkin. Architectural
reasoning in ArchJava. In B. Magnusson, editor,
Proceedings ECOOP’02, volume 2374 of LNCS, pages
334–367, Malaga, Spain, June 2002. Springer-Verlag.

[4] L. Birkedal and M. Welinder. Hand-writing program
generator generators. In M. V. Hermenegildo and
J. Penjam, editors, PLILP, volume 844 of LNCS,
pages 198–214. Springer, 1994.

[5] C. Consel and O. Danvy. From interpreting to
compiling binding times. In N. Jones, editor, ESOP’90
- Third European Symposium on Programming,
volume 432 of LNCS, Copenhagen, Denmark, May
1990. Springer-Verlag.

[6] B. Councill and G. Heineman. Definition of a software
component and its elements. In Heineman and
Councill [10], pages 5–19.

[7] L. DeMichiel, L. Yalçinalp, and S. Krishnan.
Enterprise JavaBeansTM Specification. SUN
Microsystems, Aug. 2001. Version 2.0, Final Release.

[8] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and
V. Prasad. Cadena: An integrated development,
analysis, and verification environment for
component-based systems. In Proceedings of the 25th

International Conference on Software Engineering,
pages 160–173, Portland, Oregon, May 2003. IEEE
Computer Society Press.

[9] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad,
and R. Robby. Slicing and partial evaluation of
CORBA component model designs for avionics
systems. ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program
Manipulation (PEPM’03), June 2003. Invited Talk.

[10] G. Heineman and W. Councill, editors.

Component-Based Software Engineering – Putting the
Pieces Together. Addison-Wesley, 2001.

[11] L. Hornof, J. Noyé, and C. Consel. Effective
specialization of realistic programs via use sensitivity.
In P. Van Hentenryck, editor, Proceedings of the
Fourth International Symposium on Static Analysis,
SAS’97, volume 1302 of LNCS, pages 293–314, Paris,
France, Sept. 1997. Springer-Verlag.

[12] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. ACM
Transactions on Programming Languages and
Systems, 23(3):396–450, May 2001.

[13] N. Jones. An introduction to partial evaluation. ACM
Computing Surveys, 28(3):480–503, Sept. 1996.

[14] N. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
International Series in Computer Science. Prentice
Hall, 1993.

[15] A. Le Meur, C. Consel, and B. Escrig. An
environment for building customizable software
components. In IFIP/ACM Working Conference -
Component Deployment, pages 1–14, Berlin, Germany,
June 2002. Springer-Verlag.

[16] A. Le Meur, J. Lawall, and C. Consel. Specialization
scenarios: A pragmatic approach to declaring program
specialization. Higher-Order and Symbolic
Computation, 17:49–92, 2004.

[17] T. Reps and T. Turnidge. Program specialization via
program slicing. In O. Danvy, R. Glück, and
P. Thiemann, editors, Partial Evaluation,
International Seminar, Dagstuhl Castle, volume 1110
of LNCS, pages 409–429. Springer-Verlag, Feb. 1996.

[18] R. H. Reussner. Automatic component protocol
adaptation with the coconut tool suite. Future
Generation Computer Systems, 19(5):627–639, 2003.

[19] U. Schultz. Black-box program specialization. In
J. Bosch, C. Szyperski, and W. Weck, editors, Fourth
International Workshop on Component-Oriented
Programming, Lisbon, Portugal, June 1999. In
conjunction with ECOOP 1999.

[20] R. Sessions. COM+ and the battle for the Middle Tier.
Wiley, 2000.

[21] C. Szyperski. Component Software. Addison-Wesley,
2002. 2nd edition.

[22] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–189,
Sept. 1995.

[23] R. van Ommering. Building product populations with
software components. In Proceedings of the 24th
International Conference on Software Engineering,
pages 255–265, Orlando, FL, USA, May 2002. ACM
Press.

[24] E.-N. Volanschi, C. Consel, G. Muller, and C. Cowan.
Declarative specialization of object-oriented programs.
In Proceedings of the 1997 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’97). ACM
Press, Oct. 1997. ACM SIGPLAN Notices, 32(10).

50

