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Abstract

In this paper we introduce a logical viewpoint on ar-
chitectures. The logical viewpoint is based on the distinc-
tion between symbolic and semantic models of architec-
tures. The core of a symbolic model consists of its signa-
ture that specifies symbolically its structural elements and
their relationships. A semantic model is defined as a formal
interpretation of the symbolic model. This leads to more
precise characterization of the concepts introduced in IEEE
standard 1471-2000, and provides a formal approach to the
design of enterprise of architectural description languages
and a general mathematical foundation for the use of for-
mal methods in enterprise architectures.

Additionally, we show how this logical viewpoint allows
for the definition of a simple general XML language for the
description of both static and dynamic aspects of an archi-
tecture. For the meta-analysis of both these aspects we in-
troduce a new XML tool for general XML transformations
based on a Rule Markup Language.

1. Introduction

In this paper we consider the gap between abstract en-
terprise architecture descriptions and much more detailed
business process models. The problem of analyzing and
simulating enterprise architectures is that they are described
in much more vague terms than business process models.
For example, the IEEE standard 1471-2000 is based on the
notion of the viewpoint of a stakeholder with a set of con-
cerns, and it defines view, architectural description, archi-
tecture and system accordingly. However, despite the fact
that this approach has led to a useful reconsideration of
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the concepts used in architecture, the drawback is that it
does not lead to concepts which are precisely defined in
a mathematical sense, and consequently it is neither very
clear how to bridge the gap between architectural descrip-
tions and business process models, nor how to incorporate
the architectural concepts in tools.

In this paper we study the following two research ques-
tions.

1. How to incorporate business process models in enter-
prise architectures to analyze and simulate their behav-
ior?

2. How to provide architectural tool support for enter-
prise architectures with business process models?

To incorporate business process models in enterprise ar-
chitectures, we believe that we have to extend the IEEE ar-
chitectural concepts. Consider the main IEEE 1471 stan-
dard descriptions.

architecture: The fundamental organization of a system
embodied in its components, their relationships to each
other, and to the environment, and the principles guid-
ing its design and evolution.

system: A collection of components organized to accom-
plish a specific function or set of functions.

system stakeholder: An individual, team, or organization
(or classes thereof) with interests in, or concerns rela-
tive to, a system.

view: A representation of a whole system from the per-
spective of a related set of concerns.

viewpoint: A specification of the conventions for con-
structing and using a view. A pattern or template from
which to develop individual views by establishing the
purposes and audience for a view and the techniques
for its creation and analysis.
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Figure 1. Extension of IEEE with LVA

These descriptions do not reflect the distinction between en-
terprise architectures and business process models. Our ex-
tension of the IEEE conceptual model is visualized in Fig-
ure 1, in which a symbolic model corresponds to the IEEE
concept of model, and which contains the two new concepts
semantic model and signature (we leave out IEEE 1471-
2000 concepts not related to our new concepts).

Semantic model. The missing concept in the IEEE 1471-
2000 to bridge the gap between enterprise architectures
and business process models is the notion of a semantic
model, which interprets symbolic models.

Signature of an architecture. Moreover, each symbolic
model has a signature, which contains besides the
usual concepts and relations (including special rela-
tions like is-a) also functions. The functions play a
crucial role in our process models, as some of them
are interpreted by actions in the semantic model.

Finally, in contrast to IEEE 1471-2000 we distinguish be-
tween the conceptualization of an architecture and its visu-
alization (though this is not visualized in Figure 1).

Concerning tool support, our logical viewpoint provides
the formal foundations for the use of XML as a representa-
tion language for the signature of an architecture, and more
generally as a representation language for symbolic as well
as semantic models. In this paper we use AML instead of
XML, which is equivalent with XML, but designed to be
better readable for humans. Roughly, in AML the end tags
and angle brackets are replaced by indentation principles.

Moreover, we promote the use of the Rule Markup Lan-
guage or RML as a language to describe model transforma-

tions and thus actions. As explained in detail in this pa-
per, actions are interpreted as functions, and can thus be
described by their input/output behavior, which can be de-
scribed by transformation rules. RML consists of a small
set of XML constructs that can be added to an existing XML
vocabulary in order to define RML rules for that XML vo-
cabulary. These rules can then be executed by RML tools to
transform the input XML according to the rule definition.

We do not develop one particular approach to formalize
architectural descriptions, such as existing object-oriented
languages, algebras, or (description) logics. What we pro-
pose, on the other hand, is the much more abstract logical
way to look at architectural descriptions, which can be in-
stantiated in many ways.

The motivation of our study is to bridge the gap be-
tween abstract IEEE 1471-2000 descriptions and the de-
tailed ArchiMate language for modeling enterprisae archi-
tectures [9]

The layout of this paper is as follows. In Section 2 we
introduce a running example to explain our definitions. In
Section 3 we explain the signature, the distinction between
symbolic and semantic model, and the actions. In Section 6
we discuss tool support, XML, AML and RML.

2 Archimate: a running example

Archimate is an enterprise architecture modeling lan-
guage [9, 10]. It provides through a meta-model, concepts
for architectural design at a very general level, covering for
example, the business, the application, and the technology
architecture of a system. The Archimate language resemble
the business language Testbed [3] but it has also a UML-



flavor, introducing concepts like interfaces, services, roles
and collaborations.

In the remainder of this paper, we will consider as run-
ning example, the enterprise architecture of a small com-
pany, called ArchiSell, modeled using the Archimate lan-
guage. In ArchiSell, employees sell products to customers.
The products are delivered to ArchiSell by various suppli-
ers. Employees of ArchiSell are responsible for ordering
products and for selling them. Once products are delivered
to ArchiSell, each product is assigned to an owner, respon-
sible for selling the product.

To describe this enterprise we will need the ArchiMate
meta-concepts and their relationships as presented in Fig-
ure 2. In particular, we will use structural concepts (product,
role and object) and structural relationships (association),
but also a behavioral concepts (process) and behavioral re-
lationships (triggering). Behavioral and structural concepts
are connected by means of the assignment and access rela-
tionships.

process

role

object

triggering

assignment

access

product

Figure 2. Some concepts and relations

A product is a physical entity that can be associated with
roles. A role is the representation of a collection of respon-
sibility that may be fulfilled by some entity capable of per-
forming behavior. The assignment relation links processes
with the roles that perform them. The triggering relation
between processes describes the temporal relations between
them. When executed, processes may need to access data,
whose representation is here called object.

We will specifically look at the business process archi-
tecture for ordering products, depicted in Figure 3.

In order to fulfill the business process for ordering a
product, the employee has to perform the following activ-
ities:

� Before placing an order, an employee must register the
order within the Order Registry.

� After that, the employee places the order with the sup-
plier.

Employee

Accept product
Register
product

acceptance

Place order for
product

Register order
placement

Order
Registry

Product
Registry

owns

Product

Figure 3. A Business Process Architecture

� As soon as the supplier delivers the product(s), the em-
ployee first checks if there is an order that refers to this
delivery. Then, he/she accepts the product(s).

� Next, the employee registers the acceptance of the
product(s) within the Product Registry and determines
which employee will be the owner of the product(s).

3. Systems and architectures

Following IEEE 1471-2000, every system has an archi-
tecture. Our logical perspective abstracts from pragmatics,
like design principles. Therefore an architecture is the struc-
ture and dynamics of a system consisting of its components
and their relationships.

The architecture of a system is purely conceptual and
different from particular symbolic descriptions of that ar-
chitecture. An architectural description consists of several
symbolic models (also called model in [6]) and other prag-
matic information. Examples of the latter are the architec-
tural rationale. In the next sections we focus on the logical
nature of these symbolic models which involves their syntax
and semantics.

3.1. The signature of an architecture

The very core of a symbolic model of an architecture
consists of its signature which specifies its name space.
The names of a signature are used to denote symbolically
the structural elements of the architecture, their relation-
ships, and their dynamics. The nature of each structural
element is specified by a sort, and each architectural rela-
tionship by a relation between sorts. Additionally, a signa-
ture includes an ordering on its sorts and its relations for
the specification of a classification in terms of a generaliza-
tion relation on the structural elements and the architectural



relations. For example, the sort object in Figure 2 can be
defined as a generalization of both the sorts Order Registry
and Product Registry given in Figure 3, to indicate that ev-
ery element of Order Registry or Product Registry is also
an element of sort object. Also, an association between role
and product is a generalization of the relation owns between
Employee and Product.

The ordering on sorts and relations is in general used to
capture certain aspects of the ontology of an architecture.
Other ontological aspects can be captured by the aggrega-
tion and containment relations. For technical convenience,
however, we restrict to the generalization relation only.

Definition 1 A signature consists of

� a partially ordered set of primitive sorts, also called
the sort hierarchy;

� a partially ordered set of relations, where each rela-
tion is of the form

���������
	�	
	�������
, with

�
the name of

the � -ary relation and
���

the primitive sort of its � th
argument.

We allow overloading of relation names, i.e., the
same name can be used for different relations. For in-
stance, given the primitive sorts ����������� , ������� , and���! #" ��$%��� , the relations

� �&�  ���'�
�)( " � � ������� �*���+ ," ��$-��� �
and

� ���  ���'���)( " � � �������
��� � �����&����� � are in general two dif-
ferent relations with the same name.

Further information about the architecture is expressed
symbolically in terms of suitable extensions of one of its
signatures. Usually a signature is extended with operations
for constructing complex types from the primitive sorts. Ex-
amples are the standard type operations like product type

. �0/ .21

of the types
. �

and
.31

, and the function type
. �54 .31

of all functions which require an argument of type
.6�

and provide a result of type
. 1

. Note that a relation�+�7� � �
	�	
	8���  �
is a sub-type of

� �9/;:�:
:</ � 
.

Given functional types, the name space of a signature
can be extended with functions

=>�?. � �8@ .31��

where
=

specifies the name of a function of type
.6� 4 . 1

.
Functions can be used to specify the attributes of a sort. For
example, given the primitive sorts

���+ ," ��$%��� and A , the
function BDC-� �����! #" ��$%��� �E@ A is intended for specifying the
age of each person.

Note that multi-valued functions
=>�?. � �
	�	�	��F.  �E@ .HG� ��	
	�	
�F.HGI

can be specified by the functional type
. 4 . G

, where
.

denotes the product type
. ��/J:�:�:,/ . 

and
. G

denotes the
product type

.�� /K:
:�:2/ .3
. In general, functions are also

used to specify symbolically the dynamics of an architec-
ture.

The next example shows the signature of the business
process architecture described in Figure 3. It is written
in AML, a human-understandable notation for generating
XML documents. AML and the corresponding tool-support
will be discussed in Section 6.

Example 1 The sorts of the example described in Figure 3
are simply enumerated in AML by

Role
Object
Employee
Product
product
Order_Registry
Product_Registry

Note that we did not include processes as a sort (in our
logical view explained above, processes are modeled as
functions). The subsort relation is specified in AML by the
following enumeration

is-a
domain name=Employee
codomain name=Role

is-a
domain name=Product
codomain name=product

is-a
domain name=Order_Registry
codomain name=Object

is-a
domain name=Product_Registry
codomain name=Object

is-a
domain name=owns
codomain name=association

Note that we have encoded meta-model information of
an architectural description as part of the signature of the
architecture itself. The relation between the meta-model
sorts and relations and architectural sorts and relations is
expressed by the respective partial orders between sorts and
relations of the signature. For example, the sort Product in
Figure 3 is modeled as a subsort of the meta-concept prod-
uct in Figure 2.

In AML the owns-relation itself is specified by

owns
domain name=Employee
codomain name=Product

Finally, the processes are specified in AML as functions.
The types of the arguments and result values are determined
as follows: A role which is assigned to a process specifies
the type of both an argument and a result value of the cor-
responding function. Similarly, an outgoing access relation
from a process to an object specifies the type of both an ar-
gument and a result value of the corresponding function.



On the other hand, an incoming access relation from an ob-
ject to a process only specifies the type of the corresponding
argument (this captures the property of ‘read-only’).

Register_order_placement
domain name=Employee
domain name=Order_Registry
codomain name=Employee
codomain name=Order_Registry

Place_order_for_product
domain name=Employee
codomain name=Employee

Accept_product
domain name=Employee
domain name=Order_Registry
codomain name=Employee

Register_product_acceptance
domain name=Employee
domain name=Product_Registry
codomain name=Employee
codomain name=Product_Registry

Note that the triggering relation is not included in our
concept of a signature. In our view such a relation specifies
a temporal ordering between the processes which is part of
the business process language discussed below in section
4.1.

The recommendation IEEE 1471-2000 [6] emphasizes
that views on an architecture should be seen from the per-
spective of a viewpoint of a stakeholder, that has several
concerns. In our logical characterization, a viewpoint is es-
sentially a partial transformation over signatures, and a view
is a visualization of the result of the transformation, given a
visualization.

Summarizing, the signature of an architecture focuses
on the symbolic representation of the structural elements
of an architecture and their relationships, abstracting from
other architectural aspects like rationale, pragmatics and vi-
sualization. It emphasizes a separation of concerns which
allows to master the complexity of the architecture. No-
tably, the signature of an architecture can be easily formal-
ized in XML for storage and communication purpose, and
can be integrated as an independent module with other tools
including, e.g., graphics for visualization. In the follow-
ing sections we define the formal semantics of a symbolic
model of an architecture. Such a semantics provides a for-
mal basis for the development and application of tools for
the logical analysis of the dynamics of an architecture.

3.2. Interpretation of Types

In this section we first define a formal interpretation of
the types underlying a symbolic model.

Definition 2 An interpretation � of the types of a signature
assigns to each primitive sort

�
a set � ��� � of individuals

of sort
�

which respects the subsort ordering: if
� �

is a
subsort of

��1
then � ��� � � is a subset of � ����1�� .

Any primitive sort is interpreted by a subset of a uni-
verse which is given by the union of the interpretation of
all primitive sorts. The hierarchy between primitive sorts is
expressed by the subset relation.

An interpretation � of the primitive sorts of a signature of
an architecture can be inductively extended to an interpreta-
tion of more complex types. For example, an interpretation
of the product type . �9/ .31
is given by the Cartesian product

� � . � � / � � .31
�

of the sets � �?.��8� and � �?. 1 � . The interpretation of the func-
tion type

.'� 4 . 1
as the set

� �?. � � 4 � � .21��

of all functions from � � .9����� to � � . 1 � , however, does not
take into account the contra-variant nature of the function
space. For example, since the sort A of natural numbers is
a sub-sort of the real numbers � , a function from � to �
dividing a real number by � is also a function from A to
� , but, clearly, the set of all functions from � � � � to � � � �
is not a subset of the set of functions from � � A � to � � � � .
Therefore, given the universe � defined as the union of all
the interpretations of the primitive sorts, we define the in-
terpretation of the function type

. �54 .31
by

� �?. � 4 .31
���	��
� � 4 ��� 
 � � �?. � �F��� � � .21���� 	

The function type
. � 4 .31

thus denotes the set of all func-
tions from the universe to itself such that the image of � �?. �8�
is contained in � �?. 1 � . Note that if

. G�
is a subtype of

.'�
and. 1

is a subtype of
. G1

then � �?.'� 4 . 1 �
is indeed a subset of

� � . G� 4 . G1 �
.

In general, there can be a large number of different in-
terpretations for a signature. This reflects the intuition that
there are many possible architectures that fit a specific ar-
chitectural description. In fact, a signature of an architec-
ture basically only specifies the basic concepts by means of
which the architecture is described.

4. Semantic models

In our logical perspective, a semantic model is a formal
abstraction of the architecture of a system. The logical per-
spective presented until now, only concerned the symbolic
representation of an architecture by means of its signature.
Next we show how to obtain a formal model of a system as
a semantic interpretation of the symbolic model of its archi-
tectural description.

The semantic model of a system involves its concrete
components and their concrete relationships which may



change in time because of the dynamic behavior of a sys-
tem. To refer to the concrete situation of a system we have
to extend its signature with names for referring to the indi-
viduals of the types and relations. For a symbolic model,
we denote by � @ . a name � which ranges over individuals
of type

.
.

Given a symbolic model of an architecture extended with
individual names and an interpretation � of its types, we
define a semantic model � as a function which provides the
following interpretation of the name space of the symbolic
model covering its relations, functions, and individuals.

Relations For each relation
����� � ��	
	�	8� �  �

we have a rela-
tion

�
� ��� � � �7� �0/;:�:
:�/ �  �

respecting the ordering between relations, meaning
that if

���
is a sub-relation of

� 1
then �

� ���
�
is a subset

of �
� � 1 �

.

Functions For each symbolic function
=>� .����E@ . 1

we have
a function

� � = � � � �?. � 4 .31
�8	

Variables For each individual name � @ � we have an ele-
ment

� � � � � � ��� �8	

Example 2 For our running example we introduce the fol-
lowing semantic model. In this model we have only two
products p1 and p2. This is specified in AML by

Product
p1
p2

In order to model the processing of orders and products
individuals of the sort Employee have a product attribute
and an order attribute. These attributes indicate the order
and product the employee is managing. These attributes can
also be viewed as providing an interface to the environment
consisting of the clients and suppliers. Both the order of a
client and the product of a supplier will be stored by an em-
ployee (not necessarily the same employee). In our model
individuals of the sort Employee are fully characterized by
these attributes. Therefore in our model the sort Employee
contains four elements, as described in AML by

Employee
e1 order=p1 product=p1
e2 order=p1 product=p2
e3 order=p2 product=p1
e4 order=p2 product=p2

In our simple model both the Order Registry and
Product Registry can contain only information about one
of the two products p1 and p2 (in section 6 we discuss how
to model an Order Registry as a finite list of orders). Con-
sequently, we can identify in this simple model the interpre-
tation of these sorts with that of Product:

Order_Registry
p1
p2

Product_Registry
p1
p2

The interpretation of the processes of our running ex-
ample in this model are specified in AML by means of ma-
trices of input/output pairs. For example, in the following
we illustrate two such input/output pairs belonging to the
interpretation of Register order placement: it replaces the
product stored in the Order Registry by the product stored
in the order of the employee:

matrix function=Register_order_placement
input

e1 order=p1 product=p1
p1

output
e1 order=p1 product=p1
p1

input
e1 order=p1 product=p2
p2

output
e1 order=p1 product=p2
p2

The other processes are formally described in a similar
manner. Because of space limitations we restrict to a infor-
mal description of their interpretations.

The function Place order for product does not affect the
information stored in an employee (in more refined models
this function may in fact describe an update which records
information about the supplier involved).

The function Accept product simply checks whether
the product managed by an employee is stored in the
Order registry. We model this check as a partial func-
tion which contains only those input/output pairs for which
the product stored in the Order registry coincides with the
product managed by the employee. Note that the product
managed by the employee results from the delivery of a sup-
plier and that the order managed by an employee may have
changed after it has been stored in the Order registry.

The function Register product acceptance simply
stores the product managed by the employee in the
Product registry.

Finally, in order to refer to the elements of the different
sorts we introduce individual names emp:Employee, order-
reg: Order Registry, and product-reg: Product Registry. A
semantic model assigns individuals to these names, for ex-
ample, such an assignment is specified in AML simply by

emp = e1 order=p1 product=p1
order-reg= p1
product-reg= p2

Note that this assignment describes an employee which
manages an order of product p1 and a delivery of product



p1, an Order registry which registers an order of product
p1, and a Product registry which registers the acceptance
of a product p2.

4.1. Dynamics of a system

The dynamics of a concrete system with an architectural
description given by its signature can be specified in differ-
ent ways. Below we distinguish two different use of func-
tions to describe the dynamics of a system: one where func-
tions are seen as primitive actions that change the state of a
system, and another where functions are seen as data trans-
formers.

In the first case, we define the action of a function=>��� �8@ .
by an assignment of the form

� @ � =>�?� �

where � @ . and
� @ �

are names ranging over the types
.

and
�

, respectively. The execution of such an action in a
semantic model � assigns to the name � the return value of

� ��= �8� � � � �*�

which denotes the result of applying the function � ��= � �
� �7� 4 .9�

to the element � � � � � � �7� � . Note that ac-
tions transform semantic models (i.e. the state of a system)
but not the interpretation of a signature (i.e. the structural
information of a system).

Example 3 Given the interpretation of the individual
names e and or of the example 2, the execution of the ac-
tion

e,or:=Register order placement(e,or)

results in the new semantic model � G such that � G � or
� �

p1.

Given this concept of an action as a transformation of se-
mantic models, we can define more complex processes by
combining actions, that is, we can define operations on ac-
tions determining the order of their execution. For example,
we can define the sequential composition � @ � =>� � ��� � G @ �� �?� G �

of two actions � @ � =>�?� �
and � G @ � � �?� G �

as the
composition their transformation of semantic models. Other
operations on actions include case structure, loops, parallel
composition, and synchronization.

Example 4 Given the above sorts Product and Employee,
and a function name Produce of type Employee

/
Product4

Product, we can define a pipe-line by

p1:=Produce(e1,p1);p2:=Produce(e2,p1)
�

where e1 and e2 denote individual employees and p1 and
p2 denote some products.

The above interpretation of functions as actions forms
a formal basis for the introduction of process algebras and
corresponding analysis techniques in business process mod-
eling. A process algebra [5] is a structured approach for
constructing complex processes out of actions. Alterna-
tively, we can use functions to specify the data-flow in a
system illustrating how data is processed in terms of inputs
and outputs. In this view a multi-valued function

=>�?. � �
	�	
	��F.  �E@ .HG� �
	�	�	
�F.HGI
is interpreted as an asynchronous process transforming data
as follows. It has an input channel for each of its arguments;
when on each input channel data, i.e., an element of the cor-
responding type, has arrived it outputs the result values on
corresponding output channels. Such processes can be con-
nected via their channels in a data-flow network [11] picto-
rially represented by a Data Flow Diagram [4]. Because of
space limitations we omit the formal details.

5 Design support

In this section we discuss the support that can be offered
by our logical perspective to describe the evolution of a sys-
tem. In particular we will briefly describe the role of logical
languages and design action in the design of an architecture.

5.1. Logical languages

Logical extension of a signature consists in considering
types as predicate symbols that can be combined into more
complex formulas by means of logical operators like con-
junction and disjunction. The resulting logical language can
be used to constraint the set of semantic models under con-
sideration. There are several logical languages that can be
used as logical extensions of a signature, and a more de-
tailed description of them is beyond the scope of this paper.
We just mention here description logics [1] as formalism
for constraining semantic models and for reasoning about
architecture. They are tailored towards a representation of
architecture in terms of concepts and relationships between
them. A description logic system consists of the following
components:

1. a description language to construct complex descrip-
tion from simple ones;

2. a specification formalism to make statements about
how concepts and relations are related each other
(TBox) or to make assertions about individuals (ABox)

3. a reasoning procedure.

The advantage of using description logics is that they can
be formulated in terms of diagrams, called the Entity-
Relationships Diagrams (ERD) [2]. Basically they illustrate



the logical structure of a system in terms of concepts and
their relationships.

Temporal logics [12] are specially tailored towards the
specification of the dynamic aspects of a systems. They
consist of some atomic predicates on the semantic models
together with the propositional connectives and some tem-
poral operators like next (X), until (U), some time in the
future (F), and always in the future (G). In our view, a tem-
poral logic is interpreted in terms of sequences of semantics
models generated by the actions of the symbolic model. For
example the formula

emp.order = p1
implies
(emp.order = p1 U order_reg = p1)

specifies that if employee emp has received an order for
product p1, then eventually the order will be register and
until then the employee cannot process any different order.

5.2. Design actions

A design action is a transformation between symbolic
models. It contains some additional non-logical informa-
tion that can used to describe the evolution of the system.
Examples are actions for adding sorts or relations, for delet-
ing them, or for renaming them. Design actions can be real-
ized by means of rules (for example expressed in RML) that
have as antecedent a set of parameter and as consequence a
description of the change. When the parameters are col-
lected the rule can fire resulting in a new symbolic model as
described in consequence of the rule.

6. Tool support

In this section we discuss how our logical perspective
provides a formal basis for the integration of XML based
tools for the semantic analysis of architectures.

The Extensible Markup Language (XML) [13] is a uni-
versal format for documents containing structured informa-
tion so that they can be used over the Internet for web site
content and several kinds of web services. It allows de-
velopers to easily describe and deliver rich, structured data
from any application in a standard, consistent way. Today,
XML can be considered as the lingua franca in computer in-
dustry, increasing interoperability and extensibility of sev-
eral applications. Terseness and human-understandability
of XML documents is of minimal importance, since XML
documents are mostly created by applications for importing
or exporting data.

The ASCII Markup Language (AML) [7] used in this pa-
per is an alternative for XML syntax. AML is designed to

be concise and elegant and easy to use. AML uses indenta-
tion to increase readability and to define the XML tree hi-
erarchy: indentation level corresponds to depth, sometimes
called level, in the tree. No indentation is required for the set
of attributes that immediately follows each attribute name.
The example below shows an AML document in which syn-
tactic elements like the end tags and the angle brackets are
replaced by appropriate indententation.

product
weefer color="green"
zyx

wafer color="blue"
cis

weefer color="green"
zyx

In the next sub-section we describe a tool for transform-
ing XML documents that can be used for analysis of archi-
tectural description, and in particular for the definition and
simulation of the system behavior.

6.1. The Rule Markup Language

RML stands for Rule Markup Language. It consists of
a set of XML constructs that can be added to an existing
XML vocabulary in order to define RML rules for that XML
vocabulary. These rules can then be executed by RML tools
to transform the input XML according to the rule definition.
The set of RML constructs is concise and shown in Table 4.

Rules defined in RML consist of an antecedent and a
consequence. The antecedent defines a pattern and variables
in the pattern. Without the RML constructs for variables
this pattern would consist only of elements from the chosen
XML vocabulary. The pattern in the antecedent is matched
against the input XML. The variables specified with RML
constructs are much like the wild-card patterns like * and
+ and ? as used in well known tools like grep, but the
RML variables also have a name that is used to remem-
ber the matching input. Things that can be stored in RML
variables are element names, element attributes, whole ele-
ments (including the children), and lists of elements.

If the matching of the pattern in the antecedent succeeds
then the variables are bound to parts of the input XML and
they can be used in the consequence of an RML rule to pro-
duce output XML. When one of the RML tools applies a
rule to an input then by default the part of the input that
matched the antecedent is replaced by the output defined
in the consequence of the rule; the input surrounding the
matched part is kept intact.

Below we show an example of RML by presenting the
rule that defines the state transformation of the action

emp,order-reg:=Register order placement(emp,order-reg)



Elements that designate rules

div class="rule"
div class="antecedent" context="yes"
div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element (and children) at this position to RML variable X.
rml-list name="X" * Bind a sequence of elements (and their children) to X.
rml-use name="X" * Output the contents of RML variable X at this position.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the next one with rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element, and occurs somewhere in the current
sequence of elements.

rml-if nochild="X" * Match if X does not occur in the current sequence.
rml-if last="true" * Match if the younger sibling of this element is the last in the current sequence.

A * in the A column means the construct can appear in a rule antecedent. A * in the C column is for the consequence.

Figure 4. All the RML constructs

of our running example (emp and order-reg are individ-
ual names for an employee and the Order registry, re-
spectively). Content-preserving RML constructs have been
omitted for clarity.

div class=rule name="Register order placement"
div class=antecedent

variables
rml-Employee order=rml-OrderName

product=rml-ProductName
or

orders
rml-list name=oldOrders

div class=consequence
variables

rml-Employee order=rml-OrderName
product=rml-ProductName

or
orders

rml-use name=oldOrders
order name=rml-OrderName

In the antecedent of the rule the matching algorithm
first looks for an element with name variables which
contains that part of the AML representation of the semantic
model discussed 2 that stores the values of the names emp
(of sort Employee) and order-reg (of sort Register order) If
that is found it looks for children of that element: one child

with an order and product attribute (an employee), and
one child with the name r1 (the order registry). The al-
gorithm binds the employee name emp to RML variable
Employee and it binds the values of the order and
product attributes to OrderName and ProductName
respectively. The list of old orders, a list of XML elements
that are the children of the orders child of the r1 order
registry, is bound to RML variable oldOrders. In the
consequence of the rule the variables are reused in the out-
put and an order element with the correct name is appended
to the oldOrders list. Note that by means of this RML
rule we have extended the semantic model of our running
example to an interpretation of the sort Order registry of
unbounded capacity.

We see here that in a straightforward way, thanks to the
wild-card matching technique used in RML, a pattern can
be matched that is distributed over various parts of the input
XML. Such pattern matching is hard to define with other ex-
isting approaches to XML transformation because they do
not use of the problem domain XML for defining transfor-
mation rules: transformations are defined either in special
purpose language like the Extensible Style-sheet Language
Transformation (XSLT), or they are defined at a lower level



by means of programming languages like DOM and SAX.
RML captures transformations defined by a single rule, but
interaction among rules is dealt with by other tools. This
because XML transformations usually involve the creation
of links between elements by means of cross-referencing
attributes, or the reordering, the addition or removal of el-
ements, but does typically not include things like integer
arithmetric and floating point calculations.

RML does not define, need, or use another language, it
only adds a few constructs to the XML vocabulary used,
like the wild-card pattern matching. RML was designed
to make the definition of executable XML transformations
also possible for other stakeholders than programmers. This
is of particular relevance when transformations capture for
instance business rules. In this way it is possible to extend
the original model in the problem domain XML vocabulary
with semantics for that language. Similarly, it is also possi-
ble to define rules for constraining the models with RML.

6.2. RML as a tool for architectural description

As illustrated above, with RML a formal definition can
be given of the dynamics of the basic actions of an architec-
ture in terms XML transformations. This allows for a for-
mal use of process algebras [5] in the modeling and analysis
of business processes. In fact, the use of RML allows the
formal definition of one own’s business process constructs
on top of the semantic description of the basic actions.

As a simple example, the execution of an action a by the
process P=a.b that specifies a temporal order between a and
b (namely, first a and than b), can be described in a process
algebra by a transition of the form (we abstract from the
state)

a.b -> b

As a transformation in RML this transition can be speci-
fied by the following rule:

div class=rule
div class=antecedent

process name=rml-P
prefixes

rml-A
rml-B

div class=consequence
process name=rml-P

prefixes
rml-B

The removal of the a prefix is easily specified in such
an RML rule as the removal of an element from a list of
children elements.

XML transformations normally involve creating links
between elements by means of cross-referencing attributes,
or reordering elements, or adding or removing elements,

but does typically not include things like integer arithmetic
and floating point calculations. In case of such transfor-
mations the RML tool will have to be combined with an-
other tool that can do the desired calculation. For modeling
business architectures a transformation that can not be ex-
pressed with XML+RML alone is rather uncommon, but
they may occur when the user is interested in a simulation
of a model. We have applied combinations of RML with
other components like programming language interpreters
successfully in the EU project OMEGA (IST-2001-33522,
URL: http://www-omega.imag.fr) that deals with the formal
verification of UML models for software. That tool for the
simulation of UML models does the XML transformations
with RML, and uses an external interpreter for example for
floating point calculations on attributes in the XML encod-
ing.

7. Summary and outlook

In this paper we consider the relation between enter-
prise architectures and much more detailed business process
models. The missing link to bridge the gap between the
two worlds is the notion of a semantic model in the IEEE
1471-2000 standard [6]. We show how semantic models can
be distinguished from the models used within the standard,
which we call symbolic model. This distinction provides
a formal basis for the introduction of a formal definition
and analysis of business processes. Moreover, we extend
the IEEE standard with the notion of the signature, which
serves as the basis of the enterprise architecture description,
as well as the semantic model.

Semantic models are at the center of our logical per-
spective on enterprise architectures which integrates both
static and dynamic aspects. The framework we have devel-
oped allows the integration of various models for business
processes, ranging from process algebras to data-flow net-
works.

Furthermore, we have introduced a XML tool for the
transformation of XML data and showed how it can be used
to simulate business processes.

There is a rich literature of business processes. However,
as far as we know, our logical perspective is a first attempt
to a formal integration of such processes in enterprise ar-
chitectures. We believe that our logical framework (plus
tool support) also provides an promising basis for the fur-
ther design and development of business process languages
and corresponding tools.
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