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Chapter 1

Introduction

A language is a systematic means of communicating ideas or feelings among
people by the use of conventionalized signs. In contrast, a programming lan-
guage can be thought of as a syntactic formalism which provides a means for
the communication of computations among people and (abstract) machines.
Elements of a programming language are often called programs. They are
formed according to formal rules which define the relations between the var-
ious components of the language. Examples of programming languages are
conventional languages like Pascal [196] or C++ [187], and also the more the-
oretical languages such as the A-calculus [52,26] or CCS [144].

A programming language can be interpreted on the basis of our intuitive con-
cept of computation. However, an informal and vague interpretation of a pro-
gramming language may cause inconsistency and ambiguity. As a consequence
different implementations may be given for the same language possibly leading
to different (sets of) computations for the same program. Had the language in-
terpretation been defined in a formal way, the implementation could be proved
or disproved correct. There are different reasons why a formal interpretation
of a programming language is desirable: to give programmers unambiguous
and perhaps informative answers about the language in order to write correct
programs, to give implementers a precise definition of the language, and to
develop an abstract but intuitive model of the language in order to reason
about programs and to aid program development from specifications.

Mathematics often emphasizes the formal correspondence between a notation
and its meaning. For example, in mathematical logic, we interpret a formal
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theory on the basis of a more intuitive mathematical domain which prop-
erly fits the theory (that is, the interpretation of all theorems must be valid).
Similarly, the formal semantics of a programming language assigns to every
program of the language an element of a mathematical structure. This mathe-
matical structure is usually called the semantic domain. Several mathematical
structures can be used as semantic domain, and the choice as to which one
is to be preferred often depends upon the programming language under con-
sideration. Since a programming language is a formal notation, its semantics
can be seen as a translation of a formal system into another one. The need
for a formal semantics of a programming language can thus be rephrased as
the need for a suitable mathematical structure closer to our computational
intuition. From this mathematical structure we expect to gain insights into
the language considered.

There are several ways to formally define the semantics of a programming
language. Below we briefly describe the three main approaches to semantics,
namely the operational, the denotational and the axiomatic approach. Other
important approaches to the semantics of programming languages are given by
the algebraic semantics [78,144,104,28,48,92], with mathematical foundations
based on abstract algebras [79,61], and the action semantics [152], based on
three kinds of primitive semantics entities: actions, data and yielders.

In the operational semantics one defines the meaning of a program in terms
of the computations performed by an abstract machine that executes the pro-
gram. For this reason the operational semantics is considered to be close to
what actually happens in reality when executing a program on a real computer.
Transition systems are the most commonly used abstract machines which sup-
port a straightforward definition of a computation by the stepwise execution
of atomic actions. There are different ways to collect the information about
the computations of a transition system which give rise to different opera-
tional semantics. Moreover, transition systems support a structural approach
to operational semantics as advocated by Plotkin [161]: the transition relation
can be defined by induction on the structure of the language constructs.

The denotational approach to the semantics of programming languages is due
to Scott and Strachey [177]. Programs are mapped to elements of some math-
ematical domain in a compositional way according to the ‘Fregean princi-
ple’ [72]: the semantics of a language construct is defined in terms of its com-
ponents. Due to the possibility of self-application given by some programming
languages, the semantic domain must sometimes be defined in a recursive way.
This is often impossible with an ordinary set-theoretical construction because
of a cardinality problem. Therefore often a topological structure is associated
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with the semantic domain which takes into account qualitative or quantitative
information about the computations. Typical topological structures used for
the denotational semantics of programming languages are complete partial
orders, put forward by Scott [173,175], and complete metric spaces, intro-
duced in semantics by Arnold and Nivat [11] and extensively studied by the
Amsterdam Concurrency Group (for an overview see [22] and also [23]). The
denotational semantics is close to the operational semantics but abstracts from
certain details so that attention can be focussed on issues at a higher level.

The aziomatic approach characterizes programs in a logical framework in-
tended for reasoning about their properties. Proof systems are usually used
for axiomatic semantics: computations are expressed by relating programs to
assertions about their behaviour. The most well-known axiomatic semantics
is Hoare logic [101] for total correctness. Assertions are of the form {P} S {Q}
meaning that the program S when started at input satisfying the predicate
P terminates and its output satisfies the predicate (). There are many other
kinds of axiomatic semantics using proof systems such as temporal logic [162],
dynamic logic [163] and Hennessy-Milner logic [93]. Axiomatic semantics can
also be given without the use of formal proof systems: the behaviour of a
program can be expressed as a function which transforms predicates about
the program. For example, Dijkstra’s weakest precondition semantics [56] re-
gards a program S as a function which maps every predicate ) on the output
state space of S to the weakest predicate among all P’s such that the Hoare
assertion { P}S{ @} is valid. Axiomatic semantics is closely related to the ver-
ification of the correctness of programs with respect to a given specification.
An axiomatic semantics should preferably be such that the verification of the
correctness of a program can be done by verifying the correctness of its com-
ponents, as advocated by Turing [190] and Floyd [70] (see also the discussion
in [19]).

The choice among the operational, the denotational or the axiomatic seman-
tics for a programming language will depend on the particular goals to be
achieved. To take advantage of these different semantic views of a program it
is important to study their relationships.

The denotational semantics of a programming language is, by definition, com-
positional. Since an operational semantics is not required to be compositional
we cannot have, in general, an equivalence between the two semantics. Two
criteria about the relation between denotational and operational semantics are
commonly accepted. The first criterion says that the denotational semantics
has to assign a different meaning to those programs of the language which in
some context can be distinguished by the operational semantics. This can be
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achieved, for example, by proving the existence of an abstraction function that
when composed with the denotational semantics gives exactly the operational
semantics. In this case the denotational semantics is said to be correct, or ad-
equate, with respect to the operational semantics. The second criterion looks
for the most abstract denotational semantics which is correct with respect to
a given operational semantics. This can formally be expressed by requiring
that the denotational semantics assigns a different meaning to two programs
of the language if and only if they can be distinguished in some context by
the operational semantics. In this case the denotational semantics is said to
be fully abstract with respect to the operational semantics [143].

The relationship between the denotational and the axiomatic semantics is the
main topic of this monograph. Depending on which kind of information has
to be taken in account, there are different transformations which ensure the
correctness of one semantics in terms of the other. The common factor in all
these transformations is that they form dualities rather than equivalences:
the denotational meaning of a program viewed as a function from the input
to the output space is mapped to a function from predicates on the output
space to predicates on the input space. Conversely, the axiomatic meaning of
a program regarded as a function from predicates on the output to predicates
on the input is mapped to a function from the input space to the output space.

The dualities between the denotational and the axiomatic views of a program
are often topological in the sense that they are set in a topological frame-
work. This is motivated by the tight connection between topology and de-
notational semantics: topology has become an essential tool for denotational
semantics and denotational semantics has influenced new activities in topol-
ogy [179,1,192,182,47,146,23]. The fundamental insight due to Smyth [179]
is that a topological space may be seen as a ‘data type’ with the open sets
as ‘observable predicates’, and functions between topological spaces as ‘com-
putations’. These ideas form the basis for a computational interpretation of
topology.

Abramsky [1,2], Zhang [199] and Vickers [192,5] carried the ideas of Smyth
much further by systematically developing a propositional program logic from
a denotational semantics. The main ingredient in their work is a duality (in
categorical terms a contravariant equivalence) between the category of certain
topological spaces and a corresponding category of frames (algebraic struc-
tures with two classes of operators representing finite conjunctions and infi-
nite disjunctions). On one side of the duality, topological spaces can arise as
semantic domains for the denotations of programs; on the other side of the du-
ality, frames can arise as the Lindenbaum algebras of a propositional program
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logic with properties as elements and proof rules provided by the various con-
structions. Accordingly, topological dualities are considered as the appropriate
framework to connect denotational semantics and program logics [1,192,199].

From a broader perspective, topological dualities (in the form of representation
theorems) can be used to characterize models of abstract algebraic structures
in terms of concrete topological structures. Therefore the ultimate purpose of
setting up a topological duality is to capture axiomatically the class of prop-
erties we have in mind. Let us quote Johnstone [112, page XX] to summarize
the importance of topological dualities: ‘Abstract algebra cannot develop to
its fullest extent without the infusion of topological ideas, and conversely if we
do not recognize the algebraic aspects of fundamental structures of analysis
our view of them will be one-sided.’

The contributions of our work may roughly be classified into the following
three kinds. The first kind of contribution consists in the characterization
for a given language of an axiomatic semantics using insights from a denota-
tional semantics. For example, we define a weakest precondition semantics for
a sequential language with a backtrack operator using a simple denotational
interpretation. We also characterize a compositional predicate transformer se-
mantics for a concurrent language with a shared state space. The semantics
is based on a denotational interpretation of the language given by consid-
ering programs to be functions abstracted from a transition system modulo
bisimulation [24,76].

The second kind of contribution is dual to the first one: the characteriza-
tion of a denotational semantics for a language using an axiomatic semantics.
We characterize a denotational semantics for the refinement calculus (a lan-
guage with an associated axiomatic semantics based on monotonic predicate
transformers). We use the denotational semantics to derive a new operational
interpretation of the refinement calculus based on hyper transition systems.
The denotational semantics of the refinement calculus is proved fully abstract
with respect to the operational interpretation (in fact they are equivalent).

The third kind of contribution is more abstract in nature. We have set up a
framework for a systematic development of a propositional logic for the spec-
ification of programs from a denotational semantics. In particular, it gives
a conceptual foundation which answers the question posed by Abramsky |2,
page 74] about the possibility of expressing infinite conjunctions in the logic
of domains. The logic derived from a denotational semantics by means of the
duality between the category of certain topological spaces and the correspond-
ing category of frames is not expressive enough to be used for specification



Marcello M. Bonsangue

purposes: infinite conjunctions should be added [1,199]. However, such an ex-
tension would necessarily takes us outside open sets. Our contribution con-
sists in the the development of an abstract algebraic framework which allows
both infinite conjunctions and infinite disjunctions of abstract open sets. This
framework is related to ordinary topological spaces by means of a represen-
tation theorem, and it is applied by deriving an infinitary logic for transition
systems.

Qutline of the chapters

This monograph is divided into three parts. In the first part we consider pred-
icates as subsets of an abstract set of states. In the second part we refine the
notion of predicates by considering affirmative predicates. They are open sub-
sets of an abstract set of states equipped with a topology. Finally, in the third
part we forget about states and we take predicates to be elements of an ab-
stract algebra with algebraic operations to represent unions and intersections.

We start by introducing in Chapter 2 some basic concepts in category theory,
partial orders, and metric spaces. Category theory is not needed for under-
standing the first two parts. Metric spaces will only play a major role in
Chapter 7.

With Chapter 3 we start the first part. The chapter is about the seman-
tics of sequential languages. In particular we consider the weakest precondi-
tion and the weakest liberal precondition semantics, and the relationships to
various state transformer semantics. These relationships generalize the du-
ality of Plotkin [159] between predicate transformers and the Smyth power-
domain. We also discuss the weakest precondition semantics of a sequential
non-deterministic language with a backtrack operator.

In Chapter 4 we extend sequential languages with specification constructs.
We use the language of the refinement calculus introduced by Back [13]. The
refinement calculus is based on a predicate transformer semantics which sup-
ports both unbounded angelic and unbounded demonic non-determinism. We
give a state transformer semantics for the refinement calculus and relate it to
the predicate transformer semantics by means of a duality. We give also an op-
erational interpretation of the refinement calculus in terms of the atomic steps
of the computations of the programs. The latter operational view is connected
to the state transformer semantics.

The second part begins with Chapter 5. In this chapter we refine the notion
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of predicate introduced in Chapter 3. Following the view of Smyth [179], affir-
mative predicates are introduced as open sets of a topological space. Several
basic concepts taken from topology are introduced and motivated from the
point of view of affirmative predicates.

In Chapter 6 we rework in a topological framework the dualities between pred-
icate and state transformers that were introduced in Chapter 3. These duali-
ties show us how to generalize predicate transformers to topological predicate
transformers. The latter can be used as domain for a backward semantics of
non-sequential programming languages. Our starting point is Smyth’s duality
between the upper powerspace of a topological space and certain functions
between affirmative predicates. We show that Smyth’s duality holds in a gen-
eral topological context. Also, we propose dualities for the lower powerspace
and the (more classical) Vietoris construction on general topological spaces.
In passing, several topological characterizations of metric and order based
powerdomains constructions are investigated.

Chapter 7 is devoted to the semantics of a sequential non-deterministic lan-
guage extended with a parallel operator. A domain of metric predicate trans-
formers is defined as the solution of a recursive domain equation in the category
of complete metric spaces. A compositional predicate transformer semantics
is given to the language, and it is shown to be isometric to a state transformer
semantics based on the resumption domain of De Bakker and Zucker [24]. Par-
tial and total correctness properties are studied for the above language using a
connection between the domain of metric predicate transformers and the two
domains of predicate transformers given in Chapter 3. As a consequence, the
semantics of a sequential language is obtained as the abstraction of the unique
fixed point of a metric-based higher-order transformation, and is proved cor-
rect with respect to three order-based semantics obtained as least fixed points
of three higher-order transformations, respectively. Also, we briefly discuss the
study of temporal properties of a concurrent language via our metric predicate
transformer semantics.

The third and last part starts with Chapter 8. We abstract from open sets and
regard predicates as elements of an abstract algebra. We consider a topological
space as a function from the abstract set of affirmative predicates (with alge-
braic operations representing arbitrary unions and finite intersections) to the
abstract set of specifications (with algebraic operations representing arbitrary
unions and arbitrary intersections). This structure is called an observation
frame. We show that in certain cases topological spaces can be reconstructed
from observation frames. We obtain a categorical duality between the cate-
gory of certain topological spaces (not necessarily sober) and a corresponding
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category of observation frames. We also give a propositional logic of observa-
tion frames with arbitrary conjunctions and arbitrary disjunctions. The logic
is shown to be sound and complete if and only if the observation frame corre-
sponds, canonically, to a topological space. Finally we apply the above theory
in order to obtain dualities for various sub-categories of topological spaces.

Chapter 9 relates topological spaces seen as frames to topological spaces seen
as observation frames. A new characterization of sober spaces in terms of
completely distributive lattices is given. This characterization can be used for
freely extending the geometric logic of topological spaces to an infinitary logic.
We also show that observation frames are algebraic structures in a precise
categorical sense.

We end our work with Chapter 10. In this chapter an extension of Abram-
sky’s finitary domain logic for transition systems to an infinitary logic with
arbitrary conjunctions and arbitrary disjunctions is presented. To obtain this
extension we apply the theory developed in the previous two chapters. The
extension is conservative in the sense that the domain represented in logical
form by the infinitary logic coincides with the domain represented in logi-
cal form by Abramsky’s finitary logic. As a consequence we obtain soundness
and completeness of the infinitary logic for the class of all finitary transition
systems.

Interdependence of the chapters

The three parts of this monograph can be read almost independently. The
logical interdependence between the chapters is schematically represented by
the following diagram.

9 10

/

(131)

N<—1—>00

7
f
(2.3)

/
\
\

The sections between parentheses and the article [3] are only necessary as
references to proofs.
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Origins of the chapters

This monograph is a revision of author’s Ph.D. thesis [33]. Several results
presented here have already appeared in publications. Chapter 3 is mostly
based on [37] and [40]. The second half of Chapter 4 appeared as an extended
abstract in [42]. Chapter 6 is an extension of [38] and [39]. The first half of
Chapter 7 is based on the paper [44] while the second half is new. Chapter 8
is a revised version of the paper [36]. Finally, Chapter 10 is based on [41].
Chapters 9 contain mostly original material, while Chapter 5 follows ideas of
Smyth originally presented in [179] and [182].
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Chapter 2

Mathematical preliminaries

In this chapter, we present some basic notions and properties from category
theory, partial orders and metric spaces which we will need in the subsequent
chapters. This chapter is not intended to provide a comprehensive introduction
to the subjects treated. Rather, it is aimed to list those major facts we shall
assume in the next chapters (providing references for their proofs), and to
make the reader familiar with the notation we will use. The only original
material is Proposition 2.3.3 (stemming from [43]).

2.1 Category theory

In this section we introduce some concepts of category theory and universal
algebra. Statements and facts in this section will be used only in the third
part of this monograph. The first two parts will not need any categorical pre-
requisites. Unless stated otherwise, our reference for the categorical concepts
below is to the book of Mac Lane [136].

We begin with the following three fundamental notions: category, functor, and
natural transformation. A category C consists of

(i) a class of objects,

(ii) a class of morphisms. Each morphism has a domain and a codomain
which are objects of the category. The collection of all morphisms with domain
A and codomain B is denoted by C(A4, B).

11
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(iii) a composition law which assigns to each pair of morphisms f € C(A, B)
and g € C(B, C) a morphism go f € C(4, C).

(iv) an identity morphism idy € C(A, A) for each object A such that for all
morphisms f, foidy = f and idgof = f whenever the composites are defined.

For example, there is a category Set whose objects are sets and whose mor-
phisms are functions with the usual composition. Similarly, Set? is the cat-
egory whose objects are functions f : A — B between two sets, and whose
morphisms between f : A — B and g : A’ — B’ are pairs of functions
(h:A— A',k:B — B') such that goh =k o f.

A functor F:C — D is a morphism between two categories. It assigns to each
object A of C an object F(A) of D, and to each morphism f € C(4,B) a
morphism F(f) € D(F(A), F(B)) such that

(i) it preserves identity, i.e. F'(ids) = idp(4), and
(ii) it preserves composition whenever defined, i.e. F(f o g) = F(f)o F(g).

A natural transformation n: F — G is a morphism between two functors
F,G:C — D. It maps each object 4 of C to a morphismn, € D(F(A), G(A))
such that for all morphisms f € C(A4, B) we have G(f) ona = np o F(f).

In a category C a morphism f € C(A, B) is said to be an isomorphism (and
A and B are called isomorphic) if there exists another morphism g € C(B, A)
such that f og = idg and gof = ids. An object A of C is called a fized point
of a functor F : C — C if A is isomorphic to F(A). A functor F: C — D is
said to reflect isomorphisms if for each morphism f of C, f is an isomorphism
whenever F(f) is.

The opposite category C of a category C has the same objects of C and
f € C?(A,B) if and only if f € C(B, A). Composition and identities are
defined in the obvious way. A category C is a full sub-category of D if every
object in C is an object in D, and C(4, B) = D(A4, B).

The main concept of category theory is that of adjunction. For two functors
F:C —Dand G:D — C, wesay F is left adjoint of G if there is a bijection,
natural in A and B, between C(A4, G(B)) and D(F(A), B). In this case the
functor G is said to be right adjoint of F. Every adjunction induces two natural
transformations: the unit n: idc — G o F (for each A, na: A — G(F(A)) is
the morphism which corresponds to idg4) : F(A) = F(A)), and its dual, the
counite: F o G — idp (for each B, ep: F(G(B)) — B is the morphism which
corresponds to idg(p) : G(B) — G(B)). In general we do not need to know

12
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that F' is a functor [136, page 81, Theorem 2

Proposition 2.1.1 A functor G:D — C has a left adjoint if for each object A
of C there exists an object F(A) in D and a morphismng:A — G(F(A)) such
that for every other morphism f € C(A, G(B)) there is a unique morphism

h € D(F(A), B) satisfying G(h)ona=f. O

A reflection is an adjunction for which the counit €5 is an isomorphism for
all B. If both unit and counit are isomorphisms then the adjunction is called
an equivalence and the categories involved are equivalent. We say that two
categories C and D are dual if C is equivalent to D°. An adjunction is called
Galois if it restricts to an equivalence between the categories F(C) and G(D)
(here F(C) denotes the full sub-category of D whose objects are in the image
of F, and G(D) denotes the full sub-category of C whose objects are in the
image of G). An adjunction is Galois if and only if it restricts to a reflection
from C into F(C) [110].

Let C be a category and J be a small category (i-e. the objects and the
morphisms of J form a set rather than a proper class). The category C? has
as objects functors from J to C (in this context often called diagrams), and
morphisms are natural transformations. There is a functor A : C — CY which
maps every object A to the constant functor with value A. We say that C
has limits of type J if the functor A has a right adjoint limy, and we refer to
limz (D) as the limit of the diagram D. Dually, if A has a left adjoint then we
say that C has colimits of type J. If J is the empty category then the limit of
a diagram is called terminal object while the colimit is called initial object. If
J is a discrete category (i.e. one with only identity morphisms) then the limit
of a diagram is called product and the colimit coproduct. Finally, if J is the
category with two objects, two identity morphisms and two parallel morphisms
between the two objects then the limit of a diagram is called equalizer and the
colimit coequalizer.

A category is complete if it has all small limits, and cocomplete if it has all
small colimits. Both categories Set and Set? are complete and cocomplete.

A monad on a category C is a triple (7,7, u) where T: C — C is a functor,
and n:idec — T and p: ToT — T are natural transformations satisfying some
commutativity laws (see page 133, [136]). Every functor F': C — D which is a
left adjoint of G : D — C induces a monad (G o F,n, G(ep(—))) on C, where
7 is the unit of the adjunction and ¢ is the counit.

Conversely, given a monad (7,7, u) on C we can always find an adjunction
inducing it. To this aim, denote the category of the algebras of the monad 7'

13
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on C by C”. Its objects are morphisms (called T-algebras) h € C(T(A), A)
such that hony = idy and hopuy = ho T'(h); its morphisms from a T-algebra
h € C(T(A),A) to a T-algebra k € C(T(B), B) are morphisms f in C(4, B)
such that f o h = ko T(f). The obvious forgetful functor GT : CT — C
which sends a T-algebra h € C(T(A), A) to A has a left adjoint FT:C — CT
which maps any object A in C to the free T-algebra us € C(T(T(A)), T(A)).
The monad defined by this adjunction is trivially equal to the original monad
T (see page 136, Theorem 1 in [136]), hence every monad is defined by its
algebras.

A functor G : D — C is said to be monadic if it has a left adjoint F' and the
comparison functor K : D — C7” defined by K(A) = G(g,4) is an equivalence
of categories, where T is the monad induced by G o F' and ¢ is the counit of
the adjunction between F' and G. The following version of Beck’s Theorem
(see page 147 in [136]) gives conditions on a functor G to ensure that G is
monadic.

Proposition 2.1.2 Let G:D — C be a functor with a left adjoint F'. If D has
all coequalizers, G preserves these coequalizers, and G reflects isomorphisms
then G is monadic. O

We conclude this section by mentioning the connection between the theory of
monads and universal algebra. For a more detailed account we refer to [31,61]
for the finitary case, to [133] for the infinitary one, and to the comprehen-
sive [137].

An algebraic theory T = (), E) consists of a class 2 of operators each with
an associated set I denoting its arity, and a class F of identities of the form
e, = e, where ¢; and e, are expressions formed from a convenient set of
variables by applying the given operators.

A T-algebra is a set A together with a corresponding function w, : Al — A
for each operator w of Q of arity I, such that independently of the way we
substitute elements of A for the variables, the identities of £ hold in A. More
formally, if e is an expression formed using a set of variables z; for : € I by
applying the given operators in {2, the substitution of elements of A for the
7;’s gives us a corresponding function e : A’ — A. If A is a T-algebra and
e, = e, is an identity in E using free variables z; for ¢ € I, then the two
corresponding functions e, e, : AT — A must be equal.

A T-homomorphism between two T-algebras A and B is a function f: A — B
such that wg o Il;c;f = f owy for each operator w € €2 of arity I. The collec-
tion of all T-algebras and 7-homomorphisms between them form a category
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T-Alg. There is a forgetful functor U : T-Alg — Set mapping every 7T-
algebra A to its underlying set A (its action on morphisms is obvious). The
following proposition [137, Chapter 1] summarizes some important features of
the category of T-algebras.

Proposition 2.1.3 For every algebraic theory T the category of T-algebras
T-Alg has all small limits: they are constructed exactly as in Set, and the
forgetful functor U : T-Alg — Set preserves them. Moreover, if the forgetful
functor U : T-Alg — Set has a left adjoint, then the functor U is monadic
and T-Alg has all small colimits. O

Let T = (€2, F) be an algebraic theory. A presentation T(G | R) consists of a
set G (called in this context of generators) and a set R of pairs (called in this
context relations) of the form (e, e,), where ¢; and e, are expressions formed
from generators in G by applying the given operators in 2. A model for a
presentation T(G | R) is a T-algebra A together with a function [—] ,:G — A
such that if (e, e,) is a relation in R then [e;] , = [e,] 4. In the latter equality,
we have applied the function [—] ,: G — A to an expression e (built up from
generators in G and operators in ) by replacing the generators g by their
interpretation [g] 4, the operators w by the corresponding operations wy, and
evaluating the resulting function in A to give [e] , € A.

Notice that in a presentation we make two different uses of equations: in the
identities of F that are part of 7' equations contain variables and must hold
whatever values from an algebra are substituted for the variables, and in the
relations of R equations contain generators and must hold when the generators
are given their particular values in a model.

A T-algebra A is presented by a presentation T(G | R) if it is a model for
the presentation, and for every other model B there exists a unique morphism
h:A — B in T-Alg such that h([g],) = [g]p for every generator g € G.
Clearly, the algebra presented by generators and relations if it exists is unique,
up to isomorphisms in 7-Alg. Once we know that the forgetful functor U: T-
Alg — Set has a left adjoint F', the standard theory of congruences gives
us a way to force the relations R on the free T-algebra F(G). The resulting
T-algebra is presented by T(G | R).

For a finitary algebraic theory T, i.e. one with a set (and not a proper class)
of operators and such that each operator has finite arity, every presentation
T(G | R) always presents a T-algebra. It can be constructed as a suitable
quotient of the set of terms formed from G by applying the operators of T'.
This implies that the forgetful functor 7-Alg — Set is monadic [137, Chapter
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1] with left adjoint given by the assignment which takes every set G to the
algebra which presents T(G | 0).

More generally, given any monad on Set we can describe its algebras by op-
erations and equations, provided that we allow infinitary theories T (ones
with proper classes of operators and equations, respectively). The converse is,
unfortunately, false: there are infinitary theories 7' for which a presentation
T{G | R) does not present any T-algebra. Technically what goes wrong is
that the collection of terms formed from G by applying the operators of (2
and satisfying the equations of E can be too big to be a valid set (i.e. it can be
a proper class). Examples are the theory of complete Boolean algebras [73,87]
and the theory of complete lattices [87].

2.2 Partial orders

Partially ordered sets occur at many different places in mathematics, and their
theory belongs to the fundamentals of any book on lattice theory. A classic
reference on lattice theory, representative of the status of the theory in 1967, is
the book of Birkhoff [31]. A good introductory modern book on lattice theory
and ordered structures is that of Davey and Priestley [54]. In recent years,
partial orders on information have been successfully used in the semantics of
programming languages [173,177]. The mathematical part of this approach is
called domain theory. Here the word domain qualifies a mathematical struc-
ture which embodies both a notion of convergence and a notion of approxima-
tion [4]. A discussion on domain theory is presented in the subsection below.
The reader who wishes to consult a more detailed introduction to domain
theory and continuous lattices may find [160,4] and [77] useful references.

Let P be a set. A preorder < on P is a binary, reflexive and transitive relation.
A partial order on P is a binary relation < which is reflexive, transitive and
also antisymmetric. A poset is a set equipped with a partial order. A poset P
is said to be discrete if the partial order coincides with the identity relation.
Hence every set can be thought of as a discrete poset.

In every preordered set P we denote, for x € P, by 1z the upper set of z, and
by | z the lower set of z, that is,

te={yePlzgytand lz={yeP|ySz}

The set 1z is also called the principal filter of X generated by z.
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Let P be a poset and S be a subset of P. An element z of P is a join (or least
upper bound) for S, written as z =\ S, ifforall s € §, s <z and if s < y
for all s € § then z < y. Since the partial order is antisymmetric, the join of
S if it exists is unique. If S is a two element set {s, ¢} then we write s V ¢ for
V S; and if S is the empty set ) then we write L for \/ §. Clearly if L exists
then it is the least element of P.

Dually, in any poset P we can define the notion of meet by reversing all the
inequalities in the definition of the join. We write A S, sAt and T for the meet
of an arbitrary subset S of P, the binary meet and the empty meet. Notice
that for every upper closed subset S of P, if A S exists in § then § = 1(A S).

A function f: P — () between two posets is said to be monotoneif p < g in P
implies f(p) < f(q). If the reverse implication holds then f is said to be order
reflecting. The collection of all posets with monotone functions between them
forms the category PoSet.

A function f: P — @) between two posets is said to be strict whenever 1. € P
is the least element of P implies f(L) is the least element of @).

A function f : P — @ between two posets is said to be finitely additive if it
preserves all finite joins of P, and completely additive if it preserves all joins
of P. Dual notions are finitely multiplicative and completely multiplicative.

An element z of a poset P is said to be a least fized point of f : P — P if
f(z) ==z, and f(y) = y implies z < y for all other y € P. Dually, z is said to
be a greatest fized point of f : P — P if f(z) = z, and f(y) = y implies y < z
for all other y € P. The following proposition is due to Knaster [120] and later
reformulated by Tarski [189] to assert that the set of fix-points of a monotone
function f on a complete lattice forms a complete lattice (and therefore f has
a least fixed point).

Proposition 2.2.1 Let P be a poset and let f:P — P be a monotone function.
If y = Mz | f(z) < z} exists in P, then y is the least fized point of f.
Similarly, if z = V{z | ¢ < f(z)} exists in P, then z is the greatest fized point
of f. O

A poset in which every finite subset has a join is called join-semilattice and,
analogously, a poset in which every finite subset has a meet is called meet-
semilattice. A lattice is a poset in which every finite subset has both meet and
join. By considering arbitrary subsets, and not just finite ones, we can de-
fine complete join-semilattice, complete meet-semilattice and complete lattice.
A poset is a complete join-semilattice if and only if it is a complete meet-
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semilattice. Thus every complete semilattice is actually a complete lattice.
However it is convenient to distinguish between the two concepts since a mor-
phism of complete join-semilattices (a function preserving arbitrary joins) is
not necessarily a morphism of complete lattices (a function preserving both
arbitrary joins and arbitrary meets). We have thus two categories CSLat and
CLat with the same objects but with different morphisms.

A lattice L is called distributive if

aN(bVe)=(aNb)V(aAc)
for all a, b and ¢ in L. The above equation holds for a lattice if and only if so
does its dual [172]

aV(bAc)=(aVbd)A(aVec).
The class of all distributive lattices together with functions preserving both
finite meets and finite joins defines a category, denoted by DLat. A distribu-

tive lattice L is called a Heyting algebra if for all a and b in L there exists an
element ¢ — b such that, for all c,

¢ < (a—b) if and only if (¢ A a) < b.

A Heyting algebra L is said to be a Boolean algebra if and only if for all a € L,
(a—=1)—L=ua.

In this case, the element ¢ — L is called the complement of a, and is usually

denoted by —a.

A complete lattice L satisfying the infinite distributive law

aAN\S=\{aAs]|seS}

for all @ € L and all subsets S of L is called a frame. Frames with functions
preserving arbitrary joins and finite meets form a category called Frm. Every
frame F' defines a Heyting algebra by putting

a—=b=\/{ceF|cna<b}
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Conversely, every Heyting algebra which has a join for every subset is also a
frame. However, frame morphisms do not need to preserve the — operation.

A complete lattice L is called completely distributive if, for all sets A of subsets
of L,

NV S5 eA=\V{NF(A)|f e oA},

where f(.A) denotes the set {f(S) | § € A} and ®(.A) is the set of all functions
f: A— UA such that f(S) € S for all S € A. The above equation holds for
a complete lattice if and only if so does its dual [164]

VIAS 15 e A= N{VI(A) | ] € @A)}

Because of the presence of arbitrary choice functions in the statement of the
above law, proofs involving complete distributivity require the axiom of choice.
For example, the statement that the set P(X) of all subsets of a set X is a
completely distributive lattice when ordered by subset (or superset) inclusion
is equivalent to the axiom of choice [53]. Completely distributive lattices with
functions preserving both arbitrary meets and arbitrary joins form a category,
denoted by CDL. Every completely distributive lattice is a frame and every
frame is a distributive lattice. Moreover, there are obvious forgetful functors
CDL — Frm and Frm — DLat. Every complete ring of sets, that is, a set
of subsets of X closed under arbitrary intersections and arbitrary unions, is a
completely distributive lattice.

For a meet semilattice L, a non-empty subset F of L is said to be a filter if

(i) F is upper closed; i.e. a € F and a < b implies b € F; and
(ii) F is a sub-meet-semilattice; i.e. ¢ € F and b € F imply a A b € F.

The collection of all filters of a meet semilattice L is denoted by Fil(L). If L
is also a lattice then a filter F C L is prime if for all finite subsets S of L,
V S € F implies there exists s € S N F. Finally, if L is a complete lattice then
a filter F C L is completely prime if \/ S € F implies there exists s € § N F.
For example, for any a € L the subset Ta = {b € L | a < b} is a filter.

For a complete lattice L, an element p € L is said to be prime if p # T, and
aANb < pimply a < por b < p. The collection of all prime elements of L
is denoted by Spec(L). The map which sends each completely prime element
p € LtoTA(L\ |p) and the map which sends each completely prime filter F
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of L to V(L \ F) form an isomorphism between the completely prime filters
and the prime elements of a complete lattice L.

Directed complete partial orders

There is a special class of joins in a poset that we will consider next. A non-
empty subset S of a poset P is said to be directed if for all s and ¢ in S there
exists z € S with both s < z and ¢t < z. For example, the set of elements of
an w-chain of a poset P forms a directed set, where an w-chain is a countable
sequence (1), of element of P such that z, < z,.; for all n > 0.

We say that P is a directed complete partial order (dcpo) if \V S exists for every
directed subset S of P. A dcpo P with a least element L is called a complete
partial order (cpo). If a poset has finite joins and directed joins then it has
arbitrary joins.

An element b of a dcpo P is compact if for every directed subset S of P,
b <V S implies b < s for some s € S. The set of all compact elements of P is
denoted by KC(P). In any dcpo, the join of finitely many compact elements, if
it exists, is again a compact element. A dcpo P is said to be algebraic if every
z € P is the join of the directed set of compact elements below it, that is,
z=V{be K(P)|b<uz} Adcpo P is w-algebraic if it is algebraic and the
set IC(P) is countable. When a dcpo is w-algebraic we do not need to consider
general directed joins, but only joins of w-chains are sufficient.

A monotone function f: P — @) between two dcpo’s is said to be continuous (or
Scott continuous) if it preserves all directed joins. The collection of all dcpo’s
with continuous functions forms a category, denoted by DCPO. The full sub-
category of DCPO whose objects are complete partial orders is denoted by
CPO, whereas the full sub-category of DCPO whose objects are algebraic
dcpo’s is denoted by AlgPos. The forgetful functor CPO — DCPO has a
left adjoint (—), mapping every dcpo P to the lift P, that is, the poset P
with a new least element adjoined. If P is a set (e.g. discrete dcpo), then the
lift P, is said to be a flat cpo. A flat cpo is algebraic and every element is
compact. Dually to the lift, for a poset P we denote by P the poset P with
a new top element adjoined.

The forgetful functor U : AlgPos — PoSet has a left adjoint Idl(—) defined
by the map which assigns to a poset P the algebraic decpo Idi(P) of directed
ideals of P (i.e. the directed lower subsets of P) ordered by subset inclusion.
Moreover, IdI(P) is also a cpo if and only if P has a least element. The
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algebraic dcpo Idl(P) is often referred to as the ideal completion of the poset
P. More generally, for a preordered set P, the poset Idl(P) of all directed
ideals of P ordered by subset inclusion forms an algebraic dcpo with compact
elements 1z for z € P.

Let P be an algebraic cpo. There are three standard preorders defined on
subsets X and Y of P:

— the Hoare preorder, defined as X <, YV ifVz € Xdy € Y:z < y;
— the Smyth preorder, defined as X <, YV if Vy € Yz € X:z < y; and
— the Egli-Milner preorder, defined as X <, Y it X <, Vand X <, V.

Powerdomains can be constructed from these preorders by ideal completion:
the Hoare powerdomain H(P), the Smyth powerdomain S(P) and the Plotkin
powerdomain € (P) of an algebraic cpo P are defined as the ideal completion of
(Pan(K(P)), S )5 (Prn(K(P)), ,SS), and (P, (K(P)), < ,.), respectively, where

IR
Pjin(IC(P)) consists of all finite, non-empty sets of compact elements of P.

Let P and @) be two algebraic cpo’s. The coalesced sum P & @ is defined as
the disjoint union of P and () with bottom elements identified, whereas the
separated sum P + () is the disjoint union of P and () with a new bottom ele-
ment | adjoined. The product P x () is defined as the Cartesian product of the
underlying sets ordered componentwise. All these constructions can be gen-
eralized to arbitrary sets of algebraic cpo’s. For example, the separated sum,
> ; P; is the algebraic cpo obtained by the disjoint union of all the algebraic
cpo’s P; with a new bottom element | adjoined.

Let P be a cpo. A minimal upper bound z of a subset S of P is an upper
bound of S (that is, s < z for all s € §) such that for all y € P,

VseS:is<y&y<z = z<uy.

In other words, z is a minimal upper bound of § if z is above every element
in S and there is no other element y above every element in S but below z.
Note that, in contrast with a least upper bound, a minimal upper bound need
not to be unique. The set mub(S) denotes the set of minimal upper bounds
of S, and the set mub*(S) is the smallest set Y C P such that S C Y and if
X C Y then mub(X) C Y, that is, mub*(S) is the least set containing S and
closed under mub(—). An algebraic cpo P is said to be an SFP-domain if for
every finite subset S of compact elements IC(P):

(i) if y is an upper bound of S then z < y for some z € mub(S), and
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(ii) the set mub*(S) is finite.

Alternatively, one can define SFP-domains as those algebraic cpo’s which arise
both as limits and as colimits in CPO of countable sequences (via embedding-
projection pairs) of finite posets [158]. The full sub-category of AlgPos whose
objects are SFP-domains is denoted by SFP. The justification for studying
this category is that it is the largest Cartesian closed category with w-algebraic
cpo’s as objects and continuous functions as morphisms [178]. The only fact
about SFP which we will need in the sequel is that it is closed under the fol-
lowing constructors: lift, coalesced sum, countable separated sum, and Plotkin
powerdomain. Moreover SFP admits recursive definitions of SFP-domains by
using the above constructors [160, Chapter 5, Theorem 1].

Fized points

In Proposition 2.2.1 sufficient conditions are given to guarantee the existence
of least and greatest fixed points of a monotone function on a poset. Next we
recall other characterizations of least and greatest fixed points of monotone
functions. For an overview of fixed point theorems we refer to [129].

Let P be a poset and let f : P — P be a function. For any ordinal « define
f{* and flel as the following elements of P (if they exists):

O =f\FD | B<a}) and f1 = F(NP | B < a}). (2.1)

In general they do not need to exist, since V{f® | 8 < a} and A{f¥ |
B < a} may not exist. Notice that for a = 0, f¢* = f(L) when the least
element | € P exists since in this case the join over an empty index set is the
bottom element. Similarly, for @ = 0, f{*) = f(T) when the top element exists.
The following proposition, originally formulated by Kleene [119] in a different
context, characterizes the least fixed point as a directed join in contrast with
Proposition 2.2.1 where the least fixed point is characterized as an infinite
meet.

Proposition 2.2.2 Let P be a complete partial order. If f : P — P 1is a
continuous function then @ exists in P for every ordinal o, and {0 is the
least fized point of f (here wy is the first limit ordinal). O

Hitchcock and Park have extended the above proposition by weakening the
constraint on f from continuous to monotone [100].
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Proposition 2.2.3 Let P be a complete partial order. If f : P — P is a
monotone function then f* exists in P for every ordinal o, and there exists
an ordinal  such that f¥ = £ whenever B < «. The latter implies that
) is the least fized point of f. O

The dual of the above proposition holds as well. To guarantee the existence
of certain meets we rephrase it for complete lattices.

Proposition 2.2.4 Let P be a complete lattice. If f : P — P s a monotone
function then fl® exists in P for every ordinal o, and there exists an ordinal
B such that fI81 = flol whenever B < «. The latter implies that f8 is the
greatest fized point of f. O

Under certain circumstances, the least fixed point of a function on a cpo can be
enough to guarantee the existence of the least fixed point of another function
on a poset which is not necessarily complete [10].

Proposition 2.2.5 Let P be a cpo and let ) be a poset such that there is a
strict and continuous function h: P — Q. If x € P 1s the least fized point of
a monotone function f: P — P and g: Q) — @ is another monotone function
such that the following diagram commutes

P P
h * h
7 Q

then the least fized point of g exists and equals h(z). O

Several generalizations and applications of the above proposition (often called
the transfer lemma) can be found in [140].

2.3 Metric spaces

We conclude this chapter with a section on some basic notions related to
metric spaces. The results in this section will play a key role only in the
second part of this monograph. Like partially ordered sets, metric spaces are
fundamental structures in mathematics, especially in topology. For details we
refer the reader to Engelking’s standard work [63] and Dugundji’s classical

23



Marcello M. Bonsangue

book [59]. We use metric spaces as a mathematical structure for semantics of
programming languages, following the work of Arnold and Nivat [11]. For a
comprehensive survey of the use of metric spaces in the semantics of a large
variety of programming notions, we refer the reader to [23].

A (one-bounded) metric space consists of a set X together with a function
dx : X x X — [0,1], called metric or distance, satisfying, for z, y and z in X,

(1) dx(éb‘,ﬂf):O (11) dX(x,z)SdX(x,y)—i-dX(y,z)

(iii) dx(z,y) = dx(y,z) (iv) dx(z,y) = dx(y,2) =0 = z =1y
A set X with a function dx : X x X — [0, 1] satisfying only (i), (ii), and (iii)
is called a (one-bounded) pseudo metric space. A quasi metric space is a set
X with a function dx : X x X — [0, 1] satisfying axioms (i), (ii), and (iv). We
shall usually write X instead of (X, dx) and denote the metric of X by dx. A

metric space X with a distance function which satisfies, for all z,y and z in
X

Y

dx(z,2z) < max{dx(z,y), dx(y,2)}

is said to be an ultra-metric space. Clearly the above axiom implies axiom (ii).

A countable sequence of points (), of a metric space X is said to converge
to an element z € X if

Ve > 03k > 0Vn > k: dx(z,, ) < e
Every sequence converges to at most one point which, if it exists, is said to

be the limit of the sequence. It is denoted by lim,, z,,. A countable sequence of
points (z,), of a metric space X is said to be Cauchy if

Ve > 03k > 0Vm,n > k: dx(zp,, z,) < €.
As can be easily seen, every convergent sequence is Cauchy. A metric space is
called complete if every Cauchy sequence converges to some point in X.

The simplest example of a complete metric space is the following. A metric
space X is called discrete if

Ve € Xde >0Vy € X:dx(z,y) < € = z=1y.
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Every discrete metric space is complete since it has no non-trivial Cauchy
sequences. A set X can be seen as a discrete metric space if endowed with a
distance function which assigns to z,y € X, distance 1 if z # y and distance
0 otherwise.

Let X and Y be two metric spaces. A function f: X — Y is said to be
non-expansive if dy (f(z1), f(22)) < dx(z1, 2) for all z;, 7, € X. The set of all
non-expansive functions from X to Y is denoted by X 5y, Complete metric
spaces together with non-expansive maps form a category, denoted by CMS.

Of special interest in the study of metric spaces are contracting functions, that
is, functions f : X — Y such that

Je <1Vz,y € X:dy(f(21), f(22)) < € dx (71, 32).

The following proposition is known as the Banach fixed point theorem [25].

Proposition 2.3.1 If X is a complete metric space and f : X — X 1is a
contracting function then f has a unique fixed point x such that, for every
y € X, z = lim, y,, where (y,), is the Cauchy sequence defined inductively

by yo =y and ypp1 = f(yn). O

Next we define some of the constructors on metric spaces. For all ¢ < 1 and
metric space X, define the metric space ¢ - X as the set X with distance
function, for all z; and z, in X,

de.X(.'I;l,.TQ) = €- dx(éb'l,l'g).

The product X x Y of two metric spaces X and Y is defined as the Cartesian
product of their underlying sets together with distance, for (z;, y1) and (zy, y2)
in X xY,

dx x Y((mla yl)ﬁ <332; y2)) = max{dX(xl’ 3;2)’ dY(yb yQ)}'

The exponent of X and Y is defined by

YX* ={f: X — Y | f is non-expansive },

with distance, for f and g in Y¥,

dyx(f, g) = sup{dy(f(z),g(z)) | v € X}.
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Notice that if Y is a set endowed with the discrete metric then every function
from Y to X is non-expansive. The disjoint union X + Y of two metric spaces
X and Y is defined by taking the disjoint union of their underlying sets with
distance, for z; and z in X + Y,

dx(z,2)if 21 € X and 2z € X
dx+v (2, %) = dy(z1,2)if 1 € Y and % € YV

1 otherwise.

If both X and Y are complete metric spaces then also X x Y, YX and X + Y
are complete metric spaces.

The Hausdorff distance between two subsets A and B of a metric space X is
defined by

dp(x)(A, B) = max{ sup{inf{dx(a,b) | b € B} | a € A},
sup{inf{dx(a,b) | a € A} | b € B} }

with the convention that inf() = 1 and sup( = 0. In general (P(X), dp(x))
is a pseudo metric space: different subsets of X can have null distance. In
order to turn sets of subsets of a metric space into a metric space, we need the
following notions. A subset S of a metric space X is said to be closed if the
limit of every convergent sequence in § is an element of S. For example, the
set X itself is closed as well as the empty set. Also, every singleton set {z} is
closed. In general, every subset S can be extended to a closed set

cl(S) = {lign T, | (2,)n is a convergent sequence in S'}.

Clearly, cl(S) is the smallest closed set containing S. Notice that if S is a
closed subset then ¢l(S) = S. A subset S of a metric space X is compact if for
every sequence in S there exists a sub-sequence converging to some element
in S. Every compact set is closed, and every finite set is compact. A metric
space X is compact if the set X is compact. It follows that every compact
metric space is complete.

Both the collection of compact subsets of a metric space X, denoted by P, (X),
and the collection of closed subsets of X, denoted by P.(X), are metric spaces
when taken with the Hausdorff distance. Moreover, if X is a complete met-
ric space then P, (X) is a complete metric space [85], and also Py(X) is a
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complete metric space [124]. We refer to them as the compact and closed pow-
erdomain of X, respectively. Below we give two properties of the Hausdorff
distance which will be useful later.

Proposition 2.3.2 Let X be a metric space. For all § > 0 and subsets A and
B of X, dp(x)(A, B) <6 if and only if for all e >0,

Va € AJb € B:dx(a,b) <d+¢€andvb € Bda € A:dx(a,b) <d+e.
O
While the above proposition is standard the following one seems to be new.

Proposition 2.3.3 Let X be a metric space and V and W be two sets of
subsets of X such that for all C C X, of NV C C then C € V, and if
NW C C then C € W. Then

dppx)(V, W) = dpoxy (V[ W).

Proof. Put Vo = NV and Wy = N W. Let also § = dppx))(V, W) and
(50 = d/p()Q(V(), W()) We claim

VX € VY € W:dpx)(X,Y) < g+ € and (2.2)
VY e WX ¢ Vd@(X)(Y,X) < do+e€

for an arbitrary e>0. From the above claim § < §y follows by Proposition 2.3.2.
Next we prove the claim. Choose some ¢ >0 and X € V. Put Y = Wy U X.
By the closure property of W, since Wy C Y, also Y € W. Since X C Y we
have that for all z € X we can find y € Y such that dx(z,y) = 0. On the
other hand, for all y € Y, either y € W, or y € X by definition. So, either
dx(y,z) < 0 + € for some 7 € Vi C X (since dpx)( Vo, Wy) < 0o + € and
Vo CXeV)ordx(y,z) =0 <+ ¢ from z =y € X. Hence (2.2) follows
by Proposition 2.3.2. Symmetrically we derive

VY € W3X € Vidpx)(Y,X) < dp+e

from which our claim follows and we conclude 0 = dpp(x)) (V, W) < do.

In order to show the converse, i.e. §; < 9, we establish
Vi € Vody € Wy dx(z,y) <6+ € and (2.3)
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Vy € Wode € Virdx(y,z) <+,

for all € > 0. Since dppx)(V,W) =46, Vo € V, and Wy € W we can find
Y € W and X € V by Proposition 2.3.2 such that

dp(X)(Vo, Y) S 5+€ and d’p(X)(X, W()) S 5+6

From this we obtain the result (2.3) and its symmetric version, for V, C YV
and Wy C X, respectively. Therefore 6o = dp(x)( Vo, Wo) < 6. O

In [9,169], generalizing the results of [24], a method has been developed to
justify recursive definitions of complete metric spaces as solutions of domain
equations of the form X = F(X), where F : CMS — CMS is a functor.
A solution for the domain equation X = F(X) exists and it is unique (up
to isometries) if the functor F' is locally contracting, that is, for every two
complete metric spaces X and Y, the mapping

Fxy:YX = F(Y)F®)

is contractive, where Fx y(f) = F(f) for every non-expansive f : X — Y. If,
for all objects X, Y, Fx y is non-expansive then the functor is called locally
non-expansive. Composition of a locally non-expansive functor with a locally
contractive one gives a locally contractive functor.

For example, the constructors P.,(—) and P, (—) can be extended to functors
from CMS to CMS which are locally non-expansive, while the constructor
3 (=) can be extended to a functor from CMS to CMS which is locally
contractive. Also, for a fixed set S (understood as a discrete metric space),
the constructors S x —, $(=), and § + (—) can be extended to functors from

CMS to CMS which are locally non-expansive [9,169].
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Basic dualities
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Chapter 3

The weakest precondition
calculus

The role of a sequential program is to produce a final result at the end of a
terminating computation. Computations may possibly be non-deterministic
and also fail to terminate. The main characteristic of sequential programs is
that no interaction with its environment is possible. Programs written in clas-
sical programming languages like Pascal are examples of sequential programs.
Different semantics for this type of programs (and their relationships) are our
main interest in this first part.

The semantics of a programming language £ is a function which assigns to
each program in £ its meaning, that is, an element of a domain of meanings
chosen for modeling the computations specified by the program. There are
different approaches to the definitions of the semantic function and of the
semantic domain.

The operational approach is intended to specify the meaning of a program
in terms of the steps performed by an abstract machine when executing it.
Formally, a transition relation on the configurations of an abstract machine is
specified [94,161]: a transition from a configuration to another one represents
one atomic step of a computation. Then the semantic function is defined in
terms of the transition relation. A computation of a program may fail to termi-
nate if it contains an infinite transition sequence. A computation deadlocks if
there is a configuration reached by the computation from which no transition
is possible. The operational view of a program on the one hand corresponds
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often to its intuitive meaning, but, on the other hand, it is not always abstract
enough to be computationally useful since it might require a rather detailed
and intricate analysis.

Another approach to semantics is the denotational one [177,142,186,81]: first
provide an appropriate semantic domain according to the principle that pro-
gram constructs denote values, and then define the semantic function in such
way that the meaning of each syntactic construction of a program is given
in terms of the meanings of its constituent parts. In particular fixed point
techniques are needed to deal with recursion. For sequential programs this
results in the relation between input and output values. Thus the most simple
abstract denotational domain for sequential programs is that of all functions
from a starting state space (the set of all admissible inputs values) to a final
state space (the set of all possible output values). The semantics of a program
is a function, which we call state transformer. In order to take into account
non-termination of programs it is a natural step to consider state transformers
employing complete partial orders with a bottom element—a fictitious state
representing non-termination. Within this framework, non-determinism can
be handled using powerdomains. The state transformer model reflects closely
the operational view of a program, but abstracts from the intermediate con-
figurations.

The axiomatic approach has different aims from the operational and the de-
notational ones: proving program correctness, analyzing program properties,
and synthesizing correct programs from formal specifications [56,12,58,17]. In-
formally, a sequential program is correct if it satisfies the intended relation
between input values and output value. Program correctness is expressed by
statements of the form {P}S{@}, where S is a sequential program, P is a
predicate on the set of input values (precondition) and @) is a predicate on the
set of output values (postcondition) [101]. The precondition P describes the
initial input values in which the program § is started, and the postcondition
() describes the set of the desirable output values. More abstractly, correct-
ness statements can be defined with the weakest precondition and the weakest
liberal precondition: programs can be identified with functions, called predi-
cate transformers, from predicates on the set of all possible output values to
predicates on the set of all admissible input values. The weakest (liberal) pre-
condition calculus was introduced by Dijkstra [56] as a mathematical tool for
reasoning about the partial and total correctness of programs, and it has been
further developed in [82,58,98]. This predicate transformer model is called ax-
iomatic because it relies only on algebraic properties of predicates (described
for example in [86]).
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In this chapter we start by introducing the syntax of a sequential language.
Then we define three different state transformer semantic domains. Accord-
ingly, three state transformer semantics for our language are introduced and
related. We define two predicate transformer semantics, one by taking into
account the possibility of non-termination, and another one by not doing
so. State transformer semantics and predicate transformer semantics will be
proved to be equivalent. We conclude the chapter with a formal treatment of
a backtrack operator in the weakest precondition calculus.

3.1 The sequential language £,

We begin by introducing a simple sequential language £, which is inspired by
Dijkstra’s language of guarded commands [56]. The language constructors are
assignment, conditional, non-deterministic choice and sequential composition.
The language allows for recursion by means of procedure variables. Dijkstra’s
guarded commands, conditionals and recursive combinators can be expressed
in terms of the basic constructors of L.

All the constructors of the language are well-known. The free occurrence of
guards as a conditional is already present in Hoare [103]. The non-deterministic
choice is studied, for example, by De Bakker in [20]. More generally, the lan-
guage L is a slight variation of Hesselink’s calculus of commands [95].

To define the language, we need as basic blocks the sets (v €) IVar of (individ-
ual) variables, (e €) Exp of expressions, (b €) BExp of Boolean expressions,
and (z €) PVar of procedure variables, respectively. For a fixed set of values
Val, the set of states (s,¢ €) St is given by St = IVar — Val. As usual, for
every state s € St, individual variable v € IVar and value z € Val, s[z/v]
denotes the state which evaluates to s(v') for every v’ # v and evaluates to z
otherwise. Also, we postulate valuations

Ev:Exp — (St — Val) and Bv: BExp — P(St).

These functions provide, in a rather abstract way, the semantics of expressions
and Boolean expressions. Clearly £v(e)(s) = z means that the expression e
in a state s has value z, and, similarly, s € Bv(b) means that the Boolean
expression b is true in a state s. Notice that for simplicity we assume that the
evaluation of an expression and of a Boolean expression is deterministic and
always terminates.
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The language below has assignment “:=’, conditional ‘0—’, sequential compo-
sition ‘;’, choice ‘00°, and recursion through procedure variables. Its syntax is
defined as follows.

Definition 3.1.1 (i) The set (S €) Staty of statements is given by
Si=v :=e|b>|z|S5;5][50OS85.

(ii) The set (d €) Decly of declarations is defined by Decly = PVar — Staty.
(iii) The language Lq is given by Decly x Staty.

The computational intuition behind assignments is as usual. The conditional
‘b—’ deadlocks in a state in which the Boolean expression ‘b’ does not evaluate
to true and acts as a skip otherwise. We assume deadlock is not signaled. The
sequential composition executes the first component and then it executes the
second component. The choice executes one of its components (the choice as
to which component is taken may be made by an implementation or, for non-
sequential languages, may be forced by some external factor). The intended
meaning of a procedure variable is body replacement.

We do not give an operational semantics for the language Ly, since we will
not deal with the connection between the operational and denotational se-
mantics (which, of course, is an important topic [160,22,23]). We concentrate
on state transformer and predicate transformer models, and we shall rely on
our computational intuition when formulating the semantic function.

3.2 State transformer models

In the state transformer approach programs are denoted by functions that
relate an input state s to the outcomes of all the computations of the program
when started in s. There are two important aspects to be considered. There
may be input states s for which the program deadlocks or fails to terminate. In
the first case, since no outcome is present, the input s is related to the empty
set. This is in accordance with the fact that if a program at input s can either
deadlock or produce some outputs then there is no reason to signal deadlock
as a result of a computation. In the second case we need to introduce a special
value—usually | —to which a non-terminating computation is mapped.

Some difficulties arise when we consider non-deterministic programs. Suppose
we have a procedure variable z € PVar declared as d(z) = v:=0; z, and let
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us consider the programs

- P3={(d,v := 101z).

While program P; always terminates when activated, an execution of the
program P, gets stuck in a loop. An execution of the program Ps consists
of either executing the program P; or the program P,. Which of these three
programs should be considered equivalent by a state transformer semantics?

One view is to consider equivalent those programs which have computations
that may fail to terminate since nothing can be guaranteed for them. Hence
the program Pj3 should be identified with the program P, and it should differ
from the program P;.

Another view is to identify those programs that have the same sets of out-
comes, if any. Then the program P; should be identified with the program Ps,
and both should be different from the program Ps.

Finally, another view is to consider what actually happens: all three programs

are different. Below we give three state transformer domains corresponding to
these three views.

Smyth state transformers

Let X be the set of inputs and Y be the set of all possible outcomes of a class
of programs we consider. Computations that are possibly non-terminating are
identified (since nothing can be guaranteed of any of them) and mapped to
Y, = Y U{L}. Computations that deadlock are mapped to the empty set.

Definition 3.2.1 The set of Smyth state transformers from a set X to a set
Y is defined by

STs(X,Y)=X - (P(Y)U{Y.}).

In general, Smyth state transformers are ordered by the pointwise extension
of the superset order, that is, for 0,7 € STg(X, Y)
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o <7 if and only if Vz € X: o(z) D 7(2).

The above order can be justified as follows: the smaller the set of outcomes of
a program the more can be guaranteed of it. Smyth state transformers form a
poset with a least element given by the function mapping every z € X to Y,
(corresponding to the program which always fails to terminate, and for which
nothing at all can be guaranteed).

Not all Smyth state transformers are ‘reasonable’ denotations of programs.
In particular, we may wish to consider only programs which are finitely non-
deterministic:

ST (X, Y)=X = (Pa(Y)U{YL}),
where P, (Y) consists of the finite subsets of Y.
Lemma 3.2.2 For every set X and Y, both STs(X,Y) and STE (X, Y) are

complete partial orders.

Proof. Since the function Az € X.Y, isin both STg(X, Y) and STE" (X, V),
it is their least element. Assume now )V is a directed set of functions in
STs(X,Y). It is easy to see that

A€ X.(o(z) | o€V} (3.1)

is the least upper bound of V in $Tg(X, Y). If every o € Vis in ST (X, Y)
then o(z) is either a finite set or { Y, }. Thus also

(Mo(z) |0 €V}

is a finite set or { Y, } for every z € X. It follows that (3.1) is the least upper
bound of V also in ST (X, V). O

An alternative way to prove that S T]g" (X, Y) is a complete partial order is to
define it as the set of all functions from X to S(Y,)", the Smyth powerdomain
with emptyset (added as a top element) of the flat cpo Y.
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There are two basic operators for Smyth state transformers which can be used
as the semantical counterpart of the syntactical operators of L.

Definition 3.2.3 Let X, Y and Z be three sets. Define, for every x € X, the
union function O: STs(X,Y) x STs(X,Y) = STs(X,Y) by

(0100%)(z) = o1(z) U oa(z),

and the composition function ;: STs(X,Y) x STs(Y,Z) = STs(X, Z) by

Y, if L€ oi(z) or
(015 09)(z) = dy € o1(z): L € 03(y)
U{o2(y) | y € o1(z)} otherwise.

These functions are monotone in both their arguments. Moreover, if o; and oy
are in STA" (X, V), then also 0,00y is in STE" (X, Y). Similarly, because the
finite union of finite sets is a finite set, if oy is an element of S T{Z” (X,Y) and

09 is an element of S Tg"( Y, Z) then their composition o7 ; 09 is an element
of ST (X, 7).

Once we have defined the semantical operators which will denote the syntactic
operators ‘;” and ‘00" of the language £y, we have almost all ingredients to define
a state transformer semantics for £, using ST g(St,St) as semantic domain:
we have only to define the semantics for the atomic commands ‘v := e’ and
‘b—’, and for the procedure variables ‘z’.

Definition 3.2.4 The semantic function Stg[-] is defined as the least function
in Lo — STs(St, St) such that, for all s € S,

Sts[(d,v:=e)l(s) = {s[Ev(e)(s)/v]},
Sts[(d, b—=)](s) = {{3} if s € By(b)

0 otherwise,
Sts[(d, z)](s) = Sts[(d, d(2))](s),
Sts[(d, 515 S2)](s) = (Sts[{d, S1)] ; Sts[{d, $)])(s),
Sts[(d, 1 O $2)](s) = (Sts[(d, 51)]OSts[(d, $2)])(s).
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The well-definedness of the above semantics can be justified as follows. The
semantics Stg[-] can be obtained as the least fixed point of a higher order
transformation.

Lemma 3.2.5 Let F € Semgs = Ly — STs(St,St) and define the function
U : Semg — Semg inductively, for all s € St, by

Vs(F)((d,v:=¢))(s) = {s[Ev(e)(s)/v]},
Us(F)({d, b—))(s) _ {{3} if s € Bv(b)

0 otherwise
Us(F)((d; z))(s) = F((d, d(2)))(s),
Us(F)((d, 815 52))(s) = (Ys(F)({d, 5)) ; Us(F)({d, 52)))(s);
Us(F)((d, 51 8 8))(s) = (Ys(F)({d, 51))BYs(F)((d, 52)))(s),

Then Vg is well-defined, monotone, and the function Stg[-] defined in Defin-
itton 3.2.4 s the least fized point of Ug.

Proof. Well-definedness of Wy is readily checked. To prove monotonicity of
Vg assume F; < Fy in Semg. We show that Wg(Fy)({d,S)) < ¥g(F3)({d,S))
for any program (d, S) by induction on the structure of S. The base cases are
immediate, and for the cases when § = 5,055 or § = 57 ; 5, we use induction
and the fact that both the union function ‘0’ and the composition function
‘;” are monotone in each argument.

Finally, since STs(St,St) is a cpo, Semg is also a cpo. Thus, by Proposi-

tion 2.2.3 the function Wg has a least fixed point, which, from Definition 3.2.4,
is Stgﬂ']]. O

By structural induction on the statement S, and because STL"(St,St) is
closed under the union function ‘0" and the composition function ;’, it follows
that Sts[(d, S)] € ST (st,St) for every program (d, S) in L,.

Hoare state transformers

Next we consider a domain of state transformers which can be used for iden-
tifying programs only on the basis of their sets of outcomes, if any. The main
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difference with the Smyth state transformers is that now we do not wish to
record non-termination. Deadlocking computations are mapped to the empty
set, as before.

Definition 3.2.6 The set of Hoare state transformers from a set X to a set
Y s defined by

ST(X,Y)=X = P(Y).

Alternatively, Hoare state transformers can be defined as the cpo of all func-
tions from X to (H#(Y.))., the Hoare powerdomain with emptyset (added as
a bottom element) of the flat cpo Y, . We prefer our definition above since its
conceptually simpler (no extra bottom elements L have to be added to V).

Since Hoare state transformers do not record non-termination, infinite sets of
outcomes are possible also for programs with a finite non-deterministic behav-
iour [20]. Consider for example the program (d, z) in Ly where the program
variable z is declared as

dz)=(v=v+1;z)0v:=0v.
According to the intended meaning, if we start the above program in a state
where v = 0 then we expect that the program either fails to terminate or

delivers a state in which the variable v has an arbitrary natural number as
resulting outcome.

The set STy (X, Y) is ordered by the pointwise extension of the subset inclu-
sion, the natural order in P(Y). Thus, for o and 7 in STy (X, Y),
o <7 if and only if Vo € X: o(z) C 7(2).

The set ST (X, Y) ordered as above forms a complete partial order with least
element given by the function Az € X.0). The least upper bound of a directed
set {o; | i € I} of state transformers in STy (X, Y) is calculated pointwise,
that is,

(Vioi | i€ I})(z) = Hoi(e) | i € I},
for all z € X.
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It is important to note that ST (X, Y) is isomorphic to P(X x Y), the set
of all relations on X and Y. This explains why the Hoare state transformer
semantics is often called relational semantics [160].

Every state transformer in STy (X, Y) is a state transformer in STs(X, V).
Hence we can define a union function and a composition function exactly in

the same way as for the Smyth state transformers.

Definition 3.2.7 Let X, Y and Z be three sets. Define, for every x € X the
union function O: STH(X,Y) x STy(X,Y) —» STy(X,Y) by

(01009)(z) = o1(z) U og(z),

and the composition function ; : STy (X,Y) x STy(Y,Z) —» STu(X,Z) by

(01 ;02)(5’7):U{U2(Z/) |y € o1(z)}

for every z € X.

The above ‘0’ and ‘;’ are well-defined and continuous in each argument. We
are now in a position to define the Hoare state transformer semantics for L.

Definition 3.2.8 The semantic function Sty|[-] is defined as the least func-
tion in Lo — ST ;(St, St) such that,

n

[(d,v:=¢)] = Sts[(d,v:=¢)],
tu[(d,b=)] = Sts[(d, b)],
tu[(d, z)] = Stp[(d, d(z))],
Stul(d, Sy ; S2)] = Stu[(d, S1)]; Stul(d, S)],
Sty [{d,S; O S9)] = Sty[(d, S1)|OSty[{d, Ss)]-

ty

» W

The well-definedness of the above semantics can be proved in a similar way as
for the semantics Stg[-].
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Eqgli-Milner state transformers

Finally we turn to the possibility of identifying programs on the basis of what
actually happens. Computations are mapped to the subset of all their possi-
ble outcomes, including | to denote the possibility of non-termination. Note
that we differ from the Smyth state transformers because we do not neces-
sarily identify computations which fail to terminate. As always, deadlocking
computations are mapped to the empty set.

Definition 3.2.9 The set of Egli-Milner state transformers from a set X to
a set Y 1is defined by

STH(X,Y)=X — P(Y U{L}).

The set STg(X,Y) can be turned into a cpo by the following order. For
o,7T€S8STp(X,Y),

o <7 ifand onlyif Vze X: (L ¢&o(z) & o(z) =7(z)) or
(Leo(z) &o(z)\{L} C7(z)).

This ordering has been introduced for the semantics of non-deterministic pro-
grams by Egli [60], and it has been studied in detail by De Bakker [20]. It is
often referred to as the Egli-Milner ordering because Milner has defined it in
an essentially equivalent formulation (as reported by Plotkin [158]). The Egli-
Milner ordering is an approximation ordering: the computation represented
by 7 is ‘better’ than the one represented by o if, for any input z, 7(z) can be
obtained form o(z) by replacing the partialness in o(z) (represented by the
presence of L in o(z)) by some set of outcomes.

Not all Egli-Milner state transformers correspond to denotations of programs
that are finitely non-deterministic. We could restrict them by considering only
a finite set of outcomes. However, if a computation fails to terminate then an
infinite set of outcomes is also possible (essentially for the same reason as for
the Hoare state transformers). Therefore, we take ST (X, Y) to be the set
of all functions from the set X to all subsets of Y U{_L} which are either finite
or contain L.

Lemma 3.2.10 For every set X and Y, both ST(X,Y) and STE(X,Y)
are complete partial orders.
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Proof. If V is a directed set in ST (X, Y) then

VVoieex. { U{o(z) | o € V} if Vo € V: L € o(z) 62)
U{o(z) \ {L} | o € V} otherwise.

Assume now that o € ST (X, Y) for every o € V, and let z € X. In order
to show that \/V is the least upper bound of V in ST’Z;"(X, Y) we need to
prove that the set (\/ V)(z) is finite whenever L & (\/ V)(z).

Assume L & (VV)(z). Then by (3.2), there exists g € V with L & oy(z).
Since V is a directed set, for every o, € V, there exists oo € V which is an
upper bound of both oy and ¢;. By definition of the Egli-Milner order and
because L ¢ o¢(z) it must be the case that o9(z) = 0g(z). Hence

(H{o(z) | 0 € V} = o9(2).
By (3.2) and because o¢(z) is a finite subset of Y, (VV)(z) is also a finite
subset of Y.
Finally, the function Az € X.{1} is the least element for both STg(X,Y)

and STA"(X,Y). Hence they both are cpo’s. O

As for the finitary Smyth state transformers, an alternative way to prove that
ST (X, Y) is a complete partial order is to define it as the set of all functions
from X to £(Y,) @ (1), the Plotkin powerdomain with emptyset (added by
means of a coalesced sum) of the flat cpo Y.

Next we give the semantical counterparts of the syntactic operators in L.

Definition 3.2.11 Let X, Y and Z be three sets. Define, for every z € X,
the union function O: STE(X,Y) x STE(X,Y) = STe(X,Y) by

(01009)(z) = o1(z) U og(z),

and the composition function ;: STg(X,Y) x STe(Y,Z) — STe(X,Z) by

(015 02)(2) = Hoz(y) [y € or(2) \{L}} U{L | L € ou(x)}.
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Both these functions are monotone in their arguments. Moreover, the set
ST (X, V) is closed under the union operation, and, if o, € ST (X, Y)
and o, € STE(Y,Z) then oy ; 05 € ST (X, Z). We are now ready for the
definition of the Egli-Milner state transformer semantics of Ly.

Definition 3.2.12 The semantic function Stg[-] is defined as the least func-
tion in Lo — ST g (St, St) such that,

Ste[{d,v:=e)] = Sts[(d,v:=¢€)],
Stg[(d,b—)] = Sts[(d, b—],

Ste[(d, z)] = Stg[{d, d(z))],

Stgl(d, S1 5 $)] = Stg[{d, $1)] ; Ste[(d, S2)],
Ste[(d, S, O 8)] = Stg[(d, $)]OStz[(d, S)].

We omit the proof of the well-definedness of the above semantics since it can
be obtained in a similar way as for the semantics Stg[-].

Relating the three state transformer models
So far we introduced three state transformer semantics for £,. Next we discuss

how these semantics are related.

For fixed sets X and Y, define the functions Ey : STg(X,Y) = STy (X,Y)
and Eg: STg(X,Y) — STs(X,Y) respectively by

YJ_ if L e 0'(.7,')

o(z) otherwise

Ey(o)(z) =o(z) \ {L} and Es(o)(z) = {

for every 0 € STg(X,Y) and z € X. Then both Ey and Eg are strict,
continuous, and onto, as can be easily verified. Moreover, if 0 € S Tg" (X,Y)
then Es(c) € STR' (X, Y).

Lemma 3.2.13 For og,01 € STg(X,Y) and oy € STe(Y, Z)

Es(O'()DO'l) = Es(O'())DEs(O'l) and EH(O'()DO'l) = EH(O'())DEH(O'l),
ES(UO ) 01) = ES(UO) ; ES(Ul) and EH(UO ; 01) = EH(GO) ) EH(Ul)-
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Proof. Immediate from the definitions of Eg and Ey, and of the union and
composition functions on the Egli-Milner, the Smyth and the Hoare state
transformers. O

Both the semantics based on the Smyth and Hoare state transformers are
projections, under Egs and Fpy respectively, of the semantics based on the
Egli-Milner state transformers.

Theorem 3.2.14 For all (d,S) € Ly, Es(Ste[(d,S)]) = Sts[{d,S)] and
Ey(Ste[{d, 5)]) = Stul[(d, 5)].

Proof. We prove that Es(Stg[{(d,S)]) = Sts[(d,S)]. The other equality
En(Ste[{d,S)]) = Sty[{d, S)] can be proved in a similar way.

Let Semy denote the set Lo — ST (St,St), and define a monotone func-
tion Vg : Semp — Semp such that Stg[-] is the least fixed point of Vg
(the definition of ¥y can be obtained adapting the definition of Ug given
in Lemma 3.2.5).

By structural induction on S, following the definition of ¥y, and using also
Lemma 3.2.13 it is straightforward to prove that the following diagram com-
mutes:

Sempg Sempg
AF.EgoF * AF.EgoF
Semg 73 Semyg.

Since FEg is strict and continuous and Sempg is a cpo, we can use Proposi-
tion 2.2.5: the least fixed point of ¥g coincides with the projection under
AF € Semp.Es o F of the least fixed point of ¥z, showing that

Es(Stel(d, 5)]) = Sts[(d, S)],

for all (d,S) € £L,. O
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3.3 Predicate transformer models

In this section we introduce predicate transformer models for sequential pro-
grams. We will proceed as follows. First we introduce informally predicate
transformers for partial and total correctness. Then we give a partial correct-
ness semantics and a total correctness semantics to L£y. Subsequently, we show
that for every state transformer there is an associated predicate transformer,
and conversely, every predicate transformer corresponds uniquely to a state
transformer. These relationships form the basic dualities we will study. The du-
ality between the predicate transformers for total correctness and the finitary
Smyth state transformers is well-known: it appears already in [194,14], and it is
formally studied by Plotkin [159]. Various generalizations of this duality have
been studied in [29,10,40]. The connection between predicate transformers for
partial correctness and the Hoare state transformers is presented in [160].

Predicate transformers for partial and total correctness

Let X be a set. Intensionally, a predicate on X is a function which maps each
element of X to either true or false. We will use the extensional characteriza-
tion of a predicate as the set of all points of X for which, intensionally, the
predicate is true. This extensional view leads us to define the set of predicates
on X as P(X), the collection of all subsets of X. We will usually denote predi-
cates by P and ). Predicates are ordered by subset inclusion when not stated
otherwise.

Definition 3.3.1 A predicate transformer is a total function—typically de-
noted by m, p—from predicates on Y to predicates on X, that is

PT(Y,X)=P(Y) = P(X).
Predicate transformers are ordered by pointwise extension of the subset order
on X, that is, for m,p € PT(Y,X),

m < p if and only if VP C Y:7(P) C p(P).

The poset of predicate transformers PT (Y, X) inherits much of the structure
of P(X): as PT(Y,X) is the pointwise extension of the complete Boolean
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algebra P(X), it will also be a complete Boolean algebra. Meets and joins are
defined pointwise by

(A7) (P) =(mi(P) and (\/m:)(P) = Jmi(P),
I I I I
for every set I, predicate transformers m; € PT(Y,X) (i € I),and P C Y.
Also the complement —7 of a predicate transformer 7 € PT(Y, X) is defined
pointwise by

(=m)(P) =X \ =(P),

for every P C Y.

Predicate transformers in PT (Y, X) can be used for the interpretation of a
program which starts from a state in X and eventually terminates in some
states that are elements of Y. We consider two different semantic models:

— The total correctness model: for a predicate P on Y and 7 € PT(Y,X),
the predicate m(P) holds precisely for those inputs z € X for which each
computation of the program represented by 7 terminates in a final state
y € Y satistying the predicate P;

— The partial correctness model: for a predicate P on Y and 7 € PT(Y, X),
the predicate m(P) holds precisely for those inputs z € X for which each
computation of the program represented by 7 either fails to terminate or
terminates in a final state y € Y satisfying the predicate P.

In the total correctness model 7(Y") holds precisely for those inputs z € X for
which each computation of the program represented by 7 terminates, whereas,
according to the partial correctness model 7(Y) = X.

Not every predicate transformer represents a ‘reasonable’ program. For exam-
ple, a predicate transformer representing a program is required to preserve
non-empty intersections: every computation of a program S at input z termi-
nates in a final state y € Y satisfying the predicate ; P; if and only if every
computation of a program § at input z terminates in a final state y € Y
satisfying P; for all + € I.

Definition 3.3.2 Let X and Y be two sets. We define

(i) the domain of total correctness predicate transformers PT (Y, X) to
be the set of all predicate transformers in P(Y) — P(X) that preserve non-
empty intersections;
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(ii) the domain of partial correctness predicate transformers PTp(Y, X)
to be the set of all total correctness predicate transformers m € PT (Y, X)
such that m(Y) = X.

Both the total and partial correctness predicate transformers are closed under
arbitrary meets (defined pointwise) and functional composition. The closure
under arbitrary meets turns PT 7(Y, X) into a complete lattice.

We are now ready for the definition of two predicate transformer semantics
for £;. We define them as the greatest and the least fixed point of a monotone
function on the domain of all possible predicate transformer semantics for L.

Lemma 3.3.3 Let F € Semy = Ly — PT r(St,St) and define the function
U Semy — Semy inductively, for all P C St, by

U (F)(d,vi=e))(P) = {s|s[Ev(e)(s)/v] € P},

U (F)((d, b=))(P)  ={s|seBv(b) = s€P}

U (F)((d, ))(P) = F((d, d(2)))(P),

e (F)((d, 815 52))(P) = Ur(F)((d, $1))(Yr(F)({d, 52))(P)),
Ur(F)({d, 51 O 5))(P) = U (F)({d, 51))(P) NV (F)((d, 52))(P)-

Then YV is well-defined and monotone.

Proof. Both well-definedness and monotonicity are immediately proved using
induction on the structure of S € £,. O

As a consequence of Proposition 2.2.1, 1 has both least and greatest fixed
points. We denote them by Wp,[-] and Wip,[-], respectively. The names Wp,
and Wip, stands for ‘weakest precondition’ and ‘weakest liberal precondition’,
respectively (the subscripts indicate the language to which they are referred
to).

Dijkstra’s weakest precondition calculus [56] can be expressed by the semantics
Wpo[-] if we allow ‘enough’ Boolean expressions in BExp. For example, the
meaning of Dijkstra’s guarded command b—S is the predicate transformer
Wpol{d, b— ; S)]; the meaning of Dijkstra’s conditional command

if b1—>51 O bg—)SQ fi

47



Marcello M. Bonsangue

is equivalent to Wp,[(d, z)] where the procedure variable z is declared by

d(z) = ((by—; 81) O (b= ; S2)) O (b3— ; z)

and Bv(bs) = St \ (Bv(b1) U Bv(bs)). Finally, Dijkstra’s iteration command

do bl—)Sl O b2—>SQ od

corresponds to Wpy[(d, z)] where the procedure variable z is declared by

d(z) = (b= 81) 5 2) O ((be= 5 52) 5 7)) O bs—,

and Bv(bg) =St \ (Bv(bl) N Bv(bg))

Another form of conditional command ‘{b}’ for b € BExp, is often consid-
ered [95]. The computational intuition behind the command ‘{b}’ is that it
is undefined in a state in which the Boolean expression ‘b’ does not evalu-
ate to true and acts as a skip otherwise. Identifying undefined with failure
of termination (nothing can be guaranteed for an undefined statement), we
obtain that the meaning of ‘{b}’ is equivalent to the predicate transformer
Wpol{d, z)] where z is a procedure variable declared as d(z) = b— 0O (b'—; 1)
and Bv(b') = St \ Bv(b).

By definition, the Wp,[-] semantics is about the total correctness of £,. Next
we show that Wip,[-] is concerned with the partial correctness of L.

Lemma 3.3.4 For every (d,S) € Ly, Wipy[(d, S)](St) = St.

Proof. We prove, by induction on «, that U ((d, §))(St) = St for all ordi-
nals a.

For a = 0, it is straightforward to see (by structural induction on §) that
\II[Z?T]((d, S))(St) = St. Note that if S = z, for z € PVar, then

U ((d, ) (st) = FT((d, d(z)))(St)

where F'T is the top element of Semy, that is, the function mapping every
program (d, S) € Ly and every P C St to St. Hence F''((d, d(z)))(St) = St.
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Next we assume for an ordinal « that for all ordinals 3 < «,

v7((d, 5))(st) = st,

and we prove that also % ((d S))(St) = St. Recall that

7 ((d, 9)(5t) = Tr(ALTY' | < a})((d, 5))(st).

By structural induction on S we verify that the above right-hand side equals
St. The only interesting case is when S = z for x € PVar:

‘I’T(/\{‘I’ | B <a})({d, z))(St)

= (M7 | 8 <a})((d, d(2)))(st)

= ﬂ{\I!T ((d,d(z)))(St) | B <a} |meets are pointwise]
= N{St | < a} [induction hypothesis]

= St.

We can conclude that Wi ((d S))(St) = St for every ordinal «.. Since Wip,[-]
is defined as the greatest fixed point of U, by Proposition 2.2.4 there exists
an ordinal A such that Wip,[-] = U%. Therefore Wip,[(d, S)](St) = St for
every (d,S) € Ly. O

Intuitively, the Wp,[-] and the Wip,[-] semantics of Ly agree with the informal
characterization of the total and partial correctness models. To make these
correspondences precise we will give duality theorems which relate the state
transformer models with these predicate transformer models.

The total correctness model

Smyth state transformers capture the operational meaning of programs for
the total correctness semantic model. To determine their associated predicate
transformers we define the function w: STs(X,Y) — PT (Y, X) by
w(o)(P)={zr € X | o(z) C P}, (3.3)
for 0 € STg(X,Y) and P C Y. Well-definedness of w is easily verified. If
o(z) = Y, then z ¢ w(o)(P) for all predicates P of Y. Accordingly, if o
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is the denotation of a program then z € w(o)(P) precisely for those inputs
z € X for which each computation of the program represented by ¢ terminates
in a final state y € Y satisfying the predicate P.

We are now in a position to show that STs(X, Y) and PT (Y, X) are order-
isomorphic, and that the two semantics Stg[-] (based on the Smyth state
transformers) and Wp,[-] (based on the total correctness predicate transform-
ers) are isomorphic. To define an inverse for the function w above we need the
following lemma. It is a variation of the stability lemma in [159,10].

Lemma 3.3.5 Let 7 be a predicate transformer in PT7(Y,X) and z € X
with x € w(Y). Then there is a set q(x, ) such that

z € w(P) if and only if q(z,m) C P,

for every P C Y.

Proof. Define g(z,7) =N{Q € P(Y) | z € n(Q)}. If z € w(P) then clearly
q(z,m) C P. For the converse we use the fact that total correctness predicate
transformers preserve non-empty intersections. Since z € 7(Y), the set {Q €
P(Y) |z € 7(Q)} is non-empty. Hence

m(q(z,m) = {n(Q) | z € 7(Q)},

from which it follows that = € w(¢(z,7)). Because ¢(z,7) C P and 7 is
monotone (preserving non-empty intersections),

m(q(z,m)) € 7(P).

Thus z € 7(P). O

For any partial correctness predicate transformer 7 the above lemma shows
that ¢(z,n) exists and that it is uniquely determined. This set can be used to
obtain a state transformer from a predicate transformer. Indeed, we can now

define w: PT1(Y,X) = STs(X,Y) by

W ) () = q(z,m) if z € w(Y) (3.4)

Y, otherwise,
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for every m € PTr(Y,X) and z € X.

Theorem 3.3.6 The function w:STs(X,Y) — PTr(Y,X) is an order iso-

morphism with inverse w™!.

Proof. We first prove that both w and w™! are monotone. Let o; < oy in
STs(X,Y) and let P C Y. If € w(oy)(P) then o1(z) C P. But oy(z) C
o1(z), hence also oy(z) C P. It follows that z € w(o2)(P). Hence w(oy) <
w(og) in PT¢(Y, X).

Assume now that m; < mp in PT 7(Y, X) and take z € X. The only interesting
case is when w(m)(z) # Y. In this case z € m(Y). Since m (V) C m(Y),
z € m(Y). Hence w™'(m)(z) = q(z,m). But ¢(z,m) C q(z,m) because
7 < my. Thus w™(mo)(z) C w™(m)(z).

Next we prove that both w and w™' are isomorphisms. For 7 in PT (Y, X)
and P C Y we have

w(Ww ' (m)(P)={z € X |w™(n)(z) C P}
={zeX|zen(Y)&q(z,7) C P}
={zeX|zen(Y)&zen(P)} [Lemma 3.3.5]
=m(P). [ is monotone]

Conversely, let 0 in STs(X,Y) and z in X. If o(z) = Y, then z ¢ w(o)(Y).
Hence w™H(w(0))(z) = Y, = o(z). Otherwise w™(w(0))(z) = ¢(z,w(s)). By
definition of w, z € w(o)(P) if and only if o(z) C P for all P C Y. Hence,

by Lemma 3.3.5, ¢(z,w(c)) = o(z), from which we conclude w=!(w(o))(z) =
o(z). O

Assume o € ST (X, V), and let V be a directed set of subsets of Y. Then

o(z) C|JY = IP € Vio(z) C P (3.5)

because V is directed and o(z) is either a finite set or Y. Hence

w(@)(UV)=Ulw(o)(P) | P €V},

that is, w(o) is continuous. Conversely, if 7 is a continuous predicate trans-
former in PT (Y, X) then w='(r) € ST (X, Y) because the set q(z,) is
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finite. This can be proved using the property that every set is the directed
union of all its finite subsets. Hence

¢(z,m) = |J{P C ¢(z,n) | P finite}
& zen((J{P C q(z,7) | P finite}) [Lemma 3.3.5]

< ze| {n(P) | P Cpn q(z,m)} [ is continuous]
& 3P Cgy gz, m):q(z,m) € P.  [Lemma 3.3.5]

Therefore the isomorphism of Theorem 3.3.6 restricts to an isomorphism be-
tween STE"(X, Y) and the continuous predicate transformers in PT 7(Y, X).

Lemma 3.3.7 Let oy € STs(X,Y) and 01,09 € STs(Y,Z). Then

w(oy O 09)(P) = w(o1)(P) Nw(oz)(P), and
w(oo 5 01)(P) = w(oo)(w(o1)(P)),

for all P C Z.

Proof. For P C Z we have

w(oy O op)(P)={z € X | (01 O ou)(z) C P}
={z € X | o1(z) Uoy(z) C P}
={z € X |o1(z) CP & oy(z) C P}
={z e X |oi(z) CP}N{z € X |o9(z) C P}
=w(o1)(P) Nw(a2)(P);

and also

W(UO ; 01)(P)={33 e X | (00 ; 01)(37) - P}
={z e X || JHo1(y) | y € oo(z)} C P}
={ze X |L&o(z) &Yy € oo(z):01(y) C P}
={z € X |oo(z) C{y | oi(y) C P}}
={z € X | 0o(z) Cw(o1)(P)}
= w(ap) (w(o1)(P)).
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By Theorem 3.3.6 and the above lemma it follows that if my € PT (Y, X)
and m,m € PTr(Z,Y) then

“Hm) D w™H(my)

w (T Amo) =
w “mp) s w H(m).

w
1(7?0 O’lTl) w

Below we demonstrate the equivalence between the Wp,[-] semantics and the
Sts[-] semantics of L.

Theorem 3.3.8 For all {d,S) € Ly we have

w(Sts[{d, $)]) = Wpol(d, $)] and w(Wpo[(d, $)]) = Sts[{d, 5)]-

Proof. We begin by proving that w(Sts[-]) is a fixed point of ¥ 7. We proceed
by structural induction on the statement S. If S = v := e then, for P C St,

w(Sts[{d,v:=e)])(P)={s € St | Stg[(d,v:=e)](s) C P}
={s e st|s[Ev(e)(s)/v] € P}
=VUr(w(Sts[]))({d, v:= e))(P).

If S = b— then, for P C St,

w(Sts[(d, b=)])(P) = {s € St | Sts[(d, b=)](s) P}
={sest|seBv(b) = seP}

=W r(w(Sts[])((d, b—=))(P).
If $ =z then

w(Sts[(d, z)]) = w(Sts[(d; d(2))]) = Yz (w(Sts[1))((d; z))-

Assume now S = 5 ; S3. Then, for P C St,

‘I’T( (Sts[-]))({d, 51 ; 52))(P)

= Uy (w(Sts[1)((d; $1)) (¥ r(w(Sts[ 1)) ({d, 52))(P))

= w(Sts[{d, $1)])(w(Sts[{d, S2)])(P)) [induction hypothesis]
= w(Sts[(d, S1)] ; Sts[(d, S2)])(P) [Lemma 3.3.7]

= w(Sts[(d, S1; SH(P).
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In case S = 5; O Sy we proceed similarly. Therefore Stg[-] is a fixed point of
W . Since Wpy[-] is the least fixed point of ¥,

Wpo[(d, §)] < w(St[(d, 5)]), (3.6)

for all (d, S) € Ly. Following essentially the same pattern, we can prove that
w Y (Wpy[-]) is a fixed point of the semantic transformation ¥y defined in
Lemma 3.2.5. Hence

St[(d, 5)] < w™ (Wpo[(d, 5)])- (3.7)

Because w and w~! form an order isomorphism, we can conclude that the
inequalities in (3.6) and (3.7) are in fact equalities. O

Since for all (d, §) € Ly, Sts[(d, S)] is in STE"(St,St), and the latter domain
is isomorphic to the set of continuous predicate transformers in PT 1(St, St),
the following corollary is immediate from Theorem 3.3.8.

Corollary 3.3.9 For (d,S) € Ly, the predicate transformer Wpy[{d, S)] is
continuous. O

The partial correctness model

We relate the set of Hoare state transformers to the set of partial correctness
predicate transformers by restricting and co-restricting the isomorphism of
Theorem 3.3.6.

The set of Hoare state transformers ST (X, Y) is a subset of STg(X, V). If
we apply the function w to a Hoare state transformer o € STy (X, Y) then

we)(Y)={ze€e X |o(z) CY}=X.

Thus w(o) is a partial correctness predicate transformer in PTp(Y, X ). Con-
versely, if 7 is a partial correctness predicate transformer in PT p(Y, X) then,
by applying w™! to 7 we obtain a Hoare state transformer because z € 7(Y)
for all z € X. Therefore, by Theorem 3.3.6 we have the following isomorphism.

Theorem 3.3.10 The function w: STy (X,Y) — PTp(Y,X) is an isomor-
phism with inverse w™!. O
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Note that the above isomorphism is not an order isomorphism. If o; < 05 in
STy(X,Y) then, forall PC Y,

w(o1)(P) 2 w(oz)(P)

because 01(z) C o9(z) for all z € X. Similarly, for m, 79 € PTp(Y,X), if
71 (P) C mp(P) for all P C Y then w '(m) > w (m) in STy(X,Y).

Theorem 3.3.11 For all (d,S) € Lo we have
w(Sty[(d, $)]) = Wipo[(d, $)] and w™ (Wipo[(d, S)]) = Str[(d, S)].

Proof. In a way similar to the proof of Theorem 3.3.8, we first note that
w(Sty[{(d, S)]) is a fixed point of ¥;. Hence

w(Str[(d, S)])(P) € Wip[{d, $)](P), (3.8)

for all (d, S) € Ly, P C St. Similarly, Stz [(d, S)](z) C w™(Wip,[{d, S)])(z)
for all z € X. Since w and w™! are monotone with respect to the opposite of
the Hoare order, it follows that the above inclusions are, in fact, equalities. O

Total and partial correctness, together

Egli-Milner state transformers denote programs on the basis of what ‘actu-
ally’ happens. In the predicate transformer model this is done by describing
both the total and the partial correctness of a program [58]. The relationship
between the two domains is described informally by Nelson [154], it is briefly
mentioned by De Roever [167] and De Bakker [20], and it has been proved in
its full generality in [37,40].

First we need to characterize those pairs of predicate transformers in the
total and partial correctness models which denote the semantics of the same
computation. To this end, assume 7; and 75 denote the semantics of the same
program in the total and partial correctness model, respectively. Intuitively it
holds that, for every predicate P on the output state space Y,

m(P)=m(Y) Ny (P) (3.9)
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because, 71 (P) holds for an input state z if and only if every computation of
the program denoted by m; at input z terminates (and hence z € 7,(Y)) in a
final state satisfying the predicate P (and hence z € my(P)).

Definition 3.3.12 Let X and Y be two sets. The domain of Nelson predicate
transformers PT n(Y, X) consists of pairs (my,m2) such that

(1) T S PTT(Y,X),
(ii) m € PTp(Y,X), and
(iii) m(P) =m(Y)Nm(P) forall PC Y.

We show that the Nelson predicate transformers are in a bijective corre-
spondence with the Egli-Milner state transformers. Define the trasformation
n:STe(X,Y)— PTN(Y,X) by

(o) ={w(Es(0)), w(Enr(9))), (3.10)
forallo € STg(X, Y). Well-definedness of 7 is proved in the following lemma.
Lemma 3.3.13 For everyo € STg(X,Y), n(o) € PTy(Y,X).

Proof. Since Es(o) € STs(X,Y), by Theorem 3.3.6, w(Fs(0)) is a total
correctness predicate transformer in PT (Y, X). Similarly, w(Eg(0)) is a

partial correctness predicate transformer in PTp(Y, X) because Eg (o) is an
element of STy (X, Y).

It remains to prove (3.9). Forz € X and PC Y,

z € w(Es(0))(P) & Eg(o)(z) C P

& o(z) CP
& Ldo(z)&o(z)\{L}CP
~ Es(O’ (iL') - Y & EH(O') CcP

A Nelson predicate transformer (m,m) € PT y(Y, X) determines uniquely
an Egli-Milner state transformer ! ({m, T2)) by putting, for z € X,
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N~ ((m, m2)) (2) =w ™ (m2) () U{L | 2 ¢ m(Y)}.

According to the intuition behind the pair (m, m2), we use the predicate trans-
former 7 to determine non-terminating computations, whereas we use the
predicate transformer 75 to calculate their final outcomes.

Theorem 3.3.14 The function n: STg(X,Y) = PTxn(Y,X) is a bijection
with inverse n~*

Proof. Let 0 € STg(X,Y) and z € X. We have

n(0))(z)

“H(w(Es(0)), w(Er(0))))(z)  [definition 7]

(W(EBn(0)(z) U{L |z € w(Es(0))(Y)} [definition ']
Exg(o)(z) U{L | Es(o)(z) = Y.} [Theorem 3.3.10 and definition w]
(o(z)\{L})U{L| L €o(z)} [definition Ey and Eg]

Conversely, for (7, m) € PTy(Y,X), PC Y,and z € X,

I =
Ed,—T

-1

Q

€ w(Es(n~* ((m1, m2))) (P)
& Es(nt({m,m))(z) C P [definition w]
)

& Légn'({m,m))(z) & n~ ({1, m))(z) C P [definition Eg]
s zem(Y)&w(m)(z ) C P [definition n~}]

& zem(Y) &z €m(P) [Lemma 3.3.5]

& z €m(P). [Equation (3.9)]

( )
w(Es(n™' ((m1,m2)))), w(Er(n~' ((m1,m2)))))  [definition 7]
m,w(n Y({m,m)) \ {L})) [above calculation and definition Eg]
T, u)(a)_l(’irg))> [definition n~!]
= (my,m). [Theorem 3.3.10] O

The set of Nelson predicate transformers PT (Y, X) can now be turned into
a partial order by the order induced by ! on PT (Y, X): for (m,m) and
(mg,ma) in PT (Y, X), define
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(my,me) < (m3,ms) if and only if 7~ ((m1, o)) < 77" ({3, 74)).
The order on PT y(Y, X) satisfies the following equation.
Lemma 3.3.15 For all (m,me) and (w3, m4) in PT (Y, X),

(1, me) < (m3,m) < VP C Y:im(P) C m3(P) & ma(P) 2D ma(P).

Proof. Let us use o as shorthand for n~((ry, 7)) and 7 as shorthand for
N~ ({m3,ms)). Assume first 0 < 7in STE(X,Y) andlet P C Y.

If z € m(P) then L ¢ o(z). Since 0 < 7, o(z) = 7(z). Because z € m;(P) =
w(FEs(0))(P) it follows that z € m3(P) = w(Es(7))(P). Thus m(P) C m3(P).

If z € my(P) we have to consider two cases depending on the presence of L
in o(z). In case L ¢ o(z), o < 7 implies o(z) = 7(z). Hence z € my(P) =
w(Eg(7))(P) implies z € w(Eg(0))(P) = m(P). In the other case L € o(z).
Since 0 < 7 then o(z) \ {L} C 7(z). Thus o(z) \ {L} C 7(z) \ {L}, that is,
FEy(o)(z) C Ex(1)(z). Hence z € my(P) = w(Ex(7))(P) implies that z is an
element of w(Ey(0))(P) = mo(P). Therefore mo(P) D my(P).

For the converse, assume that m(P) C m3(P) and mo(P) D my(P) for all
P C Y. First note that for every z € X,

w (o) (z) C w™H(my) () (3.11)
because m4(P) C my(P) for all P C Y. Next we distinguish two cases.

If L ¢ o(z) then by definition of ™' z € m (V) and o(z) = w™'(ms)(z). Since
m(Y) Cm3(Y), z € m3(Y). Thus L & 7(z) and 7(z) = w™'(m)(z). By (3.11)
it follows o(z) C 7(z). We still need to prove the reverse inclusion. Because
(71, my) is a Nelson predicate transformer, z € m;(Y') and, by Lemma 3.3.5, z is
an element of 7y (w ' (my)(x)), it follows that z € 7, (w ' (m2)(7)). Hence 7 is in
m3(w(my)(z)). Because (w3, m,) is a Nelson predicate transformer too, z is in
ma(w ! (mg)(z)). Thus, by Lemma 3.3.5, w ' (m4)(z) = q(z,m) C w (m)(z)-
Therefore 7(z) C o(z).

If L € o(z) then o(z)\{L} = w !(m)(z) by definition of n~*. Thus, by equa-

tion (3.11), o(z) \ {L} C w™(m)(z). Since w™(my)(z) C 7(z) by definition
of n~!, we obtain that o(z) \ {L} C 7(z). O
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The above characterization of the order between Nelson predicate transformers
is used in [167] to give an early treatment of recursion in the original weakest
precondition calculus of Dijkstra [56], based on continuity of the weakest pre-
conditions. A more detailed treatment of the recursion is given in [91] and [20].

We conclude this section by showing that the Egli-Milner state transformer
semantics of Ly corresponds to the pair of weakest precondition and weakest
liberal precondition semantics. For (d, S) € Ly we have

n(Ste[{d; 5)])

(w(Bs(Ste[{d, 5)])),w(En(Ste[(d, $)1)))

= (w(Sts[(d, ])),w(Stu[{d,S)]))) [Theorem 3.2.14]
(Wpyl{d, S)], Wipy[{d, S)]). [Theorems 3.3.8 and 3.3.11]

As a consequence of the above, we obtain that the weakest precondition seman-
tics Wpy[(d, S)] and the weakest liberal precondition semantics Wip,[(d, S)]
of a program (d, S) € L, satisfy the pairing condition (3.9).

3.4 Can a backtrack operator be added to £;?

In this section we study the incorporation of a backtrack operator into our
language L,. The backtrack operator is a binary operator ‘®’ which back-
tracks to the second component if the first component deadlocks. We define it
in the domain of Egli-Milner state transformers to derive its weakest precon-
dition semantics. Maybe surprisingly, the backtrack operator is not monotone
with respect to the order of the total correctness predicate transformers. To
repair the problem a new order can be defined which refines the ordinary or-
der on predicate transformers and such that the backtrack operator becomes
monotone. However, sequential composition is not monotone with respect to
this new order. In order to justify the well-definedness of a weakest precondi-
tion semantics for Ly extended with a backtrack operator we prove that under
certain conditions the least fixed point of a non-monotone function exists.

Our extension of L, is a variation of the language studied in [154]. In this
article a weakest precondition semantics together with a weakest liberal pre-
condition semantics for a language with a backtrack operator is given. Below
we will concentrate only on a weakest precondition semantics.

Definition 3.4.1 (i) The set (S €) Statp of statements is given by
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St=v = e|b>|z|S5;5|[SOS|SRS.

(ii) The set (d €) Decly of declarations is defined by PVar — Statp.
(iii) The language L is given by Declp X Statp.

To guide the intuition about the backtrack operator ‘®’ we define the corre-
sponding semantical operator in the domain of the Egli-Milner state trans-
formers. For 01,09 € STg(X, Y) define 0, ® oy by

O'Q(.’L') if 0'1(.’L') = (Z)

(01 B 0p)(2) =
o1(z) otherwise,

for € X. A similar definition can be given for the Smyth state transformers
and for the Hoare state transformers. It is a straightforward verification to see
that

®:STp(X,Y)x STe(X,Y) = STp(X,Y)

is a monotone function. However this is not true with respect to the order of
the Smyth state transformers ST s(X, Y). Indeed if 4,32 € Y then

Az {y} < Az

in STs(X,Y), but,

Ay} R Az {y} = e {y}

£ Az {y}
=0 R Az {y}

The above monotonicity problem is caused by the fact that the function A\z.0) is
the top element of STs(X, V). In STg(X, Y) this is not the case, and indeed
the backtrack operator is monotone. We can try to define a new domain of
state transformers between ST (X, Y) and ST (X, Y) by introducing a new
order on the Smyth state transformers which preserves deadlock. The idea is
that a state transformer which does not deadlock cannot be substituted by
another which does, even if more can be guaranteed for it.

Definition 3.4.2 Define ST p(X,Y) to be the set of all functions from X to
P(Y)U{Y,} ordered as follows. For o,7 € STp(X,Y),
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o <7 ifand only if Vz € X : (1(z) #0 & o(z) D 7(z)) or
(1(z) =0 & (o(z) =0 oro(z) = Y1)).

As for STs(X, Y), the above domain ST (X, V) is a partial order with the
function Az.{Y,} as bottom element. However ST p(X, Y) need not to be
a cpo. For example let IN be the set of natural numbers, and consider in
ST p(X,IN) the following directed set

Az.IN < Az.IN\ {0} < Az.IN\ {0,1} < ...

It has no upper bound in ST p(X,IN) (in STs(X,IN) it would have the func-
tion Az.0) as a least upper bound).

It is now easy to see that the backtrack operator ‘®’ is monotonic with respect
to the new domain ST p(X, Y). However the composition function ‘;’, defined
exactly as for STs(X, Y), is not monotone anymore. For y, 4, € Y,

Az Ay, v} < Az {w}

in STp(X,Y). If we compose them with the function o € STs(Y, Z) which
maps y; to {z} C Z and every other y € Y to () we obtain

Az Ay, ¥} s o=z {z}
LAz

=Xz{y} ;o

Next we turn to a weakest precondition semantics for £g. First we use the iso-
morphism of Theorem 3.3.6 to derive the semantical backtrack operator in the
domain of total correctness predicate transformers. For 01,09 € STg(X,Y)
let

m = w(o1) and T = w(o9).

Then 0y = w () and 0y = w (my). For PC Y,

w(oy B ay)(P)
= {z € X | (01 Ray)(z) C P}
={ze X |oi(z)=0& os(z) C P}U
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{z e X |oi(z) #0 & o1(z) C P}

= ({z€X [oi(z) COFN{z € X [02(z) C PHU
(X\{r e X |ow(z) CO}N{z € X |0i(z) C P})
= (w(Es(01))(0) Nw(Es(o2))(P))U

(X \w(Es(01)) (D) Nw(Es(01))(P))

= (m(0) Nme(P)) U (X \ mi(0)) Nmi(P))
= m(P)N(m(0) = m(P)),

where P = () is a shorthand for (PN @)U (X \ P). The above justifies the
following definition.

Definition 3.4.3 For m,m € PT (Y, X) define m; Ry € PT (Y, X) by

(m R ) (P)=m(P) N (m(0) = m(P)),
forall PCY.

Since w is an order-preserving isomorphism ‘®’ is not monotone with respect
to the order in PT 7(Y, X). Nevertheless we want to define the weakest pre-
condition semantics of L in the same way as we did in Lemma 3.3.3 for the
weakest precondition semantics of Ly: as the least fixed point of a higher order
transformation.

Definition 3.4.4 Let F € Semp = L — PT 1(St,St) and define the func-
tion Vg : Semp — Semp inductively by

Up(F)({d,v:=¢)) = Wpy[(d,v:=e)],

Up(F)({d, b=)) = Wpy[(d, b=)],

Up(F)({d, z)) = F((d, d(x))),

Up(F)((d, 51 ; 52)) = Up(F)((d, 51)) o Vp(F)({d, 52)),
Up(F)((d, 5 0 8)) = Vp(F)((d,$)) ANVp(F)((d,5)),
Up(F)((d, 51 B 55))(P) = Up(F)((d, 51)) B Up(F)((d, 52))-

Well-definedness of U is straightforwardly checked, since it is based on the
well-definedness of the corresponding semantical operators in PT 5(St, St).
Since the semantical operator ‘®’ is not monotone, also ¥ is not monotone.
At first sight it seems that we cannot define a weakest precondition semantics
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for Lp as the least fixed point of ¥ because the ordinary fix-point methods
require Vg to be at least monotone.

However, we show that, under certain conditions, the least fixed point of a
non-monotonic function on a poset (which need not to be complete) exists
and that it can be calculated by iteration.

Proposition 3.4.5 Let P be a cpo and let () be a poset such that there there
is an onto and continuous function h : P — Q. Assume also that, for every
y € Q there is a top element in h™'(y), that is, there exists z € h™'(y) such
that © < z for allx € h™'(y). If f : P — P is a monotone function then every
function g: Q) — @ making the following diagram commute

P ! P
h * h
Q 7 Q

has a least fized point. Moreover, for every ordinal o, ¢'* exists and equals

h(f).

Proof. By Proposition 2.2.3 f has as least fixed point f™*, for some ordinal
A. We have:

h(FN) = h(fO) = h(f(FN)) = g(h(f™)).

So h(f™) is a fixed point of g. Next we prove h(f™) is also the least one.

Let y € @ be such that g(y) = y and let z be the top element in h=!(y). We
prove by induction on ordinals that f(* < z for every ordinal «. In the proof
below we need the fact that f(z) < z which can justified by the following

If @ = 0 then f¢ = f(L1) < f(2) < 2. Assume now that ¥ < z for all
ordinals < a. We have

(VB<a:f <2) = V{/¥ | f<a} <z
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= f(\/{fw> | B<a}) <f(z) |[fis monotone]

= flo <z [definition of f{* and f(z) < 7]
It follows that f* < z. Hence, by monotonicity of A,

h(fN) < h(z) =y,

from which we can conclude that A(fV) is the least fixed point of g.

It remains to prove that g(® = h(f{*) for every ordinal c. Since A is onto and
monotone, it is also strict. Hence, for a = 0,

h(F) = h(f(L)) = g(h(L)) = g(L) = ¢**.

Using induction on ordinals we have for o > 0

W) =h(F(V{I? | B<a}))
g(h(\/{f | B<a})) [commutativity]
(VL) | B < a})
V{g? 1B<a}) |

(@ [by definition]

[l is continuous|

g
g induction hypothesis]
g

In order to apply the above proposition consider the complete partial order
Semp = Ly — ST (St, St), and define the transformation ® : Semp — Semp
by

O(F)((d, 5)) = w(Es(F((d, 5))))-

Since Eg : STg(St,St) — ST p(St,St) is strict, onto and continuous, and
w:STp(St,St) — PT 7 (St,St) is an order isomorphism, ¢ is onto and con-
tinuous. Moreover, if o € ST p(St, St) then o is also a function in ST (St, St)
and Es(o) = o. Clearly o is the top element of E5'(c). Hence also ®~!(F)
has a top element for every F' € Semp.

Theorem 3.4.6 The function Vg : Semp — Semp has a least fired point
which can be calculated by iteration from the bottom element of Semp.
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Proof. Define Vg : Semp — Semp inductively by

Ve(F)({d,v:=¢e)) = Stg[(d, v :=e)],

Ug(F)((d, b—)) = Stg[(d, b—=)],

Vg (F)((d, z)) = F({d, d(z))),

Ue(F)((d,8155)  =Ye(F)(d,S)); Ye(F)((d,S))
Up(F)(d, 5 08) = VYu(F)({d,5) 0 Ve(F)(d,5)),
Vp(F)(d, 51 R 5))(P) = Up(F)((d, 51)) B ¥g(F)({d, 52))-

Well-definedness and monotonicity of Uy can be straightforwardly checked.
It is ultimately based on the monotonicity of the corresponding state trans-
former constructors. Moreover, by induction on the structure of S, and using
Theorem 3.2.14, Theorem 3.3.8, and the definition of ‘X’ we have that

(Vg (F))((d,S)) = Up(®(F))((d, 5))

for all (d, S) € Lp. Therefore by Proposition 3.4.5 g has a least fixed point
which can be calculated by iteration from the bottom element of Semg. O

The least fixed point of ¥ ; defines the weakest precondition semantics for Lg.

3.5 Concluding notes

The predicate transformer semantics we presented in this chapter is formulated
using higher-order transformations. Hence predicate transformers are regarded
as basic objects in contrast to the more traditional view which regards predi-
cates on states as basic objects. Accordingly, we treated recursion at the level
of predicate transformers whereas for example Dijkstra and Scholten 58] treat
recursion at the level of predicates.

Several semantic domains we introduced in this chapter are general enough
to support both recursion and unbounded non-determinism. For example our
Egli-Milner state transformer domain ST (X, Y) is more general than the
similar domain for countable non-determinism of Apt and Plotkin [10], while
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our predicate transformers domain PT r(Y, X) is equivalent to the domain of
predicate transformers for unbounded non-determinism treated in [57,96].

We have not used the capability of the domains to express unbounded non-
determinism. In this chapter we only treated a language without specification
constructs. An extension of the language £y with this kind of constructs is
treated in Chapter 4.

The results of this chapter can be extended to capture the semantics of more
general programs than the sequential ones. In Chapter 7 we treat an example of
a program which interacts with its environment by extending £, with a parallel
operator. The key step towards this goal is a refinement of our definition of
predicates. In Chapter 5 affirmative predicates are introduced as open sets of
a topological space, and in Chapter 6 we introduce two kinds of topological
predicate transformers which generalize the total and the partial correctness
predicate transformers. Dualities between state transformers and topological
predicate transformers are also studied in Chapter 6.
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The refinement calculus

Predicate transformers were introduced in the previous chapter as a mathe-
matical domain for the semantics of sequential programming languages. The
goal is to use this domain for the support of systematic development of pro-
grams from their formal specifications [58]. However, the domain is not yet
suited for a weakest precondition semantics of a language which includes cer-
tain specification constructs. For example, it would be nice if angelic non-
determinism were allowed. This is useful, for example, in data abstraction via
inverse commands [15,74]. Another useful extension is to allow unbounded
non-determinacy both for angelic and for demonic choice.

An extension of the domain which supports both unbounded angelic non-
determinism and unbounded demonic non-determinism is given in the frame-
work of the refinement calculus. The language of the refinement calculus as in-
troduced by Back [13] combines basic predicate transformers (which generalize
assignments and conditionals), functional composition, and the lattice opera-
tions of infinite meets and infinite joins. The language is expressive enough to
model both executable sequential programs and abstract specifications. The
language of the refinement calculus has a predicate transformer semantics.
The domain of this semantics consists of the monotonic predicate transform-
ers. This semantics is based on a lattice theoretical interpretation [197,97]:
demonic choice is modeled by the meet of programs and angelic choice is
modeled by the join. The lattice of predicate transformers is the basis of the
refinement calculus and was first introduced in [13], and successively developed
in [150,151,17,197].
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The execution of a statement in the refinement calculus can also be described
as a game between two parties with the goal of trying or preventing, respec-
tively, to reach a state in which a given predicate holds. This game-theoretical
interpretation is inspired by the and/or programs of Harel [88] and it is de-
veloped for the refinement calculus by Back and Von Wright [18]. A game
semantics for a language similar to the language of the refinement calculus is
also given by Hesselink [99].

In this chapter we give a short overview of the refinement calculus. Then we
extend the language £y to a language £, with the specification constructs
of the refinement calculus. A backward predicate transformer semantics is
given. We also give a forward semantics for £;. It is based on a duality be-
tween predicate transformers and completely distributive lattices. The idea is
to model commands of the calculus as functions mapping an input state to
the collection of all predicates satisfiable by every output of the command.
As in the previous chapter, we show that the backward semantics and the
forward semantics are isomorphic. Based on the operational interpretation of
the refinement calculus as a two-person game, Back and von Wright [18] also
present a forward semantics of the refinement calculus. They also present a
duality between predicate transformers and the two-step game domain. Al-
though their duality result and forward semantics coincide with our duality
and forward semantics, they have been found independently.

We conclude the chapter by giving an operational semantics for £; using
hyper transition systems. The hyper transition systems (a generalization of
transition systems) specify the atomic steps of the computations. We show
that the operational and the forward semantics coincide.

4.1 Specification and refinement

The specification of a sequential program consists usually of the declaration
of a set specifying all possible states in which the program is allowed to work,
a precondition (a predicate on the set of states) and a postcondition (also
a predicate on the set of states). The postcondition specifies states in which
the program has to terminate when started in a state satisfying the precondi-
tion [82].

We need a calculus which includes at least a ‘reasonable’ programming lan-

guage, a specification language and a definition of a satisfaction relation be-
tween programs and specifications. Moreover, we want to have refinement
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relations both for specifications and for programs.

If we take the language L, defined in the previous chapter as programming
language, and St as the set of states in which a program of L is allowed to
work, then a pair (P, @) of subsets of St can be seen as a specification (with
P as precondition and @ as postcondition). A program (d, S) € L, satisfies
a specification (P, Q) if P C Wpy[(d, S)](Q): every computation of {d,S)
starting in a state £ € P is guaranteed to terminate in a state satisfying ().
By Theorem 3.3.6, we could equivalently say that (d, S) satisfies a specification
(P, Q) if Sts[(d, S)](z) C @ for every z € P.

A specification can be refined by another one provided that any program
satisfying the refined specification satisfies also the original one. Thus a spec-
ification (P, @) is refined by a specification (P', Q') if P C P and @ C @'
In this case, for a program (d,S) € Ly, if P C Wpy[(d, S)](Q@) then also
P" C Wpy[{d, S)](Q") by monotonicity of Wp,[-]. Hence (P’, Q') is satisfied
by any program which satisfies (P, Q).

In the same way a program can be refined by another one provided that any
specification satisfied by the original program is also satisfied by the refined
one. For example, a program (d, S) € L, is refined by a program (d’, S') € L
if, for all @ C St, Wpy[(d, S)](Q) C Wpy[(d', S)](Q). In this case, if (P, Q)
is a specification which is satisfied by (d, S) then (P, @) is also satisfied by
(d',S8").

In the synthesis of programs from specifications it can be useful to have a
single language for programs and specifications, and to have a single relation
for expressing the refinement of specifications and programs. The refinement
calculus uses a language describing monotonic predicate transformers as such
a single language.

Definition 4.1.1 Let X and Y be two sets. Define PT (Y, X) to be the set
of all monotonic predicate transformers in PT (Y, X). They are ordered as in
PT(Y,X), i.e., for m,mg € PT (Y, X),

m < my if and only if VP C Y:m(P) C my(P).

The order between monotonic predicate transformers is the refinement or-
der: a predicate transformer m; in PT (Y, X) is said to be refined by m in
PTM(Y,X) ifﬂ'l S P in PTM(Y,X)

Definition 4.1.2 A monotonic predicate transformer 1 € PTpy(Y,X) is
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satd to be totally correct with respect to a precondition P C X and a postcon-
dition @ C Y if P C 7(Q).

In other words, every computation of a program specified by the predicate
transformer 7 at input z € P terminates in a final state satisfying the predicate
@. A monotonic predicate transformer 7 is said to be terminating if 7 (V) = X.
The restriction to monotonicity for 7 in the above definition can be justified as
follows. Assume (P, @) is a specification and let 7 be a predicate transformer
denoting a class of programs which satisfies the above specification. If @) C @’
then every computation of a program which for input z € P terminates in
a state satisfying @), terminates also in a state satisfying @'. Hence 7(Q) C

m(Q').

Refinement coincides with preservation of total correctness: 7 refines my if m;
satisfies every total correctness specification that 7, satisfies. Moreover this
condition characterizes the refinement relation exactly.

Proposition 4.1.3 For m and my in PTy (Y, X),

m < my if and only if VP C XVQ C YV:P Cm(Q) = P Cm(Q).

Proof. Assume 71(Q) C mo(@) for all @ C Y. Then P C m(Q) C mo(Q)
implies P C my(@). For the converse, assume the above right hand side holds.
Since m(Q) C m(Q) for all @ C Y, m(Q) C m(Q). Hence m; < mp. O

Next we show how every monotonic predicate transformer can be described by
some primitive monotone predicate transformers together with some construc-
tors on predicate transformers. This gives then the language for the description
of the monotonic predicate transformers in the refinement calculus. We first
give three collections of primitive predicate transformers.

A subset V C X can be lifted to the monotonic predicate transformer ‘{ V'}’
in PT (X, X) by

{Vi(P)=VnP,

and also to the monotonic predicate transformer ‘V—’ € PT (X, X) by

Vo(P)={z e X |z€V = z € P},
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for all P C X. The predicate transformers ‘{ V'}’ and ‘V—’ are called assert
command and guarded command, respectively. They can be thought of as con-
ditional tests. Note that the predicate transformer ‘V—’ always terminates
whereas ‘{ V}’ does not for all inputs z with z ¢ V.

Every function f: X — Y can be lifted to the monotonic predicate transformer
“fy € PTy(Y,X) by

(NNP)={ze X |f(z)e P},

for all P C Y. The predicate transformer (f) is called update command and
can be thought of as a multiple assignment.

Next we look at the predicate transformer constructors: two monotonic pred-
icate transformers m; € PTy(Z,Y) and my € PTy(Y,X) can be com-
posed by functional composition obtaining the monotonic predicate trans-
former m; oy € PTy(Z,X). Thus

(m1 0 M) (P) =1 (ma(P)),

for all P C Y. The above functional composition is also called sequential
composition.

Finally, from an arbitrary set (possibly empty) of monotonic predicate trans-
formers {m; € PTy(Y,X) | i € I} two other monotonic predicate trans-
formers can be obtained by applying the meet and the join of the lattice
PTy(Y,X). Although PT (Y, X) is not a complete Boolean algebra, it
is a complete lattice with meets and joins defined pointwise, exactly as in
PT(Y,X). Hence we have

(A{mi|ieIHh(P)={m(P)|ie I},
(VAmi |i e IH(P)={U{mi(P) | i € I},

for all P C Y. The meet A is called demonic choice while the join V is called
angelic choice.

Besides preserving monotonicity, the above constructors are also monotonic
as functions on the lattice of predicate transformers. In general, if z is a vari-
able ranging over monotonic predicate transformers in PT (Y, X) and C(z)
is a monotonic predicate transformer constructed from the above primitive
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monotonic predicate transformers, the lattice and functional constructors, and
containing the variable z, then

Az.C(z): PTy(Y,X) = PTy(Y,X)

is a monotonic function. This means that we may always replace a monotonic
predicate transformer by a refined one in any context, because

1 S T 1mp11es C(’]Tl) S C(7T2).

The following theorem, due to Von Wright [197], shows that every monotonic
predicate transformer can be obtained from the primitive predicate transform-
ers, the lattice constructors and the functional composition.

Theorem 4.1.4 Let m € PT (Y, X) and let V, denote the set {z} C X for
z € X. Then m coincides with the predicate transformer

VH{Velo NM{{f: X = Y)|Vz e X:f(z) e P} |PCY &z en(P)}.

Proof. The proof proceeds in three steps.

(i) Let @ C Y. By definition of meets and of the update command,

(M :X = Y)|Vz e X:f(z) € P})(Q)
=N X = Y)(Q)|Vz e X:f(z) € P}

= N{{z [f(z) € @} [V € X:f(z) € P}.

If P C @ then the above set is clearly X. Otherwise, it is empty. To
prove the latter statement let y € P\ @ (which exists because P Z Q).
Consider f : X — Y such that f(z) € P for all z € X (which exists
because P is nonempty). If f(z) € @ for some z € X define f,: X — YV
by

f(z) otherwise,

fz(x)—{y ifx =2

for every z € X. Then f,(z) € P for all z € X but f,(2) ¢ @. It follows
that, if P ¢ Q

N{{z | f(z) € Q} |Vz € X:f(z) € P} = 0.
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(ii) Let ppp ={Vi}o AN{{(f: X = Y) | Ve € X:f(z) € P}. By step 1., and
the definitions of the predicate transformer {V,} and of the functional

composition,
{z}ifPCQ
() otherwise,
forall @ C Y.

(iii) For z € X and P C Y let p, p be defined as above. For @ C Y,

(V{pep | PC Y &z en(P)})(Q)
= U{pp(Q) [ PCY &z en(P)}
(

= U{pep(Q) | PCQ&zen(P)} [pspr(Q)=0ifP¢ZQ]
= U{{z} |IPCQ&zen(P)} [by (41)]
U{r(P) | P C Q}

= 7(Q). [ is monotone] O

4.2 The language £, and its predicate transformer semantics

We now extend the programming language Ly to a language £, with the
specification constructs of the refinement calculus. The main difference with
the language of the refinement calculus is that we have procedure variables in
the language.

Definition 4.2.1 Let St be a set of states and let PVar be a set of procedure
variables.

(i) The class (S €) Stat; of statements is given by

§u=V= [{V}[{f \»’C\\/S\/\SIS s,

where V C St, f:St — St, x € PVar, and I is an arbitrary set.
(ii) A declaration is a function d € Decl; = PVar — Stat;.

(iii) A command in the language L4 is a pair {d, S), where d is a declaration
in Decl; and S a statement in Stat;.

The language £, is a proper class since the index I in the \/ and A constructs
can be any set. One way of circumventing the use of proper classes is to impose
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a limit (which can be an arbitrary cardinal) on the size of the index sets I that
are used in the \/ and A constructs. We can then form an inductive hierarchy of
syntactic terms indexed by the ordinals. By fixing a regular cardinal x which
is larger than the cardinalities of the set of states, of the set of procedure
variables, and of the limit imposed on the index sets of \/ and A, then it is
straightforward to show that the cardinality of £, is bounded by . For more
details on this kind of arguments, see [149].

The language L, of Definition 3.1.1 can be mapped into £; via the translation
function (-)':Staty — Stat; defined inductively by

(v == e)f = (As € St.5[Ev(e)(s)/v]),
(b—)f = Bv(b)—

(z)! =z,

(515 8)" = (S)t; (S)T,

(51O %) = ()T A (S)1.

where v € IVar, e € Exp, b € BExp, and © € PVar. The mapping (-)' can be
extended to programs in £y by

((d,S))T = (dT, (8)"), where, for all z € PVar, d'(z) = (d(z))".
Notice that df(z) € Stat, for every z € PVar and d € Decl.

The semantics of £, can be given by associating to every command in £; a
predicate transformer in PTj(St, St).

Definition 4.2.2 Let (£ €) PTEnv be the set of function which assigns to
every procedure variable in PVar a predicate trasformer in PT 3 (St,St).

(i) The map Pt:Stat; — (PTEnv — PT (St,St)) is given inductively by

Pi(V—=)(§) = V-,

P({V}H(E) ={V},

Pe((f)E) =),

Pi(z)(§) = &(x)

Pt(V; 5:)(€) = V{P(S)(€) | 1 € I},
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Pt(A; Si)(€) = NPt(S:)(§) | i € I},
Pt(S1; 82)(€) = Pt(51)(§) o Pt(S2)()-

(ii) For every declaration d : Decl; define =4 : PTEnv — PTEnv by

Ea(&) () = Pt(d(2))(£)-

(iii) The semantics Wp,[-] : £1 — PT y(St,St) is given by

Wpi[(d, $)] = Pt(S)(&a),
where £q4 1s the least fized point of =4.

Monotonicity of Z; can be checked as follows. It is based on the monotonicity
of the corresponding predicate transformer constructors. Since PT(St, St)
is a complete lattice, PTEnv is a complete lattice too. Therefore the function
E4 has a least fixed point by Proposition 2.2.1 (and also by Proposition 2.2.3),
say &;4. Note that this means that £, is the least environment such that ;(z) =

Pt(d(z))(€a)-

The semantics Wp, [-] is a fixed point semantics in the sense that the meaning
of a procedure variable is equal to the meaning of its declaration:

Wp,[{d, z)] =Pt(z)(£s) [by definition of Pt[-]]
=¢&4(z) [by definition of Pt(-)]
d) (z) [&4 is a fixed point of E4]
(z))(€4) [by definition of =]
|[ ,d(z))]- [by definition of Wp,[-]]

—~
IS

Furthermore, Wp,[-] is the least among all ‘reasonable’ fixed point semantics
of £;. This is shown in the next lemma.

Lemma 4.2.3 Let F: L, — PT y(St,St) be a function such that

F({{d,V=)) = V=
F({d,{V}H) ={V},
F({d, () =)
F({d,z)) = F((d,d(z)))
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F((d,V;8) = V{F((d,5) i€},
F((d, A\ Si))(P) = M{F((d, ) | i € I},
F({d,S1; %)) = F({(d,$)) o F((d,S)).

Then WP1[(d,S)] < F({(d,S)) for all (d,S) € L.

Proof. For an arbitrary but fixed declaration d € Decl; define the environ-
ment £ € PTEnv by £(z) = F({d, d(z))). By induction on the structure of S
it is easy to see that

F((d, 5)) = Pt(5)(&)- (4.2)

For example, if S = z then

F((d,z)) = F({d, d(2))) = £(z) = Pt(z)(£)-

Next we prove that the environment, € is a fixed point of =;: for every x € PVar,

Z4(8)(z) =Pt(d(z)) ()
=F(d(z)) [Equation (4.2)]
— {f(x) [Deﬁnition of 5]

Using again induction on the structure of the statement S we can finally prove
that Wp,[(d, S)] < F({d,S)) for every (d,S) € L;. We treat here only the
case of procedure variables.

Since &, is the least fixed point of Z; we have £;(z) < &(z) for every z € PVar.
Therefore

Wp,[(d, )] = Pt(z)(€s) [Definition of Wp, []]
(z) [Definition of Pt(-)]

z) [£q is the least fixed point of =]
F({(d,d(z))) [Definition of ¢]

F({d
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A similar argument to the one used in the above proof can be used to prove
that the Wp,[-] semantics is a total correctness semantics which extends con-
servatively the weakest precondition semantics of L.

Theorem 4.2.4 For every (d,S) € Ly, Wp,[{d, S)] = Wp,[({(d, S))T].

Proof. By induction on the structure of S, it is easy to see that Wp,[({(d, S))T]
is a total correctness predicate transformer in PT 7(St, St) for all (d, S) € L,.
Moreover Wp, [(-)!] is a fixed point of the function ¥ ; defined in Lemma, 3.3.3.
Since Wp,[] is the least fixed point of ¥,

Wp0|[<d, S>]l < Wpll[((‘ia S>)T]l

for all (d, S) € L.

Conversely, first note by induction on the structure of S that, for all (d, S) €
Lo, Wpo[(d, S)] = Pt((S)")(€), where &(z) = Wpy[(d, d(z))]. It follows that
¢ is a fixed point of =Z; and hence

Wp,[((d,5))'] = Pt((5)") (&) < Pt(($)")(€) = Wpy[(d, $)],

for all (d,S) € L,. O

It is natural to define a refinement relation on commands of £; by putting,
for <d, Sl>, <d, SQ> in [,1:

<d7 Sl) S./ <d7 SZ) if and Only if Wpl[[(<d: Sl))]] S Wpll[(<d7 SZ))]]

In this case we say that (d, S;) is refined by (d, S,), since every total correctness
property satisfied by (d,S;) is satisfied also by (d,S2). Hence the Wp,[‘]
semantics identifies specification commands on the basis of the satisfied total
correctness properties.

4.3 A state transformer semantics for £;

We now look for a forward denotational semantics for the specification lan-
guage L£;. We want a semantic domain of state transformers which is iso-
morphic to the domain of monotonic predicate transformers. Because of the
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possibility of arbitrary meets and joins of commands in £; the simpler domains
introduced in the previous chapter (or variations thereof) will not work. We
take as domain the free completely distributive lattice over X.

Definition 4.3.1 Let X be a set. Define the free completely distributive lat-
tice over X, denoted by CDL(X), to be the collection of all lower closed subsets
of the complete lattice L = (P(X), D). Elements of CDL(X) are ordered by
subset inclusion.

Clearly CDL(X) is a partial order with () as least element (which will be used
for denoting a non-terminating computation), and the set of all subsets of X as
top element (which will be used for denoting deadlocking computations). Since
CDL(X) is closed under arbitrary unions and arbitrary intersections, it is a
complete sub-lattice of P(P(X)). Hence CDL(X) is a completely distributive
lattice. In Chapter 9 we will discuss some lattice theoretical properties of
CDL(X), proving, for example, in Theorem 9.1.3 that CDL(X) is indeed the
free completely distributive lattice over X.

Using the above definition we can define the semantic domain ST(X, Y).

Definition 4.3.2 The domain of state transformers for specification from a
set X to Y is the set X — CDL(Y) ordered by the pointwise extension of the
order of CDL(Y). It is denoted by ST (X, Y) with o, T as typical elements.

Before proving that the above domain of state transformers is equivalent the
domain of the predicate transformers, we give some motivation for the de-
finition. A function ¢ in ST(X, Y) denotes the specification of a class of
commands. It assigns to every input state z € X the collection o(z) of all
predicates on the output space Y which must be satisfied by every compu-
tation started in z of every command specified by o. This implies that every
computation started in z of every command specified by ¢ must terminate
(hence no special symbol L to record non-termination is required). The set
o(z) is maximal in the sense that it is upper closed because if every com-
putation of a command specified by ¢ at input z terminates and satisfies a
predicate P € o(z), then it satisfies also predicates @) with @ D P.

If there is a computation starting in z that fails to terminate then o(z) = 0.
If every computation of a command started at = deadlocks, then no output
in Y is obtained and hence every predicate in Y is satisfied. Hence the set
o(z) ={P | P C Y} specifies commands which starting from input z always
deadlock.
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The relationship between state transformers and predicate transformers is the
content of the following theorem.

Theorem 4.3.3 Let X and Y be two sets. There is an order-isomorphism
between

X - P(P(Y)) and P(Y) — P(X).

The isomorphism is given by the functions

W) (P)={r e X|Pco(x)} and 0 (x)(z)={PC Y |z €m(P)},

foro: X - P(P(Y)), n:P(Y)—>P(X), z€ X, and P C Y. Furthermore,
it restricts and co-restricts to an order-isomorphism between ST(X,Y) and
PTy(Y,X).

1

Proof. The function @™ is a right inverse of w because, for z € X,

W™ @(0)(2) ={P |z € b(0)(P)} = {P | P € o(z)} = o(2).

Similarly, @ ! is a left inverse of & because, for P C Y
w@m@)(P)={z | P ew N m)(z)} ={z | z € n(P)} = =(P).
Next we show that the isomorphism is order preserving. Assume o1(z) C 09(%)

for every z € X. Then P € o4(z) implies P € o9(z) for all P C Y and
therefore w(oq)(P) C &(o2)(P).

Conversely, if 71 (P) C my(P) for all P C Y then z € m;(P) implies z € my(P)
and therefore &~ (m)(z) C &~ (my)(z) for all z € X.

Finally we show that the isomorphism restricts and co-restricts to an order-
isomorphism between ST(X,Y) and PT (Y, X). Let 0 € ST(X,Y) and
assume P C ) C Y. Then

wo)(P)={z[Peoa(z)} C{zs]Qea(z)}=0n0()Q)

Hence @(o) is monotone. For the converse, let 7 be a monotonic predicate
transformer in PT (Y, X). For every z € X, if P € @7 '(7)(z) and P C Q
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then z € m(Q) because z € 7(P) and 7 is monotone. Thus @ € &~ '(7)(z).
Therefore 0~ (r) € PTy(Y,X). O

The predicate @w(o)(P) can be thought of as the weakest precondition associ-
ated with the function o and the postcondition P. Indeed z € &(o)(P) exactly
when every computation of a program specified by o for input z terminates
in a state satisfying P.

Next we give some constructors on ST (X, Y). Since CDL(X) is a completely
distributive lattice, also ST(X, Y') is completely distributive: meets and joins
are defined pointwise. Indeed, if {o; | 7 € I} is an arbitrary set of functions in
ST(X,Y) then, for z € X,

(Ad{oili e 1})(z)={oi(z) | i €I},
(Vioi | i€ I})(z)=Hoi(z) | i € I}.

A function o, € ST(X, Y) can be composed with o, € ST(Y, Z) as follows.
For z € X,

(015 02)(z) =H{[Hoz(y) | y € P} | P € ou(2)}. (4.3)

Well-definedness of these three operations can be easily verified. The ‘;’ oper-
ation can intuitively be explained as follows.

Assume every computation specified by o; started at input z terminates and
satisfies a predicate P in oy (z). Next assume that every computation started at
y € P terminates satisfying a predicate @), in 02(y). Then every computation
of the combined commands started at z terminates and is guaranteed to satisfy
every @, for y € P.

Lemma 4.3.4 Let m € PTy(Y,X), 7o € PTy(Z,Y), and {m; | i € I} be
a set of monotonic predicate transformers in PT (Y, X). Then

1) oM Arm) = Ao H(my),
(i) @ N(Vym) = Vo (m),

o
(iii) @™ t(m om) = 07 (m) ; 0L (m).

80



Chapter 4. The refinement calculus

Proof. We start by proving the first item. For every z € X we have:

{PCY|[ze(Am)(P)}
= {PCY|zenmP)}
=N {PCY|zemnP)}

The second item can be proved in a similar way. It remains to prove the last
item. For z € X,

O~y o my) ()

= {PC 7|5 e (mom)(P)}

= {P CZ|zem(m(P))}
={PCZ|3QCY:izem(Q)&Vye Q:y €m(P)}
={PCZ|3Qew ™ (m)(z):Vye Q:P e (m)(y)}
U{N{@ Hm)(y) |y € @} | @ € & H(m)(2)}

= (@7 (m) ; 07 (m2))(2),

where é trivially holds if we take @ = mo(P). Conversely, let P C Z such
that there exists @ C Y with z € m(Q) and y € mo(P) for all y € Q. Then
@ C mo(P). Hence, by monotonicity of w1, we have z € m(Q) C my(m2(P))
implies z € m;(mo(P)). It follows that P € {V C Z | z € mi(me(V))}. O

By Theorem 4.3.3 and the above lemma it is immediate that

(i) (D(/\I Ui) =As @(Ui);
(i) @(Vyo:) = Viw(oi),
(iii) @(o7 ; 02) = @(01) 0 @(02).
We can now give a forward denotational semantics for £;. We proceed as

for the predicate transformer semantics by using environments to record the
meanings of procedure variables.
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Definition 4.3.5 Put (( €) STEnv = PVar — ST(St, St).

(i) The map St: Staty — (STEnv — ST (St,St)) is given inductively by

St(V=)(()(s) ={PCst|seV = se€ P},
St({VH(Q)(s) ={P Cst|se VNP
St((f)(C)(s) ={P Cst|f(s)€ P},
St(z)(C) = ((2),

St(Vr Si) (€)= V{St(S:)(C) | i € I},

St(Ar S:)(C) = A{St(Si)(C) | 1 € I},

St(S1 5 5)(¢) = St(51)(C) 5 St(52)(€)

(ii) For every declaration d : Decl; define Hy : STEnv — STEnv by
Ha(¢)(2) = St(d(2)) ().
(iii) The semantics St[-] : L, — ST(St,St) is given by
St[(d, $)] = St(S)(Ca),
where (g4 is the least fized point of Hy.

The transformation Hy; : STEnv — STEnv is monotone. Since STEnv is a
complete lattice, Hy has a least fixed point. Hence the semantics St[-] is well-
defined. Below we prove that it is isomorphic to the predicate transformer
semantics Wp,[-].

Theorem 4.3.6 For every (d,S) € L4,
w(St[{d, $)]) = Wpi[(d, S)] and &~ (Wp,[(d, $)]) = St[{d, S)].

Proof. By Theorem 4.3.3 Az.w(((z)) € PTEnv for all ( € STEnv. Next we
prove by structural induction on S, and using Lemma 4.3.4, that

w(58(5)(€)) = Pt(S) (Az.&(¢(2)))- (4.4)

We treat only two cases. If S = z then

w(St(2)(€)) = w(¢(x)) = Pt(z)(Az.&(C((2))).
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IfS= Sl 3 SQ then

)
) ;5 St(52)(¢))  [Definition of St(-)(¢)]
¢)) ow(St(S1)(¢)) [Lemma 4.3.4]
(S1)(Az.w(((z))) o Pt(S2)(Az.w(¢(z))) [induction hypothesis]
t(S1; S2)(Az.w(((z)). [Definition of Pt(-)(Az.w({(z)))]

Next we characterize the least fixed point of the transformation =4, for a fixed
declaration d : PVar — GStat,, in terms of the least fixed point of Hy using
the isomorphism @. First we see that for every ( € STEnv and declaration d,

w(Az.Ha(Q)(2))
= w(A\z.St(d(z))(¢)) [Definition Hy]
= \z.Pt(d(z))(Az.w(¢(z)) [by 4.4]

= Z4(Az.0(((z)). [Definition E4]

Hence, by Proposition 2.2.5 the least fixed point of =4 is @(Az.(4(z)), where
(q is the least fixed point of H,.

We finally prove that the state transformer semantics and the predicate trans-
former semantics of £; are isomorphic. For all (d, S) € L4,

w(St[{d, 5)])
= @(St(S)((q)) [Definition of St[]]

= Pt(S)(Az.w(Ca(z))) [by 4.4]
= Wp,[{(d,S)]. [Definition Wp,[-], Az.@(¢4(z)) least fixed point of Zy4]

By Theorem 4.3.3 and the above, @' (Wp,[{d, S)]) = St[(d, S)]. O

As an immediate consequence of the above theorem and Lemma 4.2.3 we have

the following corollary.
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Corollary 4.3.7 The semantic function St[-] is the least among all the func-
tions F : L1 — ST(St,St) such that

F({d,V=))(s) ={PCSt|seV = s P},
F({d,{V}))(s) ={PCst|se VNP
F(d, {f

M(s)  ={PCst|f(s) e P},
e)s) = F({d; d(2)))(s),

4,V 5))(s) = U{F((d,5))(s) | i €I},
F({d,A\rS))(s) =N{F({(d,S:)) i€},

F({d, 515 52))(s) = (F((d, 51)) ; F((d, 52)))(s),

R

(«
(«
(«
((d,
(«
(«
(«

for every s € St. O

4.4 An operational semantics for £;

In this section we give an operational semantics for £;, and prove it equiv-
alent to the forward semantics. The operational semantics is based on hyper
transition systems, which are a generalization of standard transition systems.

Transition systems and hyper transition systems

Before we introduce hyper transition systems, we first discuss transition sys-
tems. They are a useful mathematical structure to describe the atomic steps
of a computation of a program [161].

Definition 4.4.1 A transition system with deadlock is a tuple (X,5,—)
where X s the class of all proper configurations for a program, § ¢ X de-
notes a deadlock configuration, and —C (X x X)U (X x {0}) is a transition
relation.

The idea is that configurations represent states of a computation, whereas a
transition z —» y (read ‘z goes to y’) indicates a possible atomic step which
a computation can do, changing the configuration z into the configuration y.
If £ — 6 then the computation in the configuration z deadlock. If there is
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no y € X U{d} such that £ — y then the computation is undefined in the
configuration z.

Let us now be a bit more precise about what we mean by ‘computation’. Let
T = (X,6,—) be a transition system and z € X. Define a finite computation
of T starting at z to be a finite sequence (z,),<x in X U {d} such that

(i) z = z,
(ii) z, — Tpq for all n < k, and
(iii) for all y € X U {6} there is no transition 2 — y in 7.

If (zn)n<k is a finite computation of T starting at zp then we say that it
terminates in the configuration z;. Notice that z; may also be equal to §. Not
every computation of a program need to be finite. An infinite computation of
T starting at z is a countable sequence (z,)nen in X such that

(i) z = 19, and

(ii) z, — zp41 for all n € IN.

In general, a computation of a transition system 7 is a finite or infinite com-
putation of T'. In other words, a computation of 7" is a transition sequence of
T that cannot be extended.

The next step is to introduce hyper transition systems. Hyper transition sys-
tems occur under the name of AND/OR graphs or hyper-graphs in logic pro-
gramming and artificial intelligence [155].

Definition 4.4.2 A hyper transition system is a pair H = (X,—<) where X
1s the class of all possible configurations in which a computation is allowed to
work, and —eC X x P(X) is a transition relation which specifies the atomic
steps of a computation.

A hyper transition system specifies a set of computations by specifying their
atomic steps. The idea is that a computation specified by a hyper transition
system H = (X,——) can change a configuration z into a configuration y if
the configuration y satisfies all and at least one predicates W C X such that
r —=< W (read ‘z goes into W’). More formally, the set of all computations
specified by a hyper transition system H can be modeled by the following
transition system TS(H).

Definition 4.4.3 For a hyper transition system H = (X,—-<) define the
induced transition system TS(H) = (X,d8,—>) by
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t—6 < ({W]|z— W}=0,
t—ye AWz —W)&ye(|{W |z — W},

forallz,ye X.

A computation of T'S(H) (or, equivalently, a computation that satisfies the
specification of the hyper transition system H) in a configuration z has four
possibilities with respect to a set F' C X of final configurations:

(i) it terminates in a deadlock configuration because there is no configuration
y € X satisfying all predicates W C X such that z —e W;
(ii) it terminates because z € F' and there is no predicate W C X such that

r—e W

(iii) it is undefined because z ¢ F and there is no predicate W C X such
that x —e W;

(iv) it goes to a configuration y satisfying all predicates W C X such that
r—e W.

Observe that, by definition, exactly one of the above four possibilities is pos-
sible. Indeed, for every =z € X, if  —< W then either £ — § or there
exists y € W such that £ — y. Conversely, there exists W C X such that
z —< W only if either £ — ¢ or £ — y (and in this case y € W). It follows
that a computation specified by a hyper transition system H is undefined in
a configuration z if and only if there is no W C X such that z —< W.

As an example of a hyper transition system consider H = (IN,—=), where IN
is the set of natural numbers and —= is defined, for all n > 0, by
n—e W& Vm>0m<n => meW.
The configuration ‘0’ is the only configuration in H such that there is no
W C X with x — W. Two of the many computations specified by H are
0—9—>4—>2—1—0and 10 —7—1—0.

It is not hard to see that every computation specified by H is finite and
terminates in the configuration ‘0’.

Under the above interpretation of hyper transition systems it is natural to
require that the transition relation — is upper closed on the right hand side,
that is,
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z—=< V &V C W implies z —e W. (4.5)

Essentially, the above closure property is due to the fact that V C W if and
only if V. = V N W. No extra information is added by upper closing to the
right the transition relation of a hyper transition system.

Observe that hyper transition systems specify computations at the level of
the properties that an atomic step has to satisfy, whereas transition systems
specify computations at the level of the configurations that an atomic step
may reach. Because of this difference a hyper transition system H = (X, —)
can model two different kinds of non-determinism: one at the level of the
computations specified and one at the level of the specification. The non-
determinism of the computations specified by H in a configuration z depends
on all the sets W C X such that x —< W: the bigger these sets, the more
computations are specified. The non-determinism of the specification depends
on the number of transitions starting from the same configuration: the more a
specification is non-deterministic, the less is the number of computations that
it specifies.

Consider the following two examples.

(i) Let X = {0,1,2} be a set of configurations and consider the hyper
transition system H; = (X,—=;) with 0 —e; V if both 0 and 1 are in V.
Then H; specifies two computations: they are undefined in a configuration
different from 0, but in the configuration 0 one computation does not change
configuration, whereas the other one changes 0 to 1. In other words, the tran-
sition relation of the induced transition system T.S(H;) is defined by 0 — 0
and 0 — 1.

(ii) Let now H, = (X,——=5) be a hyper transition system with 0 —ey V' if
either both 0 and 1 are in V or both 0 and 2 are in V. Then only one of the
computations of H; is specified by Hs, namely the one which does not change
the configuration 0. Indeed, the only transition in T'S(H,) is 0 — 0.

In the next subsection we will see that the non-determinism of the specification
is related to angelic non-determinism, and the non-determinism of the compu-
tations is related to the demonic non-determinism. Moreover, the possibility
of describing two different kinds of non-determinism in a single framework
will allow for a compositional specification of a computation in terms of the
properties that the atomic steps of the computation have to satisfy.

First we compare hyper transition systems to transition systems. We have
already seen that a hyper transition system H induces a transition system
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TS(H) representing all the computations specified by H. However, different
hyper transition systems can specify the same sets of computations. Let X =
{0,1} and consider two hyper transition systems H; = (X,—=;) and Hy =
(X,——=9) with

0—< Vit0€e Vorle V;and

Then TS(H,) = TS(H,) = (X, 6, —) with 0 — 4.

Conversely, every transition system 7 induces a canonical hyper transition
system HTS(T) which specifies exactly all computations of T'.

Definition 4.4.4 For a transition system T = (X,d,—>) define the hyper

transition system HTS(T) = (X,—<) by putting x —< W if and only if
t—dor (ByeX:z—y&VyeX:z —y = ye W))

for everyz € X and W C X.

The computations specified by HTS(T') coincide with the computations of 7.
This is a consequence of the following lemma.

Lemma 4.4.5 Let T = (X, 0, —>) be a transition system with deadlock. Then
TS(HTS(T)) = T.
Proof. Let TS(HTS(T)) = (X,6,—') and let z € X. If £ — ¢ then

1t —= (), by Definition 4.4.4. Hence, by Definition 4.4.3 z —' 4.

Conversely, if  —' § then

(UWWCX|z—eW}=0.

By Definition 4.4.4 this is the case only if z — 4.
Let now z,y € X. If x — y then, by Definition 4.4.4,

r—<{yeX|z— y}
By Definition 4.4.3 it follows that z —' y.
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Conversely, if 2 —' y then, by Definition 4.4.3 there exists W C X such
that £ —< W and for all z € X such that + —' 2, 2 € W. Hence, by
Definition 4.4.4, x — y. O

Which are the hyper transition systems that are in one-to-one correspondence
with transition systems? In order to characterize them, notice that, for every
transition system 7 = (X,d,—) the transition relation — of the hyper
transition system HTS(T) is upper closed on the right hand side and it satisfies
the following property:

IWCXig—eW =>z—<({VIX|z—V} (4.6)
for every z € X.

Lemma 4.4.6 Let H = (X,—=<) be a hyper transition system satisfying
Equation (4.6) and such that the relation —= is upper closed on the right
hand side. Then HTS(TS(H)) = H.

Proof. Let HTS(TS(H)) = (X,—<'), z € X and W C X. By Defini-
tion 4.4.4, if x —<" W then there are two cases: either x — § or there
exists y € X such that 1 — yand {y € X |z — y} C W.

In the first case, by Definition 4.4.3, \{W | £ —< W} = (). Hence there
exists W C X such that £ —< W and, by Equation (4.6) z —= {). Since the
relation — is upper closed to the right hand side, z — W.

In the other case, by Definition 4.4.3, there exists W C X such that x —e W
and

MW CX|2—eW}={yeX|s— y}

By Equation (4.6) and the upper closure on the right hand side of the relation
—= it follows that z —< W.

Conversely, assume z —< W. Then, by Equation (4.6), z —e N{W C X |
r —< W}. Let W, denote the set on the right hand side. By Definition 4.4.3,
if Wy = () then z — 4, otherwise £ — y for all y € W,. In both cases, by
Definition 4.4.4, z —<' Wj. Since Wy C W and the relation —<' is upper
closed on the right hand side, z —<' W. 0O
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Essentially, what makes a hyper transition system more expressive than an
ordinary transition system is the possibility of describing two different kinds
of non-determinism in a single framework. However, this does not imply that
transition systems are not expressive enough to specify computations. One
argument for the introduction of hyper transition systems is that they allow
for the specification of a computation in terms of the properties that the
atomic steps of the computation have to satisfy.

A hyper transition system for L,

In this subsection we define a hyper transition system for the language L;.
We consider configurations to be either states in St, representing the final
outcomes of the computations, or pairs (S, s) where s € St is a possible initial
or intermediate state of a computation and S € Stat; is the specification of
the remainder of the computation to be executed.

Definition 4.4.7 Let (c €) Conf; = (Stat; x St) U St be the class of configu-
rations and define, for every declaration d : PVar — Stat; the hyper transition
system (Conf,—4) by taking —e, to be the least relation between configu-
rations in Conf, and subsets of configurations of Conf, satisfying the following
axioms

Vo,8)—<q W ifs €V impliess € W
{V},s)—ea W ifseVNW

(fs)—<aW  iff(s)eW

z,8)—=<q W if (d(z),s) € W, for z € PVar

and the following rules

<Sz S) —=€q W
<VI Sia 3> —=<d w

ifiel

{(Siy8) —<a Wi|i€l}
(A1 Siys) —ea U{W; | i €T}

(S1,8) —ea W
<Sl ; SQ,S> —€q {(SQ,t) ‘ te W ﬂSt}U {(S{ ; SQ,t) ‘ <Sll,t> € W}
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An explanation is in order here. According to our interpretation of hyper
transition systems, the command (d, V—) specifies a computation that when
started at input s € V terminates in one step with the state s as the only
outcome because (V—,s) —e,; {s}. However, if the computation is started
at input s ¢ V then it must deadlock because (V—,s) — ().

The command (d,{V'}) is similar except that the computations specified by
(d,{V}) are undefined at input s ¢ V because no transition is possible from
the configuration ({ V'}, s).

The command (d, (f)) specifies a computation that at input s terminates in
one step, with as only output the state f(s) (because ((f),s) —eq {f(s)})-

The command (d, z) specifies a computation that at input s goes to the con-
figuration (d(z), s) (because (z,s) —<q4 {(d(z), s)}).

The command (d,\/; S;) specifies those computations which are specified by
all (d,S;) for i € I. It increases the non-determinism of the specification
and hence restricts the non-determinism of the computations. For example, if
(S1,8) —=q4 {c1, c2} and (Sa,8) —=4 {c1, c3} then (S)V Sa, ) —=4 {c1, o}
and (S; V S, 8) —=<q4 {1, c3}. Hence (d,S; V S5) specifies the computation
which at input s reaches the configuration c¢;. The computations specified by
(d,V;S;) are undefined at input s only if the computations specified by all
(d, S;) for i € I are undefined at input s. The computations specified by
(d,V;S;) must deadlock at input s if there is one (d, Si) for k& € I which
specifies a computation which must deadlock.

The command (d, A;S;) increases the non-determinism at the level of the
specified computations. It specifies computations which behave as any of the
computations specified by (d, S;) for i € I. For example, if (S}, s) —4 {c1}
and (Sy, s) —=4 {co} then (S1ASs, s) —<4 {1, c2}. Thus (d, 51 A Ss) specifies,
among others, the computation which at input s may choose to go either in the
configuration ¢; or in the configuration c¢,. Dual to the command (d,V; S;),
the computations specified by (d, A; S;) are undefined at input s if there is
one (d, Sy) for k € I which specifies a computation undefined at input s. Also,
the computations specified by (d, A; S;) must deadlock at input s only if the
computations specified by all (d, S;) for i € I must deadlock at input s.

Finally, the command (d, S ; S;) specifies computations that at input s may
either deadlock, or go to a configuration (S, s') if S; specifies a computation
which at input s terminates in a state s’, or goes to a configuration (S ; Sy, s')
if S; specifies a computation which at input s may go in a state s’ with (d, S)
the command specifying the remainder of the computation to be executed.
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In order to prove properties of the hyper transition system (Conf},—,) we
will often use induction on the structure of S. Indeed we can define inductively
an assignment of ordinals to statements in Stat, by

wgty (V—)

wgt,({V})

wgty ((f))

wgty (z)

wgty (51 ; 52)

wgty (VS
(

)
wgty (As Sz’)

=1

?

= Wgt1(51) + Wgtl(SZ) +1,
= sup{wgt,(S;) | i € I} + 1,
= sup{wgt,(S;) | i € [} + 1.

Since the index [ in the statements \/; S; and A; S; is a set, the above function

is well-defined.

The first property we prove of the hyper transition system (Confi,—,) is
the upper closure on the right hand side of the transition relation —«.

Lemma 4.4.8 For all commands {(d,S) of L, and states s € St,

<S,S> —=€q Wi & Wi C Wy = <S,S> —<y Ws.

Proof. We prove the lemma by induction on wgt,(S). Since base cases are
obvious we concentrate on the other sub-cases.

[Sl ; Sz] Let <Sl ; Sz, S) —€q W1 and Wz 2 Wl. Define

Wi ={s"|(S,s") € Wi} U{(S],s) | (5 8,5) € Wi}.

Similarly define also Ws. Then (S}, s) —<; Wi and W, C W,. Hence,
by induction, (S, s) —<4 Ws. The latter implies (S ; S, §) —<q Wo.
[V, S;] If (\V;Si,s) —<q W then there is k& € I such that (S, s) —eqy
W;. By induction, if Wy O W; then (Sg,s) —eq4 W,. Therefore
<V1 Ss, S) —=q Wa.
[ArSi:] Assume (A; Si, s) —=<4 Wi. By induction all transitions starting from
(S;,s) for i € I are upper closed on the right. Hence, by definition,
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(S, s) —<q4 Wy for all ¢ € I.If we take Wy O W, then, by induction,
(Si, s) —<eq Wy for all i € I. Hence (A\; Si, s) —eq Wo. O

Since the transition relation —<, is upper closed on the right hand side we
have that (A; S;, s) —<e4 W if and only if (S;, s) —e; W for all i € I. Dually,
by Definition 4.4.7, (\/; S;, s) —<4 W if and only if there exists k& € I such
that <Sk, 8) —<€q w.

Recall that the language £, can be mapped into the language £, via the
function (-)!. For d € Decly, the restriction of the hyper transition system
(Confy,——=41) to a hyper transition system H (with configurations stemming
either from state s € St or to pair ((9)T, s) with § € Staty) induces a transition
system TS(H) which is equivalent to H. This is a consequence of Lemma 4.4.8
and of the result below.

Lemma 4.4.9 For every (d,S) € Ly and s € St if there exists W C Conf
such that ((S)t,8) —<gt W then {(S),8) —<at N{W | {(S)T, 8) —<at W}.

Proof. By induction on the structure of S € Stat,. We consider only one
sub-case. Assume ((S; O 8,)t, 8) —< 4+ W. Since (S; O S2)f = (S1)TA (Sy)T, by
definition of — 4,

((8)7, 8) —egt W and {((S,)1,s) —egt W.

Hence, by induction hypothesis,

((S)t, 8y —<at (YW | (SO 8y)t, 5) —egr W} and
((52)",5) —<at (YW [ (81 O S)f, s) —<ar W

We can conclude that ((S; O S)T,s) —<4t N{W | ((Sy O 8)f,8) —<q41 W}
because

W [ (510 S)t,s) —<ar W}

= N{W [{(S)" A ($2)1, 8) —<ar W}

= N{W 1{(S)F, 8) —<ar W & ((S)T, 8) —<ar W}

= W [{(S)', 5) —<ar WINN{W [(($2)},8) —<ar W} O
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Operational semantics

Next we want to use the hyper transition system (Conf},—=,) to define an
operational semantics Op[-] for the language £;. Since we are interested only
in the input-output behaviour of the language £; we need to abstract from the
intermediate configurations recorded by the transition relation of the hyper
transition system. Therefore we need to take a kind of transitive closure of the
transition relation.

Definition 4.4.10 Let (X,—=) be a hyper transition system. For every or-
dinal A > 0 define the relation 2 e on X x P(X) inductively by

iELGWEZEEW,
MW =3V CcXir—<V&Vye Via< iy < W,

T A W=3o0<\z>2cW where A 1s a limit ordinal

forzr e X and W C X.

By induction on A it is easy to see that, for every ordinal A > 0, the relation

2 s upper closed on the right hand side if the relation — is upper closed
on the right hand side.

The ordinal used to label the transition relation z —~— W is not equal to the
number of atomic steps which a computation specified by a hyper transition
system starting in a configuration z need to execute in order to satisfy the
predicate W. Rather, the label takes in account both the length of the com-
putation specified which starts in a configuration z and the non-determinism
of the computations. Since we allow for unbounded demonic nondeterminism,
this label need not to be a finite ordinal.

The relation z < W for an infinite ordinal can be defined in terms of the
successor ordinal below A. This technical property will be useful in most of
the proofs by induction below.

Lemma 4.4.11 Let (X,——<) be a hyper transition system. For every limit
ordinal A\, x 2w if and only if either x L« W or there ezists an ordinal

a < )\ such that © e W.
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Proof. Let )\ be a limit ordinal. If z -2« W then 1 < W because 0 < \.
Also, if there exists a <\ such that *"le W then a+1<\. Hence 7 2< W.

The converse follows immediately by showing, by induction on A, that if

T 2. W and ) is la limit ordinal then either z L. W or there exists
a a < \such that 2% W. O

We can now define a semantics Op[-] for the language £; in terms of the hyper
transition system (Conf;,—=g).

Definition 4.4.12 (i) Put Sem; = Decl; x Conf; — P(P(St)) and define
Op € Semy, for d € Decl; and ¢ € Confi, by

Op(d, ¢)={P C st | 3\: ¢ —2¢; P}.
(ii) The operational semantics Op[-] : L1 — (St — P(P(St))) is given by

Opl{d, 5)](s) = Op(d, (S, s)).

The idea behind the above operational semantics is that of total correctness
(considering programs which deadlock as terminating and satisfying every
postcondition): if a predicate P on the output space of a program is in
Op[(d, S)](s) then every computation started at input s and specified by the
command (d, S) of £, terminates either in a state ¢ € P or in the deadlock
configuration §.

Theorem 4.4.13 Let T = (Confi,d,—=,4) be the transition system induced
by the hyper transition system associated to L1 according to Definition 4.4.3.
For all (d,S) € L1, P C St and s € St if P € Op[(d, S)](s) then every
computation of T starting at (S, s) is finite and terminates either in the con-
figuration § or in a state t € P.

Proof. It is enough to show by induction on the ordinal A that if (S, s) e, P
then every computation of T starting at (5, s) is finite and terminates either
in § or in a state ¢ € P.

For A = 0 the above statement is obviously true because there is no P C St
such that (9, s) —eq P.
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Assume the above statement holds for all ordinals o < A, and let P C St such
that (S, s) 2%, P. Let also (zn)n be a computation of T with zy = (9, s).

By definition of ’\—Hed there exists W C Conf; such that

(S,8) —<eq W & Ve e WIa < Xi ¢ —2<4 P. (4.7)

By definition 4.4.3, (S, s) —ey W implies that the sequence (z,), contains
at least two elements, 7o and z; with g —=<4 21 in T'. Moreover, either z; = §
or z; € W. Since there is no transition in 7 starting from ¢, if z; = ¢ the the
computation (z,), terminates in 6. Otherwise, by (4.7), z; —<4 P for some
a < A. Hence, by induction hypothesis, every computation of 7" starting at z;
is finite and terminates either in § or in state ¢t € P. Since 2y —<q4 21 in T,
also the computation (), of T is finite and terminates either in ¢ or in state
€ P. O

We conjecture that also the converse of the above theorem holds, that is, if
every computation specified by the hyper transition system associated with
L, and starting at (S, s) is finite and terminates in either § or ¢ € P then
P € Op[{d, S)](s). A proof of this statement reduces to the proof of the

existence of an ordinal A such that (S, s) —2¢, P. This will require a rather
detailed analysis of the computations specified by a hyper transition system.

Properties of the operational semantics

Next we give some properties of our operational semantics Op[-]. At first we
want to show that the semantics Op[(d, S)](s) of a command (d,S) in L
at input s € St abstracts from the intermediate configurations reached by a
transition sequence starting from (d, S) and collects only the final outcomes.
We reach this end by characterizing the function Op(-) as the least solution
of an operational fixed point equation.

Theorem 4.4.14 The function Op(-) is the least function in Sem; such that,
for d € Decly, s € St, and S € Staty,

Op(d, s) ={P CSt|se€ P},
Op(d, (S, s)) = U{N{Op(d, ¢) | ¢ € W} | (S, ) —<a W}.
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Proof. The proof is divided in two parts. We first prove that Op(-) satisfies
the above equations, and then we show that Op(-) is the least function which
satisfies them.

For s € St, there is no W C Conf; such that s —<; W. Hence

Op(d, s)

= {PgSt|Ei/\:3—)‘edP}
= {PCst|s—2e, P}

= {PCSt|seP}.

For (S,s) € Conf;, P € Op(d,(S,s)) if and only if there exists A > 0 such
that (S, s) e, P. Since P C St, (S,s) ¢ P. Hence A > 0. There are two
cases to be considered: either A = « + 1 for some ordinal « or A is a limit
ordinal. In the first case

<S7 3) ﬂ%Ed p

& W C Confi: (S, s) —eq W& Ve € W3IB < aze—Ley P

& IW C Confi: (S,s) —eq W & Ve e W:P € Op(d,c) [Def. Op(-)]

< PeU{N{Op(d,c) | ce W} |(S,s) —es W}.

In the second case A is a limit ordinal. By Lemma 4.4.11 (S,s) 2, P
if and only if either (5, s) —2c; P or there exists an ordinal o < A such
that (S, s) oty P. Since (S,s) & P, (S,s) —2e, P does not hold. Hence

(S, s) 2¢, P if and only if there exists o < A such that (8, s) &e, P. We
have already seen that the latter is equivalent to

Pe|J{({Op(d,c) | ce W} |(S,s) —<q4 W}.

Therefore Op(-) satisfies the two recursive equations above.

Let now F' € Sem; be another function such that, for d € Decl;, s € St, and
S e Statl,

F(d,s) ={PCSt|seP}
F(d,(S,s)) =U{M{F(d,c) | e W}|(S,s) —=q W}.

We prove, by induction on A, that
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¢—2eqy P = PeF(dc), (4.8)

for all ¢ € Conf; and P C St. It follows that Op(d, ¢) C F(d, c).

For A = 0 Equation (4.8) clearly holds. Assume it holds for every ordinal
a < A. Then

A+1
C —=<¢ P

< AW C Confi:c—eg W &Y' € W3a < \i¢/ -2, P
= dW C Confi:c —<; W & V'€ W:P € F(d,c') [induction]
& PeF(dc).

In the last equivalence we used the fact that ¢ —4 W if and only if ¢ = (S5, s)
for some S € Stat, and s € St.

Finally, let A be a limit ordinal and assume that Equation (4.8) holds for all
ordinals oo < A. Then

c—'\ed P

& Ja<hc—e, P

= Ja<XPe€F(d,c) [induction]
& PeF(d, o).

Hence Equation (4.8) holds for all ordinals. 0O

The above theorem shows that the operational semantics Op[({d, S)](s) of a
command (d,S) in £; at input s € St abstracts from the intermediate con-
figurations reached by a transition sequence starting from (d, S) and collects
only the final outcomes.

Operational equals denotational semantics

Next we want to relate the state transformer semantics St[-] to the hyper
transition system (Conf;,—=,). First we need to extend St[-] to configura-
tions. Define the function St*: Decl; x Conf; — CDL(St), for d € Decl; and
¢ € Confi, by
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{PCsSt|seP}ifc=s€8St
St*(d, ¢) =
St[{d, S)](s) if ¢ = (9, s) € Stat; x St.

The function St* is a fixed point of an equation defined in terms of the hyper-
transition system (Conf;,—=g4).

Theorem 4.4.15 For every (d,S) € L, and s € St,

St*(d, (S, s)) = {St"(d,c) | c € W} [(S,s) —<q W}.

Proof. In order to simplify the notation, let for W C Conf;

lhs(W) = ﬂ{St*(d, c)| ce W}
To prove the theorem we need to prove for all P C St,

P € St[(d, S)](s) < IW C Confy: (S, s) —eq W & P € Ihs(W). (4.9)

We proceed by induction on wgt, (S). We treat only two base cases. The cases
when S = {V} and S = (f) can be treated in a way similar to the one below.

P € St[{d, V—=)](s)
& s€V = se€ P [Definition St[]]

& (V—>,s) —e4 P [Definition —¢]
& (V—>,8) —<q P & P € lhs(P),

where P € lhs(P) because, by definition of St*, Ihs(P) ={Q C St | P C Q}.
Let now z € PVar. We have
P e St[{d, z)](s)
& P e St[{d,d(z))](s) [Definition of St[]]
)

)
& P e St*(d,{d(z),s)) [Definition of St*|
& (z,8) —=q4 {{d(z),s)} & P € lhs({d(z),s)). [Definition —e]
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Next we consider commands (d,S) € £; with wgt,(S) > 1. We begin by
proving Equation (4.9) for the command (d, \/; S;):

P € St[{d,V; Si)](s)
& dkeI: PeSt[{d,Sk)](s) [Definition St[-]]
& dk e I3W, C Conf : <Sk, S) —<a W & P € HIS( Wk) [induction]

1

<& JW C Confy: (V; Si,s) —<q W & P € Ihs(W),

where, by definition of —,4, ( = ) holds by taking W = W; whereas ( & )
holds by taking W, = W.

Then we prove (4.9) for the command (d, A; S;):

P e St[(d, A, S)] ()
Vie I: P e St[(d, $)](s) [Definition St[]]

Vi € I3AW; C Conf, : (S;,s) —<eq W; & P € Ihs(W;) [induction]
& 3IW C ConfiVi € I:(S;,s) —<q W & P € lhs(W),
& IW C Confy: (A; Si,s) —<eqg W & P € lhs(W), [Definition —e4]

4
=~

where ( 2 ) holds by taking W = U; W; because lhs(U; Wi) = N lhs(W;)
(a proof of this statement is immediate) and, by Lemma 4.4.8, (S;,s) —=q4

U; W; for all i € I. Conversely, ( & ) holds by taking W; = W for all i € [
because, by definition of —,; and Lemma 4.4.8, if (A; S;,s) —<eqg W then
(S;,8) —<q W forall i € I.

It remains to prove Equation (4.9) for the command (d, S; ; Ss):

P € St[(d, S ; $2)](s)
s € Wp[{d, S1; S2)](P) [Theorem 4.3.6]

s € Wp[(d, S)](Wpy[(d, $:)](P))  [Definition 4.2.2]

Wp,[(d, $:)](P) € St[(d, $1)](s)  [Theorem 4.3.6]

IW C Confy: (S1,8) —<a W & Wp,[(d, S2)](P) € Ihs(W)
[induction]

AW C Confy: (S ; S9,8) —<qg W & P € Ihs(W),

N I

:ij

where (2 ) holds by taking

W= {(S,t) [t € WNStYU{(S; S, ¢) | (S, 1) € W)
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Notice that (S, s) —eg W implies (S; ; S5, 8) —<eq W, and

Wp; [(d, 5)I(P) & Ihs(W)
& Vee W: Wp,[(d, Se)](P) € St*(d,c) [Definition lhs(W)]

& (Vte Wnst:te Wp[{d,S)](P)) &

(V(S],t) € W: Wp,[(d,S2)](P) € St[(d, S])](t)) [Definition St*]
& (Ve WnNnst: PeSt[{d,SH)](t) &

(V(8], 1) € W:t € Wp,[{d, S)](Wp,[(d, $)](P))) [Th. 4.3.6]
& (Ve WnNst: PeSt[{d,S$H](t) &

(V(S],t) € W:te Wp[{d,S]; S2)](P)) [Definition 4.2.2]
& (Ve WnNnst: PeSt[{d,SH](t) &

(V(S{,t) € W: P e St[(d,S]; S2)](t)) [Theorem 4.3.6]
& Vee W:PeSt*(d,c) [Definition W and St*]
& P elhs(W). [Definition Ihs(W)]

Conversely (< ) holds by taking
W={t|(S,t) € WHU{(S],1) | (S]; S, t) € W}

As above, if () ; S, s) —<g W then (S, s) —<q W, and P € lhs( W) implies
Wp,[(d, S2)](P) € Ihs(W). O

As a consequence of the above theorem together with Theorem 4.4.14 we have
that Op[(d, S)](s) C St[{d, S)](s) for all commands (d,S) in £; and inputs
s € St. In order to prove the converse we need to show that the function Opl[-]
satisfies the equations characterizing the forward semantics St[{d, S}](s) given
in Corollary 4.3.7. First we show that every function satisfying the fixed point
characterization of the operational semantics Op[-] satisfies also many of the
equations characterizing the state transformer semantics St[-].

Lemma 4.4.16 Let F : Decl, x Conf; — P(P(St)) be a function such that,
for d € Decly, s € St, and S € Stat;,

F(d,s) ={P CSt|seP} (4.10)
F(d,(8,8) = UINF(d, €) | ¢ € W (S,5) —e4 W), (a.11)

Then, for every d € Decl; and s € St,

(i) F(d,(V—,s8))={PCSt|seV = se P},
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F(d,(Si,5)) | i € I},
F(d,(S;,s)) |i€el}.

Proof. We begin by proving item (i).

P e F(d,(V—,s))

& IW C Confy: (V—,s) —eqg W&Vee W:P e F(d,c) [(4.11)]

& dW CConfy:(seV = se W)&Vee W:Pe F(d,c)
[Definition — 4]

& seV = PeF(ds)

& seV = seP,

where (<) holds by taking W = {s}. Items (ii) and (iii) can be treated
similarly.

Item (iv) follows immediately from the definition of —,:

P e F(d,(z,s))
& IW C Confy: (z,s) —eqg W &Vece W:P e F(d,c) [(4.11)]

& PeF(d(d(z),s)),

where (£ ) holds by taking W = {(d(z), s)}, whereas ( = ) holds because
(d(z),s) € W by definition of —,.

Next we prove item (v):

P e F(d,(\;S;,3)
& IW C Confy: (V[ Si,s) —eqg W &Vee W:P e F(d,c) [(4.11)]
< AW C Confi3dk € I: (S,s) —eqg W & Ve € W: P € F(d,c)

[Definition — 4]
& Jkel:PeF(d,{(S,s) [(4.11)]
& PelU{F(d,(S;s)|i€l}.

In order to prove item (vi) we use the fact that (A; S;, s) —e4 W if and only if
(Si, 8) —=<q W for all ¢ € I. This statement is a consequence of Lemma 4.4.8
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and the definition of —<,;. We have

P e F(d,{\; Si, s)
& dW C Confy: (A; Siys) —<a W &Vee W:P e F(d,c) [(411)]

4

& Vie I3W; C Conf,: (S;,s) —eq W; & Ve € W;: P € F(d,c)
& Viel:PeF(d,(Si,s) [(411)]
& Pen{F(d,{(S,s)|iel},

where ( < ) holds by taking W = |J W;, while ( 4 ) holds by taking W; = W
forall; e I. O
Next we prove that the operational semantics of the sequential composition

of two statements can be expressed in terms of the components.

Lemma 4.4.17 For d € Decl, s € St, and S1, S € Staty,

Opl{d, 81 5 )] (s) = K OpI(d, $)1(2) | t € Q} | @ € Op[(d, S1)](s)}-

Proof. The proof consists of two parts. In the first part we show the inclusion
from left to right, whereas in the second part we show the converse.
Let d € Decl; be a fixed but arbitrary declaration. To prove the inclusion

from left to right it is enough to show, by induction on A, that, for all P C St,
s € St and Sl, Sy € St&tl, if

(Sy; Sp,8) —eq P
then

3Q C St: (S, s) —eq Q & (VE € Q: P € Op[{d, Sy)](1)). (4.12)
For A = 0 the above assertion is always true because (S; ; S, s) & P.

Assume now (S ; Sy, ) /\—Hed P. By definition of the transition relation )‘—Hed,

there exists W C Conf; such that
(815 8y,8) —eqg W& Ve € Wia < A\ic—¢4 P. (4.13)
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Put W = {t | (S,t) € W}U{(S,t) | (§; S, t) € W}. By (4.13) and the
definition of the hyper transition system for £, we have that (S;, s) —eq W.
Moreover, by (4.13),

Vi€ W3a < X (Ss,t) 24 P (4.14)
and also
V(S t) € WIa < A (S ; Sy, t) ——<4 P. (4.15)

By definition of the function Op[-], (4.14) implies
Vt € W: P € Op[{d, S2)](¢). (4.16)

By induction hypothesis, (4.15) implies that for all (S,t) € W there exists
Q((S,t)) C St and a < A such that

(S,t) —<a Q((S. 1)) &Vt € Q({S,1)): P € Op[(d, S2)](t'). (4.17)

Take now Q = {Q((S, 1)) | (S,t) € W}. Because —i‘ed is upper closed on the
right hand side (4.17) implies that for all (S, ¢) € W there exists o < A such
that

(S,t) 2e; Q &Vt € Q: P € Op[(d, Sy, t')]. (4.18)

Finally, put @ = QU {t € St | t € W}. Because ——<, is upper closed on the

right hand side, and t —<, @ for all t € W N St we have, combining (4.16)
and (4.18),

Vee W3a < X c 24 Q & (Yt € Q: P € Op[(Sy, t)](1)).

Since (S, s) —<4 W we obtain, by definition of ML

(S1,8) 26, Q & (Vt € Q: P € Op[{d, $:)](t)).
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Therefore if A is a successor ordinal and (S ; Sy, ) 2, P then (4.12) holds.
In fact it holds for every ordinal because of Lemma 4.4.11. Hence

Opl(d, 51 ; 52)](s) € (Op[(d, 51)] ; Op[(d; 52)])(5);

for all s € St.

To prove the converse we show that for a fixed declaration d € Decl; and for
all ordinals A\, P C St, s € St and &1, .5, € Stat; if

3Q C st: (S, 8) g Q & (Vt € Q: P € Op[{d, S)] (%)) (4.19)

then

P € Op[{d, S ; S2)](s).

We proceed by induction on A. In case A = 0 clearly there is no ¢ C St such

that (51, s) —%¢; Q. Hence the statement (4.19) implies P € Op[(d, S1;8S2)](s)
is clearly true.

Assume now there exists ) C St such that

(S1,8) 2, Q & Vi e Q: P e Op[{d, S)])(¢). (4.20)

By definition of ’\—Hed there exists W C Conf; such that

(S1,8) —eqg W& Ve e Wa < X c ¢4 Q. (4.21)
Observe that the configuration ¢ in W can be of two types: either ¢ =t €
St or ¢ = (S,t) € Stat; x St. In the first case, by definition of —~<; and
Lemma 4.4.11, t —%¢; @ implies & = 0. Hence ¢ € @, from which it follows,
by (4.20), that

Vt € WnNst: Pe Op[{d,S)](t). (4.22)
In the second case (S, t) —<4 @ with a < X and P € Op[(d, $;)])(#) for all
t' € @ (by (4.20)) implies, by induction hypothesis, that

V(S t)y € W: P € Op[{d,S ; S)](t). (4.23)
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Define now W = {(Ss,t) [t € W}U{(S; Sy, t) | (S,1) €
of —=€4 and (421), <Sl 3 SQ,S> —=€q w. B}_’ (422) <Sg,t>
Op[{d, S2)](t); and by (4.23) (S ; So,t) € W implies P €

Thus

W}. By definition
€ W implies P €
Opl{d, S ; S2)](t).

(S);Sp,8) € W&Vee W: P e Op({d, c)).
By Theorem 4.4.14 this implies P € Op((d, (S ; S2,s))) = Op[{d, S ; S2](s).
Therefore if (4.19) holds for a successor ordinal A then P € Op[(d, S

S)](s). If A is a limit ordinal then (4.19) implies P € Op[{d, S1 ; S2)](s)
by Lemma 4.4.11 and the above. Hence we can conclude that

(Op[{d, 51)] ; Op[{d, S2)])(s) € Op[(d, 51 ; S](s)
forall s € St. O

The above lemma together with Lemma 4.4.16 applied to the function Op(-)
imply that Op[-] satisfies the same equations that are satisfied by the state
transformer semantics St[-]. Since the latter is the least function satisfying
the equations given in Corollary 4.3.7 we obtain that the forward semantics
St[-] coincides with the operational semantics Opl[-].

Theorem 4.4.18 For every (d,S) € L, and s € St,

Opl(d, 5)](s) = St[{d, 5)](s)-

Proof. By Theorem 4.4.15, the function St* satisfies the Equations (4.10)
and (4.11). By Theorem 4.4.14, Op(-) is the least function which satisfies
those equations. Hence Op[(d, S)](s) C St[{d, S)](s) for all s € St.

By Corollary 4.3.7, Lemmas 4.4.16 and 4.4.17, we obtain the converse. There-
fore Op[(d, $)](s) = St[(d, 5)](s). O

This result and Theorem 4.3.6 demonstrate that the operational semantics
Op[-] and the predicate transformer semantics Wp,[-] are isomorphic.
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A game-theoretical interpretation

We now briefly develop an alternative interpretation of a hyper transition
system based on a game between two players, one called angel and another
called demon. Our notion of game is inspired by the game interpretation of the
refinement calculus put forward by Back and Von Wright [16] and formally
developed in [99] and [18].

A hyper transition system (X,—) defines the possible configurations of the
game by means of the set X, and the possible moves of the game by means of
the relation —.

The game starts in a given configuration z € X. The angel aims to stop in
a configuration y € P for a given set of terminating configurations P C X,
whereas the demon aims to prevent it. The angel plays first by choosing a
subset W of X such that x — W. Then, the demon plays by choosing a
configuration y € W and the game restarts from the configuration y. The
game terminates if no move is possible. There are two cases: either the game
is in a configuration z but there is no W C X such that z — W, or the
angel has already chosen a set of configurations W but there isno y € W
(that is, W = (). In the first case, if z ¢ P then the demon wins. Otherwise
the angel wins.

In other words, an angel may win if there exists a function F: X — P(P(X))
which can predict the victory of the angel when starting in a configuration z,
that is, P € F(z) if and only if either z € P and there is no move for the
angel (there is no W C X such that £ — W), or there exists a move for the
angel who chooses W C X such that £ —< W and for all possible choices
y € W of the demon, P € F(y).

In Theorem 4.4.18 we have proved the existence of such a function for the
game defined by the hyper transition system {Conf,—<,) induced by L;: the
state transformer semantics St[-] of £;. In other words, P € St[(d, S)](s)
(or, equivalently, s € Wp,[(d, S)](P)) if and only if there exists a play in the
game defined by (Conf;,—=<4) which starts in the configuration (S, s) and
terminates in P with the victory of the angel.

Because the semantics St[-] is compositional, by induction on the structure of
the command (d, S) in the starting configuration (5, s) of the game, and from
the definition of (Conf,—=¢,), if the angel may win with respect to P C X
then it is possible to derive a winning strategy for it.
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4.5 Concluding notes

In the refinement calculus commands are identified with predicate transform-
ers in order to avoid problems associated with the existence of infinitary free
algebras, as discussed for example in Section 2.1. Hesselink [97] discusses the
existence of free complete specification algebras, where a specification alge-
bra is an algebra with an operator of composition and a binary meet. It is
called complete if it allows unbounded meets. In general the completion of
a specification algebra does not need to exist, since it can be a proper class
rather than a set. The isomorphism of Theorem 4.3.3 clarifies what are the
right equations for ensuring the existence of a complete specification algebra:
the unbounded meets should completely distribute over the unbounded joins.
In Chapter 9 we will return to this topic by proving the existence of a free
completely distributive lattice over a set X.

Our forward semantics for the refinement calculus is inspired by the minimal
models for modal logic of Chellas [51]. Chellas’s minimal models are a gener-
alization of Kripke models. They are indexed functions mapping each possible
world to sets of possible worlds, and are used as models of monotonic modal
logic.

The operational interpretation of the refinement calculus we presented in this
chapter differs in the following aspects from the game semantics of Back and
Von Wright [18] and the game semantics of Hesselink [99]. Back and Von
Wright define a game interpretation of the commands of the refinement cal-
culus using a standard transition system. A transition step corresponds to a
move in the game. A configuration is said to be angelic if only the angel can
make a move and is said to be demonic otherwise. This suggests a close relation
to our hyper transition system model. However, every sequence of transitions
in the game interpretation of Back and Von Wright is finite (in fact infinite
plays are not possible), and we allow also infinite sequences. The game se-
mantics for the refinement calculus given by Hesselink uses hyper transition
systems which allow for infinite games. However, both the hyper transition
system induced by the refinement calculus and the way of collecting the in-
formation from it is different from our operational approach. Furthermore,
our operational interpretation can be used for the step-by-step specification
of computations.

Also, our game interpretation of the refinement calculus differs from both

the game semantics of Back and Von Wright [18] and the game semantics of
Hesselink [99]. The main difference is that our games are not symmetric (and
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therefore we do not have to take sides): the angel always makes the first move.
The goal of the angel is different from the goal of the demon. Moreover, the
angel and the demon take turns, whereas in the other game interpretations
the choice of the player who plays depends on the configuration the game is
in.

We investigated angelic non-determinism only for sequential languages. The
reader interested in the connection between operational and denotational se-
mantics for a simple language supporting angelic non-determinism and parallel
composition is referred to [147,148]. In [42] a relation between hyper transition
systems is proposed which preserves the specification of the atomic steps of a
computation. This relation is a generalization of a simulation relation between
ordinary transition systems and takes into account also deadlock configura-
tions and undefined transitions.

We conclude with a short discussion about the size of the set PT (Y, X)
of monotonic predicate transformers. For Y an infinite set, Markowsky [139,
Theorem 2] proved that

| opL(Y) =227,
where | - | is the function which assigns to every set its cardinality. Since
| ST(X,Y) |=| CDL(Y) |X)if YV is an infinite set then by Theorem 4.3.3

| PTu(X,Y) |= (227X = 2@"xIXD),
If both X and Y are infinite countable sets then | Y |=| X |= wy (the
cardinality of the set of all natural numbers). By Cantor’s theorem the car-

dinality of wq is strictly smaller than the cardinality of 2“0. Hence, by [123,
Corollary 7.10.13],

2“0 X wy = max{2“°, wy} = 2*°.

If we assume the Generalized Continuum Hypothesis [123, Definition 7.10.28]
then

| PTM(X’ Y) |: 2(2|Y|><\X|) — 2(2“’0><w0) — 22“’0 = 2% = (.

If YV is a finite set then | PT (X, Y) | can also be calculated using the more
complicated characterization of the size of CDL(Y') given in [138]. The table
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| X |< 7. The size of PT (X, X) grows extremely fast as X increases.

| X [ [P(X) | | CDL(X) | | | PT+(X, X) | | | PTu(X,X) |
1 2 3 3 3
2 4 6 25 36
3 8 20 729 8000
4 16 168 83521 || 7.965941 - 108
5 32 7581 39135393 | 2.503989 - 10'°
6 64 7828354 | 7.541889-10'° | 2.301562 - 10!
7 128 | 2.414682-10'2 | 5.944673 - 10'* || 4.786489 - 10%6
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Chapter 5

Topology and affirmative
predicates

In the first part of this monograph we considered predicates to be subsets of
an abstract set of states. If we think of the states as the denotations of results
of computations of programs then predicates become computationally mean-
ingful in the sense that we can use partial information about a computation
to tell whether or not a predicate holds for that computation. A predicate for
which only finite information about a computation is needed to affirm whether
it holds is called an affirmative predicate.

The set of affirmative predicates is closed under finite intersections and ar-
bitrary unions. Hence affirmative predicates can be identified with the open
sets of a topological space. The idea that ‘open sets are observable predi-
cates’ was proposed by Smyth in [179], although it is also briefly mentioned
in [160]. Smyth interprets open sets as semi-decidable properties in some
‘effectively given’ topological space. More generally, open sets can be inter-
preted as (finitely) observable predicates [1,182]. Alpern and Schneider [8]
and Kwiatkowska [125] use open sets as ‘finite liveness predicates’ and closed
sets as ‘safety predicates’ to formalize the informal characterization of liveness
and safety properties of Lamport [126]. The name ‘affirmative predicates’ has
been introduced by Vickers [192] for denoting the abstract open sets of a frame.
Affirmative predicates are also called verifiable predicates by Rewitzky [165],
who uses the term observable for predicates which are both affirmative and
refutative.
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In this chapter we introduce a few topological concepts which we will also
need in the subsequent chapters. We motivate these concepts from the point
of view of the affirmative predicates.

5.1 Affirmative and refutative predicates

Assume that we run a program which outputs a sequence of states in X..
Let P be a predicate on X°°, the set of all finite and infinite sequences of
states. Following the definitions of Chapter 3, the predicate P can be seen,
extensionally, as a subset of ¥°°, which holds for a sequence w in ¥ if w is an
element of P. In practice, we can inspect the output sequence w of the program
as it proceeds. Hence, based only on the finite segments of w which have been
output so far, we can sometimes affirm whether the predicate P holds for
w. We can never affirm, on the basis of our finite observations, whether the
predicate

P = {v € £* | v has infinitely many occurrences of s € ¥ }

holds for w. We need to refine our definition of predicate to capture predi-
cates that we can observe. Informally, a predicate P on a set X is said to be
affirmative if we can affirm that it holds for some z in X only on the basis of
what we can actually observe, where an observation must be made within a
finite amount of time. In general there is no requirement that the absence of
a property should be observable. A predicate P is said to be refutative if we
can refute it for some z in X on the basis of finite information.

Different physical assumptions on the nature of the observations will describe
different collections of affirmative predicates. For example, we can assume that
our program can diverge, that is, it can produce some finite output and then
compute forever without any further output. Hence we cannot distinguish on
the basis of finite segments of an output w between a computation which halts
and a computation which diverges. Under this assumption a predicate P on
31 is affirmative if for all w € P there exists a finite segment v of w such that
every extension of v belongs to P. Clearly, the predicate {w} is not affirmative
for all sequences w, whereas the set 1 w of all extensions of w is an affirmative
predicate if the sequence w is of finite length.

Alternatively we can assume that our program can continue forever outputting
an infinite sequence, but that it has also the additional capacity to halt, for
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example by signaling when a computation terminates. Thus we have that for a
finite sequence w both the predicates {w} and 1 w are affirmative. Technically
this can be obtained as follows. A predicate P on X is affirmative if for all
w € P there exists a natural number n such that if the length of the longest

common prefix of w and any other string v is less than n then v belongs to
P.

For every set X, to affirm z € X no observation is necessary. It can be just
affirmed. Hence X itself is always an affirmative predicate. Also, we can never
affirm z € () for all z € X. Hence () is an affirmative predicate of X.

In general, affirmative properties over a set X are closed under arbitrary unions
and finite intersections. Let P;, for + € I, be an arbitrary collection of prop-
erties on X. To affirm z € |J; P; it is enough to affirm z € P; for some i € I.
Hence, if all P; are affirmative properties of X then also their union U; P; is
an affirmative predicate. The same cannot be said for arbitrary intersections.
To affirm z € N; P; we need to affirm z € P; for all ¢+ € I. If I is an infinite set,
this may take an infinite amount of time even if all P; are affirmative proper-
ties. However, if I is a finite index set, and all P; are affirmative properties,
then also N, P; is affirmative.

The complement of an affirmative predicate is, in general, not affirmative.
Indeed, to affirm z € X \ P we must refute £ € P. Therefore, complement
transforms affirmative properties in refutative ones, and vice versa. Using the
De Morgan’s laws, we have that refutative properties are closed under finite
unions and arbitrary intersections. Since the classical implication P = () can
be defined in terms of complement, neither affirmative nor refutative proper-
ties are closed under classical implication.

The closure of affirmative properties under finite intersections and arbitrary
unions implies that they form a topology on X [179,182].

Definition 5.1.1 A topology on a set X is a collection O(X) of subsets of
X that is closed under finite intersections and arbitrary unions, with the con-
vention that the empty intersection is the set X and the empty union is (. A
topological space is a set X together with a topology O(X) on X . The elements
of O(X) are the open sets of the space.

To simplify notation we usually write X for a topological space (X, O(X)).
Notice that a topology O(X) on a set X is a complete lattice when ordered
by subset inclusion. Since arbitrary unions distribute over finite intersections,
the lattice of open sets of a topological space X is a frame.
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A subset ¢ of a space X is said to be closed if it is the complement of an
open subset of X. The collection of all closed sets of X is denoted by C(X)
and, dually to the case of open sets, is closed under finite unions and arbitrary
intersections. Closed sets are ordered by superset inclusion. Any topology on
X induces a closure operator. For every subset V' C X define its closure cl(V)
as the smallest closed set including V, that is

d(V)=NfceCX)| Vel

One can easily verify that V C cl(V), cl(0) = 0, and cl(V) = cl(cl(V)).
The latter implies that the fixed points of ¢l are exactly the closed sets of X.
Moreover, for any subsets Vi and V, of X, ¢l(ViU Vo) = cl(V1) U cl(Va), and
if V1 g V2 then Cl(Vl) g Cl(Vg)

On a set X we can always define at least two topologies: the discrete topology
O4(X) = P(X) (every predicate is affirmative), and the indiscrete topology
0;(X) = {0, X} (no non-trivial predicate is affirmative).

A topology on a set X can be specified in terms of a collection of elementary
affirmative properties. Other properties can then be constructed by closing
them under arbitrary unions and finite intersections.

Definition 5.1.2 A sub-base B of a topology O(X) is a collection of open
sets such that every open set is the union of intersections of finitely many
elements of B. If B is already closed under finite intersections, then it forms
a basis and its elements are called basic opens. A space having a countable
base is said to be second countable .

For example, the collection of all singletons {z}, with z € X, is a sub-base
for the discrete topology. The singleton {z} represents the most elementary
(non-trivial) affirmation we can make about X.

Once we have fixed a collection of (sub-basic) affirmative properties on a set
X, then we can use it to determine which elements are observationally equiva-
lent. Even more, we can use affirmative properties to determine an information
preorder between points: z, has all observable information of z; if every affir-
mative predicate of z; is also an affirmative predicate of .

Definition 5.1.3 Let X be a topological space. The specialization preorder
Se on X induced by the topology O(X) is defined, for z and zy in X, by

7 S T2 if and only ifYoe OX):z1 €0 = 1€ 0.

116



Chapter 5. Topology and affirmative predicates

For example, consider the set of finite and infinite strings ¥*° together with
the topology defined by taking as basic open sets the sets T w of all extensions
of w, for all finite strings w. For arbitrary strings v, and v, of ¥X°°, we have
N Sp V2 if and only if every finite prefix w of v, is also a finite prefix of v,.
But this is equivalent to stating that v; is a prefix of v,. Hence, the prefix
order on strings and the specialization preorder coincide.

If we take as sub-basic opens for ¥ both 1w and {w} (for finite strings w),
then v; < o U2 if and only if v; = v,. To prove the last statement it is enough
to consider the following two cases:

(i) if vy is a finite string then {v;} is an affirmative predicate of both v,
and v, if and only if v; = vy;

(ii) if vy is infinite, then v, <, vo if and only if every finite prefix of v, is a
prefix of vy, that is, v; = vs.

Topological spaces can be classified on the basis of the possibility to separate
different points by means of opens.

Definition 5.1.4 A space X is said to be Ty if the induced specialization
preorder S, is antisymmetric, that is, it is a partial order. If <, is also
discrete then X 1is said to be a Ti space. Finally, X is said to be a Ty space
(or Hausdorff) if, whenever z; and z, are two distinct points of X, there are
two disjoint open sets containing r; and x, respectively.

Every 75 space is 71, and every 77 space is 7. In practice we almost always
identify any two points of a space X which have the same information, that
is, most of the computationally interesting spaces are at least 7. Define an
equivalence relation ~ on X by

T ~ 2o if and only if @ S, 7 and 2, S, 1.

o

If we now write [z] for the equivalence class containing z, and X /~ for the set
of equivalence classes, then the Tp-ification of X is defined as the space X /~
with as opens the collection of all sets {[z] | z € o} for all 0 € O(z).

Let f: X — Y be a function between topological spaces, and let P be a
predicate on Y. To affirm that f(z) has the predicate P, it should suffice to
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affirm z € f~1(P).

Definition 5.1.5 Let X and Y be two spaces. A function f: X — Y is called
continuous if, for all opens o of Y,

[~ (o) ={z | f(z) € o}

is open in X (or, equivalently, if the inverse of each closed set is closed). Topo-
logical spaces form a category Sp with as morphisms the continuous functions.
We write Spy and Sp, for the full sub-categories of Ty and T spaces, respec-
tively.

It is easy to see that a continuous function f : X — Y is monotonic with
respect to the specialization orders of X and Y [182, Proposition 4.2.4]. Hence
continuous functions preserve the observable information. For example, the
assignment z — [z]| from a space X to its Tp-ification X /~ defines a continuous
function.

5.2 Specifications, saturated sets and filters

In [179] it was suggested that a specification of an object (a program, for
example) can be an arbitrary list of affirmative predicates, understood as a
conjunction, that the object has to satisfy. Although in practice lists of finite or
countable length of affirmative predicates are enough as specifications, lists of
arbitrary length are a useful mathematical generalization which will make the
theory we develop in the successive chapters easier. In our view of affirmative
predicates as open sets of a topological space, a specifiable predicate is a set
obtained as the intersection of arbitrarily many open sets, that is, a saturated
set. Saturated sets which are intersections of countably many open sets are
often called Gy sets in the literature.

Definition 5.2.1 Let X be a topological space. A subset q of X is said to be
saturated if

1=o € O(X)|qC o).

The collection of the saturated subsets of X is denoted by Q(X).

An intersection system on a set X is a collection of subsets of X closed under
arbitrary intersection. For every space X, the collection Q(X) of saturated sets
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is, by definition, the least intersection system including all open subsets of X.
Moreover, by using the complete distributivity, we can express an arbitrary
union of saturated sets as an intersection of opens. Since the latter is a satu-
rated set, we have that saturated sets are closed under arbitrary unions and
arbitrary intersections. Therefore Q(X) is a ring of subsets of X, from which
it follows that Q(X) ordered by subset inclusion is a completely distributive
lattice.

Notice also that Q(X) is a topology on X which is closed under arbitrary
intersections. Hence, for a Ty space X, Q(X) coincides with the collection of
all upper sets of X with respect to the specialization order <, [112, page 45].

Lemma 5.2.2 For a Ty space X and A C X,

tA=[{o€OX)|AC o},

where T A is the upper closure of A with respect to the specialization preorder
S on X induced by the topology O(X).

Proof. The inclusion from left to right is immediate since every open set is
upper closed with respect to the specialization preorder 5. Conversely, let
z€N{o€OX)[AC o} and assume 7 ¢ T A. Then a £, z for all a € A.
Thus for all a € A there exists o, € O(X) such that a € o, and z ¢ 0,. For
0 =U{o0, | a € A} we then have the contradiction that A C o and z ¢ 0. O

In case X is a 7; space, the specialization order is the identity. Thus every
subset of X is upper closed. From the above discussion it follows that every
predicate of X is specifiable, that is, Q(X) = P(X).

A specification F, understood as list of affirmative predicates over a space X,
is said to be

(i) properif ) ¢ F;
(i) deductively closed if P € F and P C @ implies @ € F; and
(iii) consistent if P € F and @ € F implies PN Q € F.

The above merely says that a proper, deductively closed and consistent spec-
ification is a filter of the lattice of opens O(X). If we want to specify a single
element of X then completely prime filters are more adequate: a point which
satisfies the disjunction of some predicates, satisfies at least one of these pred-
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icates. Indeed it can be easily checked that a space X is 7y if and only if for
every completely prime filter F of O(X) there exists at most one point z € X
such that

F={o€OX)|ze€ o}

A space with a bijective correspondence between points and their specifications
is called sober.

Definition 5.2.3 A space X is said to be sober if for every completely prime
filter F of O(X) there exists exactly one point © € X such that

F={o€eOX)|ze€o}

For example, every Hausdorff space is sober [182, Proposition 4.3.14]. From
the above characterization of 7, spaces in terms of completely prime filters,
it follows that every sober space is 7. The full sub-category of Sp whose
objects are sober spaces will be denoted by Sob. For an example of a 7; space
which is not sober, and of a sober space which is not 7; we refer to [182, IV,
Example 4.1.4].

5.3 Examples of topological spaces

In this section we introduce the topologies which we will use in the remaining
chapters.

Alezandrov topology

Given a poset P, the Alezandrov topology O 4(P) on P is defined as the collec-
tion of all upper closed subsets of P. Clearly, if P is a discrete poset, then the
Alexandrov topology on P coincides with the discrete topology. In general, a
poset P with the Alexandrov topology is a 7, space.

The specialization preorder induced by the Alexandrov topology coincides
with the partial order on P. Hence the collection of saturated subsets of P
coincides with the collection of Alexandrov open subsets of P. A function
f: P — @ between two posets is monotone if and only if it is continuous with
respect to their Alexandrov topologies [7].
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Scott topology

The Alexandrov topology on a poset is not always computationally adequate:
it should be refined in a such way that if we can affirm that a predicate holds
for the least upper bound of a directed set V then we can affirm it already for
some of its approximants in V.

Definition 5.3.1 The Scott topology Os(P) on a depo P consists of all the
upper-closed subsets of P such that for any directed set D C X,

\VDeo = Dno#0.

As in the case of the Alexandrov topology, the specialization preorder induced
by the Scott topology on a dcpo P coincides with the partial order on P [77,
Remark I7.1.4]. Hence the collection of saturated sets of P coincides with the
Alexandrov topology on P. Also, a function f: P — ) between two dcpo’s
is continuous for the Scott topologies of P and @) if and only if it preserves
directed joins [174].

The Scott topology generalizes the discrete topology in the following sense.
For a set X, if we assume that singleton sets {z} are the most elementary
affirmations we can make then the collection of all affirmative predicates is
the discrete topology on X . Assume that we can also affirm that no element has
been observed yet, for example because of divergence. This can be described
as the Scott topology on the flat cpo X : every subset of X is Scott open as
well as the set X U {L}. Notice that for flat cpo’s, the Alexandrov and the
Scott topology coincide.

The following proposition relates sober spaces and dcpo’s [112, Lemma, 1.9].

Proposition 5.3.2 If X s a sober space then the specialization preorder on
X has all directed joins. Moreover, every open set o € O(X) is Scott open. O

The converse of the above proposition is false: not every dcpo is sober even
when taken with the Scott topology [111]. The desired result can be obtained
if we impose more structure on a dcpo. In particular, an algebraic dcpo P
taken with the Scott topology is sober [106,145]. In this case we can describe
the Scott topology by means of the compact elements of P: the set of all upper
closed sets 1 b for compacts b € KC(P) forms a basis for the Scott topology of
P.
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The lattice of open sets of a space X is clearly a dcpo. In the previous section
we suggested that specifications are lists of open sets, and hence a predicate on
the lattice O(X). A specification F is said to be finitary if it is a Scott open set
of the lattice O(X), that is, whenever the union of a directed set D C O(X)
of affirmative predicates is in F, then some predicate in D is already in F.
Scott open filters allow us to define compact subsets as finitarily specifiable
subsets.

Definition 5.3.3 A subset S of a space X is compact if and only if the set

{o€e O(X)| S Co}

is a Scott-open filter of O(X). A space X is said to be compact if the set X
18 compact.

Equivalently, one can use the following (more standard) definition of com-
pactness. A subset S of a space X is compact if and only if for every directed
collection D of open sets in O(X) such that S C [J D there exists an open set
o € D such that § C o. Notice that an open subset of a space X is compact if
and only if it is a compact element of the dcpo O(X) in the domain theoretical
sense (as introduced in Section 2.2).

For example, in any space X, every finite subset of X is compact, as well
as any arbitrary subset containing the least element | with respect to the
specialization preorder on X. Also, for an algebraic dcpo P taken with the
Scott topology, every basic open set 1b, with b € IC(P), is compact.

A useful tool for proving compactness of a space is the Alexander sub-basis
theorem [6].

Proposition 5.3.4 Let X be a space with sub-base B. Then X is compact if
for every directed collection D of sub-basic open sets in B such that X CJ D
there exists an open set b € D with X Cb. 0O

Stone and spectral spaces

We have seen in the previous subsection that an open subset of a space X is
compact if and only if it is a compact element of the dcpo O(X) in the domain
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theoretical sense. However the lattice O(X) need not to be algebraic.

Definition 5.3.5 A space X with an algebraic lattice of opens O(X) is said
to be locally open compact.

This means that the collection XO(X) of compact open subsets of X forms a
basis for the topology O(X). Therefore locally open compact space are often
called spaces with a basis of compact opens [77]. In terms of points, locally
open compactness can be formulated as follows (for a proof of the proposition
below see either [77] or [39]).

Proposition 5.3.6 Let X be a space. The lattice O(X) is an algebraic dcpo
if and only if for every point x € X and open set o € O(X) such that z € o
there exists a compact open set u € KO(X) satisfying z € u C 0. O

Locally open compactness does not imply soberness: every poset P taken with
the Alexandrov topology is a locally open compact space but need not to be
sober. For z € P and Alexandrov open o such that z € o, if we take the
compact Alexandrov open set 7z then we have z € Tz C o.

Also the Scott topology of an algebraic dcpo P is locally open compact (and
sober). For z € P and Scott open o satisfying z € o, by definition of alge-
braicity and of the Scott topology, there exists a compact element b € KC(P)
such that b < z and b € 0. Hence z € b C 0. Since 1 b is compact in the
Scott topology of P, it follows that P as a topological space is locally open
compact.

Locally open compact spaces are of interest because they are finitary in the
following sense: every affirmative predicate can be retrieved by the finitarily
specifiable affirmative predicates because the lattice of opens O(X) is (iso-
morphic to) the ideal completion of its basis of compact opens £O(X).

Definition 5.3.7 A topological space X is said to be spectral if the set KO(X)
of compact open subsets of X forms a basis for O(X) and it is closed under
finite intersections. If, moreover, compact opens are closed under complement,
then X is said to be a Stone space.

Since finite unions of compact opens are again compact open sets, it follows
that in a spectral space X, the lattice XO(X) of compact opens is distributive,
while in a Stone space X the lattice KO(X) of compact opens is a Boolean
algebra.
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Our interest in spectral and Stone spaces is justified by the following obser-
vation. Every SFP domain taken with the Scott topology is spectral [160],
and every compact ultra-metric space taken with the metric topology (to be
defined below) is a Stone space [182, Corollary 6.4.8].

Coherent spaces

The key property of spectral and Stone spaces is the fact that their lattice
of open sets is algebraic. Hence every open set can be obtained as union of
compact open sets. A weaker but similar result can be obtained for a larger
class of topological spaces: the coherent spaces.

Definition 5.3.8 For a space X let KQ(X) be the set of all compact saturated
sets of X. The space X is said to be coherent if it is sober, KQ(X) is closed
under finite intersections, and, for all open sets o, it holds that

o=J{ueOX)|3geKQ(X):uCqC o}

By the above definition it follows that, in a coherent space X, every open set
is the directed union of all compact saturated sets which are included in it,
that is, every affirmative predicate on X can be approximated by finitarily
specifiable predicates.

Every spectral space (and hence every Stone space) is coherent. However,
not every algebraic dcpo, even if taken with the Scott topology, is coherent.
Coherent spaces as finitary algebraic structures (proximity lattices) are studied
in [118].

Metric topology

Partial orders and metric spaces play a central role in the semantics of pro-
gramming languages (see, e.g. [195] and [23]). The order can be used to give
a comparative description of computations, whereas the metric gives quan-
titative information. This quantitative information can be used to define a
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topology on the underlying set.

Definition 5.3.9 The metric topology on a metric space X 1is defined by
taking as open sets all subsets o C X with the following property:

z €0 = Je>0:B(z) C o,

where Be(z) ={y | dx(z,y) < €}.

For every €>0, and z € X the ball B.(z) is an open set in the metric topology.
Even more, the set of all balls B.(z) for every e >0 and z € X forms a basis
for the metric topology. One can easily verify that every metric space with the
above topology forms an Hausdorff space, and hence that it is a sober space.
It follows that the collection of saturated sets of a metric space X is P(X),
that is, every predicate on X is specifiable. For a discrete metric space the
metric topology coincides with the discrete topology.

Closed and compact subsets of the space induced by a metric space X coincide,
respectively, with the closed and compact subsets of the metric space X as
defined in Section 2.3 (see [63]).

Proposition 5.3.10 Let X be a metric space and S C X. The set S is closed
in the metric topology if and only if the limit of every convergent sequence in
S 1s an element of S. Also, S is compact in the metric topology if and only if
for every sequence in S there is a sub-sequence converging in §. O

Every non-expansive function f: X — Y between two metric spaces is contin-
uous with respect to their metric topologies. However, the converse does not
hold: f is continuous if and only if

Vi € XVe > 046 > 0V € X: dX(ZL'l,JEQ) <6 = dy(f(.’lfl),f(ﬂfg)) <e.

5.4 Final remarks

Affirmative predicates on X can be described intensionally as continuous func-
tions from the space X to the poset 2 = {0,1} with 0 < 1 taken with the
Alexandrov topology. In fact we have an order-isomorphism

OX)2X —.2
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where X — . 2 is the continuous function space ordered pointwise. An interest-
ing generalization would be to consider functions from X to the closed interval
of reals [0, 1]. These functions can be thought of as fuzzy predicates of X. The
value a function ¢ : X — [0, 1] assigns to an element z in X can be thought
of as a measure for the extent to which z is an element of ¢. The connections
between fuzzy predicates and affirmative predicates have been exploited in
the context of generalized metric spaces by Lawvere [130], and more recently
in [34,90].

We conclude this chapter with a few remarks on generalized metric spaces.
Since they are not objects of study in the present work, we give only pointers
to some of the literature.

Generalized metric spaces provide a framework for the study of both pre-
orders and ordinary metric spaces. A generalized metric space consists of a
set, X together with a distance function which does not need to be symmetric.
Moreover, different points can have zero distance. Generalized metric spaces
were introduced by Lawvere [130,131] as an illustration of the thesis that fun-
damental structures are categories, and they were subsequently studied in a
topological context by Smyth [180,181] as computational spaces: they combine
the qualitative information of (observational) preorders with the quantitative
(behavioural) information of a distance function.

Some of the basic theory of generalized (ultra-)metric spaces has been devel-
oped in [193,168,67], where an approach to the solution of recursive domain
equations is presented which extends both the order-theoretic [183] and the
metric [9] approaches.

Fundamental constructions for generalized (ultra-)metric spaces like comple-
tion [180,35,69] and powerdomains [181,35] reconcile respective constructions
for preorders and metric spaces.

Both the Alexandrov and the Scott topology for preorders can be extended to
generalized metric spaces in a such way that for ordinary metric spaces they
both correspond to the metric topology [180,35,34]. For the restricted class
of algebraic complete quasi metric spaces the generalized Scott topology has
been shown to be sober [68].
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Chapter 6

Powerspaces, multifunctions
and predicate transformers

Programming languages can often be defined in terms of atomic statements
(like assignments to variables), a set of statement operators (like sequential
composition and non-deterministic choice), a set of process variables, and a
recursion operator for each process variable. To give a compositional semantics
to a program it is therefore necessary to define a semantic domain in which
atomic statements and statements operators can be interpreted. Modeling
recursion is one of the difficult aspects of building a compositional semantics.
For this reason the input and output state spaces of a program are often
structured, complete with respect to some limit construction, and recursively
defined.

In Chapter 3 we introduced two different models for a compositional semantics
of a programming language: the state transformer model and the predicate
transformer model. A rich collection of semantic constructions is available
for state transformers on structured sets of states. However, the same cannot
be said for predicate transformers. Nothing, or very little, is known about
compositional predicate transformer semantics for programs which interact
with their environment.

In this chapter we investigate the relationships between state transformers and
predicate transformers in a general topological setting. Topological dualities
between predicate and state transformers provide a mathematical approach
to predicate transformers between structured sets of states. The connection
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between state transformers and topological predicate transformers was first
studied by Smyth [179] who placed the result of Plotkin [159] for the Smyth
powerdomain in a broader topological framework using the upper powerspace.
This work is our starting point. However Smyth restricts to sober spaces while
we use 7y spaces. Also, our techniques are more in line with the ones used
in [159]. Besides the upper powerspace we consider also the lower and the
Vietoris powerspaces, and we show that the three isomorphisms established in
Chapter 3 also hold in this general setting. In passing, topological representa-
tions of order theoretic and metric powerdomains are given.

All topological dualities we describe are order-preserving. As a consequence, to
define a predicate transformer semantics from a state transformer semantics it
is sufficient to define only predicate transformers for the atomic statements and
operators on predicate transformers corresponding to syntactical operators.
Recursive constructs can be handled in the predicate transformer semantics
exactly in the same way as for the state transformer semantics.

6.1 Multifunctions as state transformers

One way to capture a compositional semantics of a concurrent program is
to consider it as a function from input states to the set of all intermediate
states through which the program P passes after one atomic step, followed
by the semantics of the remaining part of the program to be executed. In
order to deal with this recursive definition, states are usually endowed with
a topological structure (usually a partial order or a distance function). To
model non-deterministic computations, semantic functions can be represented
by many-valued functions, or multifunctions.

Definition 6.1.1 A multifunction f: X — Y with values in V C P(Y) is
a function that assigns to every element x of a topological space X a subset
f(z) €V of a topological space Y.

For a multifunction f : X — Y and a predicate P on Y, we denote by f*(P)
the upper inverse of f, that is, the set of all inputs z of f such that every
element of f(z) satisfies the predicate P. The lower inverse of f is denoted by
f~(P) and is defined as the set of all inputs z of f such that some elements
of f(z) satisfy the predicate P. Formally, for P C Y

ff(P)={zs e X [f(z) C P} and f(P)={z € X [f(z)N P #0}.
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The maps f* and f~ are dual in the sense that f*(P) = X \ f~(Y \ P) for all
P C Y. Different ways of defining inverse give rise to different ways of defining
continuity. Below we list three definitions of continuity for a multifunction [27].

Definition 6.1.2 Let X and Y be two topological spaces. A multifunction
f:X = Y with values in V C P(Y) is said to be

(i) lower semi-continuous if f~(0) € O(X) for every o € O(Y),
(i) upper semi-continuous if f*(0) € O(X) for every o € O(Y), and

(iii) continuous if it is both upper and lower semi-continuous.

Since f~ and f* are dual functions, the above notions of continuity could also
have been expressed in terms of refutative predicates rather than affirmative
ones. For example, f is lower semi-continuous if and only if f(¢) is a closed
subset of X for every closed subset ¢ of Y. For every notion of continuity of
a multifunction there is a related topology on the collection of subsets of the
codomain [141,153].

Definition 6.1.3 Let V be a set of subsets of a space X.

(i) The lower topology on V has as sub-base the collection of all sets of
the form L, for o € O(X), where

L,={SeV|Sno#0}

(ii) The upper topology on V is defined by taking as base the the collection
of all sets of the form U, for o € O(X), where

Up={S€V|SCo}.

(iii) The Vietoris topology on V has as sub-base the union of the base of
the upper topology and the sub-base of the lower topology.

The definitions of the (sub-)bases of the above topologies are chosen in this
way in order to make the proof of the following proposition trivial [141] (see
also [179]).

Proposition 6.1.4 Let X, Y be two topological spaces, and let f: X — Y be
a multifunction with values in V C P(Y) with V # (0. Then

(i) f: X = Y is lower semi-continuous if and only if the corresponding
function f: X — V s continuous with respect to the lower topology on V;

(ii)) f: X — Y is upper semi-continuous if and only if f : X — V is
continuous with respect to the upper topology on V; and
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(iii) f: X — Y is continuous if and only if f : X — V is continuous with
respect to the Vietoris topology on V.

Moreover, these three topologies on V are the only ones that have these prop-
erties. 0O

In general, for an arbitrary collection of subsets V of a space X, the upper,
lower and Vietoris topologies on V do not ensure that the resulting space is

To.
Lemma 6.1.5 Let V be a set of subsets of a space X, and A, B €V,

(i) A < B in the preorder induced by the lower topology on V if and only
if cl(A) C cl(B), where cl is the closure operator induced by the topology on
X’.

(ii) A < B in the preorder induced by the upper topology on V if and only
if 1 A D1 B, where the upper closure is taken with respect to the specialization
preorder of X ;

(iii) A < B in the preorder induced by the Vietoris topology on V if and
only if both cl(A) C c¢l(B) and T+ A D 1 B.

Proof. (i) Let 0 € O(X) be such that A € L,. Since A C cl(A), cl(A)No # .
If cl(A) C cl(B) then also cl(B)No # 0. It follows that also BNo # (), because
otherwise B C X \ o would imply ¢l(B) C X \ o, contradicting BN o # 0.
Hence B € L,. For the converse, assume A € L, implies B € L, for every
open o. Since B C cl(B), B ¢ Lx\a(p)- Hence also A € Lx\q(p), that is,
A C cl(B). Therefore cl(A) C cl(B).

(ii)) Assume A € U, for some o € O(X). Then 1 A C o by definition of
specialization preorder. If A D 1 B, then also 1B C 0. But B C 1 B, thus
B € U,. Conversely, assume A € U, implies B € U, for every open o. Since
tA=N{o€O(X) | AC o}, we can immediately conclude that 1 A D 1 B.

(iii) Combine the two previous items. 0O

The above lemma justifies the following restriction which considers only cer-
tain kinds of subsets of a space. Starting from a topological space X, we
consider three spaces of subsets of X:

(i) the lower powerspace of X, denoted by P;(X) and defined as the col-
lection of all closed subsets of X taken with the lower topology;
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(ii) the upper powerspace of X, denoted by P,(X) and defined as the col-
lection of all upper closed subsets of X taken with the upper topology; and

(iii) the conver powerspace of X, denoted by P.(X) and defined as the
collection of all convex closed subsets of X taken with the Vietoris topology,
where § C X is convex closed if S = cl(S)N1S.

Variations of the above powerspaces can be obtained by deleting the empty
set, or restricting to finitarily specifiable subsets using compact sets. Below we
denote by P2 (X) the collection of all upper closed and compact subsets of X
taken with the upper topology, whereas P (X) denotes the collection of all
convex closed and compact subsets of X taken with the Vietoris topology.

From Lemma 6.1.5 it follows that the three powerspaces above are 7 (more
precisely, they are isomorphic in Sp to the Ty-ification of P(X) taken with
the lower, upper and Vietoris topology, respectively).

Let X and Y be two topological spaces. Three posets of topological state
transformers can be identified:

— the lower state transformers, i.e. continuous functions from X to P;(Y)
ordered by the pointwise extension of the specialization preorder induced
by the lower topology;

— the upper state transformers, i.e. continuous functions from X to P,(Y)
ordered by the pointwise extension of the specialization preorder induced
by the upper topology;

— the conver state transformers, i.e. continuous functions from X to P.(Y)
ordered by the pointwise extension of the specialization preorder induced
by the Vietoris topology.

The above domains of topological state transformers can be related to the
three domains of state transformers introduced in Chapter 3 as follows. Let
X, Y be two sets, and consider the flat cpo Y, taken with the Scott topology.
Then, by definition of the Scott topology on Y,

P(Y) ={SCYU{L}|S#0 = LeS},
Pu(YL) = P(Y)U{Y.},
Pe(YL) =P(Y U{Ll}).

Hence P(Y,) \ {0} = P(Y). If we take X with the discrete topology then
every function from X to one of the three powerspaces above is continuous.
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By the Definitions 3.2.6, 3.2.1 and 3.2.9 of the Hoare, Smyth, and Egli-Milner
state transformers, respectively, it follows that

STy(X,Y)=X — (P(YL)\ {0}),
STs(X,Y)=X — P,(Y.), and
STe(X,Y)=X — P(Y.).

A subset of Y is compact in the Scott topology if and only if it is either finite
or contains the bottom element . Therefore

STEX,Y)=X = P®(Y.) and STI(X,Y) =X — P@(YL).

In the next section we relate the lower, the upper and the convex state trans-
formers with predicate transformers between affirmative predicates.

6.2 Topological predicate transformers

Since affirmative predicates are identified with the open sets of a topological
space, functions from O(Y) to O(X) are the appropriate topological general-
ization of predicate transformers. For ordinary predicate transformers, com-
plete multiplicativity (preservation of arbitrary meets) is required to rule out
those predicate transformers which represent ‘imaginary programs’ (specifica-
tions). In addition, Scott continuity is required on predicate transformers to
characterize ‘computable’ programs. While the latter constraint can be easily
exported to our topological generalization of predicate transformers (open sets
are closed under arbitrary unions), the condition of complete multiplicativity
requires more attention: open sets are not closed under arbitrary intersections.

Definition 6.2.1 Let X and Y be two topological spaces. A function m from
the lattice of opens O(Y) to the lattice of opens O(X) is said to be M-
multiplicative if whenever NP C N Q then also N7 (P) C N7(Q), for all
P,Q C O(Y). The collection of all M-multiplicative functions from O(Y) to
O(X) is denoted by O(Y) —u O(X).

Intuitively, an M-multiplicative predicate transformer preserves specifications:

if a specification @) on the output space of some program (denoted by an M-
multiplicative predicate transformer 7) is refined by another specification P,
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then every input z which makes the output of the program satisfy P should
also make the the output of the program satisfy ().

One can easily verify that M-multiplicative functions are monotone with re-
spect to subset inclusion. Moreover, they preserve all intersections of open sets
which are open. Since in every space the empty intersection is the top element
in the lattice of open sets, M-multiplicative functions are top-preserving. For
M-multiplicative functions we can prove the following stability lemma which
generalizes Lemma 3.3.5.

Lemma 6.2.2 Given two spaces X and Y, let m: O(Y) =y O(X) be an
M-multiplicative function. Then

z €m(u) if and only if (J{o € O(Y) |z €m(0)} Cu

for every u open in Y and r € X.

Proof. The direction from left to right is obvious. For the converse we use M-
multiplicativity: if N{o € O(Y) | z € w(0)} C u then N{m(0) | z € w(0)} C
7(u). Hence z € w(u). O

The M-multiplicative functions arise naturally from upper semi-continuous
multifunctions. If f : X — Y is an upper semi-continuous multifunction, then
its upper inverse f*: O(Y) — O(X) is an M-multiplicative predicate trans-
former. Assume NP C N @ for P and () arbitrary collections of opens of Y,
and let z € N{f"(0) | o € P}. Then f(z) C o for all o € P and hence
f(z) C o for all 0 € Q. Therefore z € N{f*(0) | 0 € @}, which proves T is
M-multiplicative.

Dually, if f: X — Y is a lower semi-continuous multifunction then its lower
inverse f~ : O(Y) — O(X) preserves all unions, that is, f~ is completely
additive. The collection of all completely additive functions from O(Y) to
O(X) is denoted by O(Y) —4 O(X). For completely additive functions we
have the following stability lemma.

Lemma 6.2.3 Given two spaces X and Y, let m: O(Y) —4 O(X) be a
completely additive function. Then

z ¢ m(u) if and only if uC | J{o € O(Y) |z & m(0)}
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for every u open in Y and z € X.

Proof. The direction from left to right is obvious. Conversely, if u C J{o €
O(Y) |z & m(o)} then w(u) C U{n(0) | z & w(0)} because 7 is completely
additive (and hence also monotone). Therefore z ¢ 7(u). O

Notice that the completely additive functions are about refutative predicates.
Next we provide duality results between state transformers and topological
predicate transformers. They extend the results of Chapter 3 to arbitrary
topological spaces. Both the order-theoretic and the metric state transform-
ers are instances of topological state transformers. Since there is a rich se-
mantical theory for order-based state transformers as well as for metric-based
state transformers, the dualities below give an indirect way to define predicate
transformer semantics for programming languages.

Lower state transformers

Lower state transformers are related to completely additive predicate trans-
formers. The isomorphism below can be used to give a semantic interpretation
of one domain in terms of the other. The mapping v from state transformers
to predicate transformers explains that lower state transformers model non-
deterministic computations which ‘may’ satisfy an affirmative predicate. Con-
versely, the map y~! from predicate transformers to state transformers tells
us that completely additive predicate transformers are about safety: a state
z satisfies w(P) if the computation represented by 7 at input z is guaranteed
not to terminate in a state not satisfying the affirmative predicate P.

Theorem 6.2.4 Let X and Y be two topological spaces. The poset of lower
state transformers X — Py(Y) is order isomorphic to the poset of completely
additive functions O(Y) =4 O(X).

Proof. We use Proposition 6.1.4. For every continuous function f: X — P;(Y)
and completely additive predicate transformer 7: O(Y) —4 O(X) define the
maps f — y(f) and 7 — y~(7) by

Yf) =ro€eO(Y){zeX|f(z)Nno#0} and
v im) =Xz € X.Y\U{o€ O(Y) |z ¢ (o)}

134



Chapter 6. Powerspaces, multifunctions and predicate transformers

First note that v(f)(0) = f~(0). Hence y(f) is completely additive and, be-
cause f is lower semi-continuous as multifunction, well-defined. To prove that
v~ () is lower semi-continuous we see that clearly v~!(7)(z) is a closed subset
of Y for every z € X, and moreover, for every o € O(Y),

(Y M) (o) ={z € X [y '(m)(z) N o # 0}
={:c€X|0,Q_U{u€(’)(Y)|;L‘¢7T(u)}
={z € X |z e€n(o)} [Lemma 6.2.3]
=m(0).

Since (o) is open in X, y~!(7) is lower semi-continuous. Thus it is well-
defined. The above also proves that 7! is a right inverse of 7. It is also a left
inverse because, for every z € X,

7)) =Y \U{o € O(Y) [ 2 & 7(f)(0)}
=Y \Ulo€O(Y) | f(z)Nno=0}
=(Wecel(Y)|f(z) Cc}
=f(x),

where the latter equality follows because f(z) is closed in Y. Preservation of
orders is immediate. O

If a continuous function f : X — P,(Y) is non-empty for all z € X, then
v(f) is strict, whereas, if 7: O(Y) —4 O(X) is a strict a completely additive
predicate transformer then v~!(7)(z) # 0 for all z € X .

The following corollary restricts the above duality to a finitary one for locally
open compact spaces.

Corollary 6.2.5 Let X and Y be two locally open compact spaces. The poset
of lower state transformers X — P|(Y) is order isomorphic to the poset of
finitely additive functions in KO(Y) - KO(X).

Proof. Since X and Y are locally open compact, the collections of their com-
pact open sets form bases for their respective topologies. Moreover, because a
function preserves all joins if and only if it preserves all the directed joins and
the finite ones, the order isomorphism of Theorem 6.2.4 cuts down to an order
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isomorphism between X — P;(Y) and the finite unions preserving functions
in KO(Y) - KO(X). O

A natural question is whether the locally open compact spaces are closed
under the lower powerspace construction. The answer is given in the following
proposition which is similar to Proposition 6.11 in [170].

Proposition 6.2.6 If X is a locally open compact space then so is Py(X).

Proof. Let X be a locally open compact space, and let A € P;(X) be such
that A € L, N...N L, , where all o;’s are open subsets of X. In order to show
that P;(X) is also locally open compact we have to find an open compact
set of P;(X) containing A as element and contained in L, N...N L, . Since
A€ L, N..NL, wecan find z; € ANo;. By locally open compactness of X we
can therefore find compact open subsets u; of X such that z; € u; C o; for all
i € {1,...,n}. Consider the open set L,, N...N L, of P;(X). By construction
AelL,Nn..NnL, C L, N..NL,. It remains to prove the compactness
of L,, N...N L,,. Using Proposition 5.3.4 (Alexander sub-basis theorem) it
is enough to find a finite subset K C J for every index set J such that
Ly, Moo Ly, € Uy Ly, where all 0;’s are open subsets in X. If L,,N...NL,, C
Uy Lo, then u; U ..U u, C U, 0;. Hence, by compactness of u; it follows that
there exists a finite index set K C J such that u; U...Uu, C Ug 0;. Therefore
Ly, N ... Ly, € Uk Ly, from which the required compactness follows. O

Closure properties of the lower space construction have been extensively stud-
ied by Schalk in her thesis [170]. Using the lower powerlocale as defined in [166],
Schalk [170, Proposition 6.26] proved that sober spaces are closed under the
lower space construction. Algebraic cpo’s taken with the Scott topology are
sober and locally open compact (see Chapter 5). What is the connection be-
tween the lower space and the Hoare powerdomain of an algebraic cpo? For
w-algebraic cpo’s the question has been answered by Smyth [179], whereas for
more general (continuous) domains the answer can be found in [170,4,146].

Proposition 6.2.7 For an algebraic cpo X, the Hoare powerdomain H(X)
taken with the Scott topology is isomorphic in Sp to the non-empty lower

space P(X)\{0}. O
Since continuous functions between two algebraic cpo’s X and Y with the

Scott topology are exactly the functions preserving the least upper bounds
of directed sets, from Theorem 6.2.4 and the above proposition we have the
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following duality. The poset of Scott continuous functions X — #(Y) is order
isomorphic to the poset of all strict and completely additive functions from
the lattice of Scott opens O(Y) to the lattice of Scott opens O(X). If X
and Y are SFP-domains, then they are spectral in the Scott topology. Hence,
by Corollary 6.2.5, the poset of Scott continuous functions X — H(Y) is
order isomorphic to the poset of strict and finitely additive functions from
the distributive lattice of Scott compact opens KO(Y') to the lattice of Scott
compact opens £O(X).

Let Y be a metric space taken with the metric topology. By definition, the
underlying set of the lower space P;(Y) coincides with that of the closed
powerdomain Py (Y). If X is any discrete metric space, then every function
from X to Py(Y) is lower semi-continuous. By Theorem 6.2.4, the set of all
functions X — Py(Y) is isomorphic to the set of all completely additive
functions from the lattice of metric opens O(Y) to the lattice of metric opens
O(X) (since X is discrete, the latter coincides with the discrete topology
on X). In case both X and Y are compact ultra-metric spaces (and hence
Stone spaces in their metric topology) we can use the characterization of
Corollary 6.2.5. Notice that the lower topology on P, (Y) (which is 75) does
not coincide with the metric topology (which is 73). We need to consider non-
symmetric metric spaces. For w-algebraic complete quasi metric spaces a result
which generalizes Proposition 6.2.7 is presented in [35].

Upper state transformers

Next we give a duality between upper state transformers and M-multiplicative
predicate transformers. Intuitively, upper state transformers are models for
non-deterministic computations of which the outputs ‘must’ satisfy a given
affirmative predicate. For an M-multiplicative predicate transformer 7, a state
z satisfies w(P) if the computation represented by 7 at input z is guaranteed
to terminate in a state satisfying the affirmative predicate P.

According to the informal definition of safety and liveness predicates given
in [126], an arbitrary predicate can always be expressed as the intersection
of a safety and a liveness predicate. This fact leads [8] to the topological
definition of safety predicates as closed subsets, whereas a liveness predicate
can be identified with a dense subset (the complement does not contain non-
empty open sets). It is not hard to see that in any topological space X, any
subset of X can be expressed as the intersection of a closed set with a dense
one.
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Since we are concerned with affirmative and refutative predicates, it is clear
that M-multiplicative predicate transformers are not liveness predicate trans-
formers in the sense of [126].

Theorem 6.2.8 Let X and Y be two topological spaces. The poset of up-
per state transformers X — P,(Y) is order isomorphic to the poset of M-
multiplicative functions O(Y) =y O(X).

Proof. The proof is similar to that of Theorem 6.2.4, making use of Proposi-
tion 6.1.4. For every continuous function f: X — P,(Y) and M-multiplicative
predicate transformer 7: O(Y) —u O(X) define the assignments f — w(f)
and ™ — w™(7) by

w(f) =xoe€O(Y){zeX|f(z) Co} and
wlim) =Xz € X.N{o€O(Y) |z emn(o)}.

For every open o of Y, w(f)(0) = f*(0). Hence w(f) is M-multiplicative and,
because f is upper semi-continuous as multifunction, well-defined. To prove
that w=!(m) is well-defined, observe that an arbitrary intersection of open
sets is upper closed with respect to the specialization order, and, for every
0€O(Y),

(W (m)* (o) ={z € X [w ' (m)(z) C o}
={zeX|([{o€O(Y)|zemn(o)}C o}
={z € X |re€n(o)} [Lemma 6.2.2]
=7(0).

Since 7(0) is open in X, w™!(r) is upper semi-continuous. Thus it is well-
defined. The above also proves that w™! is a right inverse of w. It is also a left
inverse because, for every z € X,

wHw()(z)={o € O(Y) | z € w(f)(0)}
=o€ O(Y) | f(z) C o}
=f(z),

where the latter equality follows because f(z) is upper closed in Y, and hence
a saturated set. Preservation of orders is immediate. O
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As for the case of lower state transformers, if we exclude the empty set as
possible output result of an upper state transformer then the corresponding
restriction on M-multiplicative predicate transformers is strictness.

For every space X, the underlying set of the upper space P,(X) ordered by
the specialization preorder is a complete lattice. If X is a 7; space, then the
underlying set of P, (X) coincides with the full powerset of X because every
set is upper closed.

What restrictions are needed on the underlying space in order that the com-
pact restriction of the upper powerspace is a dcpo or an algebraic dcpo? For a
dcpo the question has been answered in [108]: the underlying space should be
sober. This is proved using a bijective correspondence between the elements of
the compact upper powerspace (compact saturated sets) and the Scott open
filters of the lattice of opens sets (for a proof of this statement we refer the
reader to Corollary 9.3.11).

Proposition 6.2.9 Let X be a sober space. If S is an arbitrary collection
of compact saturated subsets of X directed with respect to superset inclusion
then NS is also saturated and compact. Moreover, for any open o € O(X), if
NS C o then there exists ¢ € S such that ¢ C 0. O

The first statement of the above proposition gives soberness as a sufficient
condition for the compact upper powerspace to be a dcpo (more generally,
Schalk proved that if a space is sober then so is its non-empty compact upper
space [170, Lemma 7.20]). The second statement says that compact opens are
compact elements for the dcpo P (X). However this dcpo need not to be
algebraic. The algebraicity is obtained by restricting the attention to sober
and locally open compact spaces.

Lemma 6.2.10 Let X be a sober locally open compact space. The underlying
set of the compact upper space P (X) ordered by the specialization order is
an algebraic dcpo with as compact elements the compact open sets. Moreover,
the Scott topology on P°(X) coincides with the upper topology.

Proof. We need to prove that every compact saturated set g can be expressed
as least upper bound of the compact open sets below ¢. Because X is locally
open compact, every open set can be obtained as a directed union of compact
opens. Hence, if ¢ is a compact saturated set such that ¢ C o for some open
set o, then there exists a compact open u such that ¢ C u C 0. For a compact
saturated sets ¢, this implies
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g=(HoeOX)|qgCo}=({ueKOX)|qC u}.

Hence the collection of compact saturated sets is an algebraic dcpo when
ordered by superset inclusion.

Next we prove that the Scott topology and the upper topology on P,(X)
coincide. The upper closure of a compact open o in P,(X) is a basic open
for the Scott topology, and by definition it coincides with the basic open
U, ={q | q C o} of the upper topology. Hence the Scott topology on P, (X)
is included in the upper topology. Conversely, let 0 € O(X) and consider the
basic open set U, of the upper topology on P,(X). It is clearly upper closed,
and if § C P, (X) is a directed set such that N .S € U, then, by Corollary 6.2.9,
there exists ¢ € S such that ¢ C 0. Therefore U, is Scott open. O

Since algebraic dcpo’s taken with the Scott topology are sober, the above
lemma implies that the compact upper space of a locally open compact sober
space is again sober. In particular, if X is an algebraic cpo, then so is the poset
of all Scott compact saturated subsets of X ordered by superset inclusion. The
following characterization theorem can be found in [179] for w-algebraic cpo’s,
and in [4,146] for the general case.

Proposition 6.2.11 Let X be an algebraic cpo taken with the Scott topology.
The Smyth powerdomain S(X) together with its Scott topology is isomorphic
in Sp to the non-empty, compact upper powerspace P& (X)\ {0}. O

In order to apply the isomorphism of Theorem 6.2.8 to upper state transform-
ers with values in an upper compact subset, we need to find a corresponding
restriction on the predicate transformer side. The definition of compact sets
as finitarily specifiable theory introduced in Chapter 5 is of help here.

Theorem 6.2.12 Let X and Y be two topological spaces. The isomorphism of
Theorem 6.2.8 restricts to an order isomorphism between the poset of compact
upper state transformers X — PL(Y) and the poset of M-multiplicative and
Scott continuous functions O(Y) —.m O(X).

Proof. Let f € X — PL(Y). Also let m: O(Y) —.m O(X) be a Scott
continuous function. We need to prove w(f) Scott continuous and w=*(7)(z)
compact for all z € X. Let S be a directed subset of opens in Y.

If z € w(f)(US) then f(z) C US. By compactness of f(z) it follows that
f(z) C o for some o € S. Therefore z € U{w(f)(0o) | 0 € S}. Since w(f) is
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monotone, being M-multiplicative, it follows that w(f) is Scott continuous.

Take now z € X and assume w™'(7)(z) C US. By Lemma 6.2.2 then z is in
(U S). Since 7 is Scott continuous, there exists o € S such that z € 7(o).
Using Lemma 6.2.2 again it follows that w™'(7)(z) C o, that is w™(7)(z) is
compact. O

Using Corollary 9.3.11, Smyth [179] was the first who realized that for a sober
space Y, the poset of upper state transformers X — P(Y') is order isomor-
phic to the poset of finitely multiplicative and Scott continuous functions in
O(Y) — O(X). In the above theorem, we do not have the requirement of
Y being sober, but we consider M-multiplicativity instead of finitely multi-
plicativity. Hence, if Y is a sober space then a (Scott-)continuous function
in O(Y) — O(X) is finite multiplicative if and only if it is M-multiplicative.
Best [29] has proved a similar result for countable flat cpo’s.

Corollary 6.2.13 Let X and Y be two sets and let w: P(Y) — P(X) Scott
continuous. If ™ preserves binary intersections then it preserves all non-empty
intersections.

Proof. Consider the flat dcpo Y, taken with the Scott topology. Notice that
the latter equals P(Y)U{Y,}. Hence we can extend 7 to a Scott-continuous
function from O(Y,) — P(X) by mapping 7(Y,) = X. If 7 preserves binary
intersections then its extension preserves all finite intersections (being top
preserving). Since Y is a sober space, the extension of 7w is M-multiplicative.
Hence 7 : P(Y) — P(X) preserves all non-empty intersections. O

Another consequence of the combination of the result of Smyth [179] and
Theorem 6.2.12 is the following.

Corollary 6.2.14 Let X and Y be two spectral spaces. The poset of compact
upper state transformers X — P(Y) is order isomorphic to the poset of
finitely multiplicative functions in KO(Y) — KO(X).

Proof. Since Y is spectral, it is also sober. Moreover the intersection of com-
pact opens is compact open by definition. Hence every Scott continuous and
M-multiplicative function 7: O(Y) — O(X) restricts to a finite meet preserv-
ing function in KO(Y) — KO(X). Conversely, every finite meet preserving
function 7: LO(Y) — KO(X) extends by means of ideal completion uniquely
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to a Scott continuous and finite meet preserving function in O(Y) — O(X)
the restriction of which to compact sets is exactly . Since Y is sober, this
extension of 7 is M-multiplicative. O

Let X and Y be two algebraic cpo’s. From Theorem 6.2.8 and Proposi-
tion 6.2.11 we have that the poset of Scott continuous functions X — S(Y)
is order isomorphic to the poset of strict, Scott continuous and finite multi-
plicative functions from the lattice of Scott opens O(Y') to the lattice of Scott
opens O(X). Moreover, if X and Y are SFP-domains, then they are spectral
in the Scott topology. Hence, by Corollary 6.2.14, the poset of Scott continu-
ous functions from X — S(Y') is order isomorphic to the poset of strict and
finitely multiplicative functions from the distributive lattice of Scott compact
opens KO(Y) to the lattice of Scott compact opens LO(X).

Let X be a discrete metric space and let Y be a metric space. Thus every
function from X to P(Y) is continuous. Notice that the underlying sets of
P(Y) and of the metric compact powerdomain P, (Y) coincide. Therefore,
by Theorem 6.2.12, the set of all functions X — P, (Y) is isomorphic to the
set of all Scott continuous and finitely multiplicative functions from the lattice
of metric opens O(Y') to the lattice of metric opens O(X). In case both X
and Y are compact ultra-metric spaces, the set X — P (Y) is isomorphic
to the set of strict and finitely multiplicative functions from the distributive
lattice of metric compact opens KO(Y) to the lattice of metric compact opens

KO(X).

6.3 Pairs of predicate transformers

In Chapter 3 we have seen that the Egli-Milner state transformers are dual
to the Nelson predicate transformers. The natural topological generalization
of the Egli-Milner state transformers are the convex state transformers. In or-
der to generalize the Nelson predicate transformers we need to consider pairs
(m, p) of topological predicate transformers, where 7 is M-multiplicative and
p is completely additive. In this way we can model both the positive and
the negative information about a computation. However, we have to restrict
our considerations to those pairs (m, p) of predicate transformers which rep-
resent the same computation. What we need is a stability lemma similar to
Lemma 6.2.2 and Lemma 6.2.3. The definition below is inspired by the work
of Johnstone [113] on the Vietoris powerlocale.

142



Chapter 6. Powerspaces, multifunctions and predicate transformers

Definition 6.3.1 Given two spaces X and Y, a pair (m, p) of functions from
O(Y) to O(X) is said to be jointly multiplicative if 7 is M-multiplicative, p
15 completely additive, and

(i) m(01 U o0g) C 7(o1) U p(02), and
(ii) (NS Noy) C oy implies (N{m(0) | 0 € S} N p(01)) C p(02).

for opens 01,00 of Y and S C O(Y). Jointly multiplicative functions are
ordered componentwise by the extension to functions of subset inclusion.

For a pair (7, p) of jointly multiplicative functions, according to the above de-
finition there are two ‘non-observable’ requirements (in the sense that they in-
volve sets which need not to be open): the M-multiplicativity of = and the sec-
ond condition of joint multiplicativity. In the previous section we have shown
that if 7 is Scott continuous and the space Y is sober, then M-multiplicativity
is equivalent to finite multiplicativity. The latter is clearly an observable and
finitary requirement.

The non-observability of condition (ii) of Definition 6.3.1 is more delicate. In
locale theory, for the construction of the Vietoris powerlocale the following
condition is required [113] instead of (ii),

m(01) N p(02) € p(o1 N o2) (6.1)

for all 01,0, € O(Y). Notice that (i) of Definition 6.3.1 and the above (6.1)
are the modal axioms relating the O and < operators in negation free modal
logic (often called Hennessy-Milner logic) [93].

For all spaces X and Y, if (r, p) is a jointly multiplicative pair of functions
from O(Y) to O(X) then (6.1) clearly holds. The converse holds if we restrict
Y to be a coherent space and 7 to be Scott continuous.

Lemma 6.3.2 Let X and Y be two spaces such that Y is coherent. For every
pair (m, p) of Scott continuous functions from O(Y) to O(X) such that 7 pre-
serves finite meets, and p preserves finite joins, the following two statements
are equivalent:

(i) 7(o1) N p(o2) C p(o1 N o) for all 01,09 € O(Y);

(i) (NS N o) C oy implies (N{m(0) | 0 € S} N p(o1)) C p(02) for all
01,00 € O(Y) and S C O(Y).
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Moreover, if Y is spectral then both (i) and (ii) are equivalent to

(iii) 7(01) N p(02) C p(o1 N o2) for all 01,00 € KO(Y).

Proof. Obviously (ii) implies (i). Hence we concentrate on the opposite di-
rection. Assume 7(0) N p(0') C p(o N o') for all opens o and o' of Y. Let
S CO(Y) and 01,00 € O(Y). Because Y is coherent, every open set o of YV
is the union of all the compact saturated subsets ¢ of ¥ such that there exists
u € O(Y) with u C ¢ C 0. Hence the set 1.5 N o; is equivalent to the set

ﬂ{q eKQY)|FueO(Y)Joe SU{o}:uC qCo}.

Next, we use the fact that Y is sober and that compact saturated sets are
closed under finite intersections to reformulate Proposition 6.2.9 as follows.
Whenever the intersection of compact saturated sets is contained in an open
set then the same is true for an intersection of finitely many of them. This fact
justifies that (NS N o;) C oy implies that there exist finitely many compact
saturated sets ¢y, ...q, such that ¢, N...N ¢, C 0y, with u; C ¢; C o; for some
0; € SU {01} and open u; € O(Y). Hence (¢; N...N ¢z) N 01 C 09, where,
without loss of generality, we can assume, for all 1 < ¢ < n, u; C ¢; C o; for
some o; € S and u; € O(Y).

Let v = w; N ... N u,. Since uy, .., u, are finitely many open sets, u is also an
open set. Moreover uMo; C 0, because u C ¢;N...N ¢,. By our assumption on
the pair (m, p), m(u) N p(01) C p(u N o1). But p is monotone and u N 01 C 0s.
Thus 7(u) N p(01) € p(02). Notice that NS C u because, for all 1 < i < n,
0; € S and

0;=J{ueO(Y)|3ge KQ(Y):uC qC o}

as Y is coherent. Thus N{7(0) | 0 € S} C 7(u), from which follows that
(N{7(0) [ 0 € S} N p(01)) € p(og)-

Assume now Y is a spectral space. We prove that (iii) implies (i). The other
direction follows immediately.

Let 0, and o0y be two open sets of Y. Because Y is spectral they can be written
as directed union of all compact open sets below them. Below, let u and v
range over compact open sets. Because 7 and p are both Scott continuous, we
have
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m(01) N p(og) =m((Hu [ v C o) N p((H{v | v C on})
=Ufm(w) [u S o} n(U{p(v) [ v C 0o}
= H{r(w) np(v) | uC o & v C oy}
ClU{p(unv) [unvC oMo} [by (iii)]
=p(01 N 03).

Since spectral spaces are coherent, (i) is equivalent to (ii). Hence (iii) implies
both (i) and (ii). O

As a consequence, if Y is a coherent space then the jointly multiplicative
and Scott continuous predicate transformers (7, p) from O(Y) to O(X) can
be described using only open sets, substituting finite multiplicativity for M-
multiplicativity, and condition (ii) of Definition 6.3.1 by the equivalent condi-
tion (6.1).

Lemma 6.3.3 Let X and Y be two spaces such that Y s coherent. The poset
of all jointly multiplicative and Scott continuous predicate transformers from
O(Y) to O(X) is a cpo.

Proof. Let D = {(m;,pi) | ¢ € I} be a directed set of jointly multiplicative
and Scott continuous functions from O(Y) to O(X). Define 7(0) = U; m;i(0)
and p(o) = U; pi(0) for every open o of Y. By Proposition 6.2.9 and Theo-
rem 6.2.12 the function 7 is M-multiplicative and Scott continuous. Thus 7
is the least upper bound of all 7;’s. The function p is completely additive by
definition, and hence is the least upper bound of all p;’s. We need to prove
that (7, p) is a jointly multiplicative pair.

Let 0; and 0y be two open sets of Y. If z € m(01 U 09) then there exists k € [
such that z € m(01 U 09). Since (7, pi) is jointly multiplicative, 7 (01 U 0g) C
mr(01)Upg(02). But m(01) C 7(01) and pg(02) C p(02). Thus z € 7(01)Up(02),
that is, condition (i) of Definition 6.3.1 holds.

Because Y is a coherent space, by Lemma 6.3.2, condition (ii) of Defini-
tion 6.3.1 is equivalent to the finitary condition (6.1). Assume o; and oy are
two open sets of Y and let z € m(01)Np(02). By directness of the set D and the
definitions of 7 and p, there exists £ € I such that z € m;(01) and z € pg(09).
Since (m, px) is jointly multiplicative, mg(01) N pgr(02) € pr(01 N 02). Thus
z € pr(o1 N og) C plor N o).
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Therefore (m,p) is jointly multiplicative and the poset of all jointly multi-
plicative and Scott continuous predicate transformers from O(Y) to O(X) is
a dcpo. The pair of functions mapping every open set of Y to the empty set
is jointly multiplicative and Scott continuous. Hence they form the bottom
element of the dcpo of jointly multiplicative and Scott continuous predicate
transformers. O

We are interested in jointly multiplicative predicate transformers because they
represent the positive and the negative information of the same computation,
as formally stated in the following stability lemma.

Lemma 6.3.4 Let X and Y be two spaces and (m, p) be a a pair of jointly
multiplicative functions from O(Y) to O(X). For z € X, let us denote by
q(z,m) the set N{o € O(Y) |z € m(0)} and by o(z, p) the set U{o € O(Y) |
z & p(o)}. For every u € O(Y) we have

(i) z e n(u) if and only if q(z,7)N (Y \ o(z,p)) C u,
(ii) z & p(u) if and only if q(z,7)N (Y \ o(z,p)) C Y \ u.

Proof. (i) The direction from left to right is trivial and hence omitted. As-
sume ¢(z,7) N (Y \ o(z,p)) C u. Then ¢(z,7) C u U o(z, p). Since o(z, p) is
open (being union of opens) and 7 is M-multiplicative, z € m(u U o(z, p)) by
Lemma 6.2.2. But 7(uUo(z, p)) C m(0)Up(o(z, p)) because m and p are jointly
multiplicative. Since p is completely additive we have that = ¢ p(o(z, p)) by
definition of o(z, p). Therefore z € 7(u).

(ii)) As above we omitt the direction from left to right because is trivial.
Assume ¢(z,7) N (Y \ o(z,p)) € Y \ u. Then ¢(z,7) Nu C o(z, p), which
implies

(({m (o) | = € m(0)} N p(u)) C plo(=, p))

because (m, p) is jointly multiplicative. Since p is completely additive, z is not
in p(o(z,p)). But z € N{n(0) | z € m(0)}, therefore z & p(u). O

Next we use the above stability lemma to relate jointly multiplicative predicate
transformers and convex state transformers by an isomorphism that general-
izes the result in Chapter 3 for Nelson predicate transformers.
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Theorem 6.3.5 Let X and Y be two spaces. The poset of convex state trans-
formers X — P.(Y) is order isomorphic to the poset of all jointly multi-
plicative pairs of predicate transformers in O(Y) — O(X). Also, the above
1somorphism cuts down to an order isomorphism between compact and convex
state transformers X — PL(Y) and the poset of all pairs of Scott continuous
functions in O(Y) — O(X) which are jointly multiplicative.

Proof. For a convex state transformer f : X — P.(Y) define 7(f) to be the
pair of functions from O(Y) to O(X)

w(f) =20 O(Y){z | f(z) C o} and
V) =2ro€O(Y){z | f(z)no#0}.

Since f is continuous as a multifunction, both functions above are well-defined.
Moreover, w(f) is M-multiplicative and v(f) is completely additive. Next we
prove they are jointly multiplicative.

Let 0, and 0, be two open subsets of Y. If z € w(f)(0;Uos) then f(z) C 01Uo0s.
Towards a contradiction, assume both f(z) € o; and f(z) N oy = (. Then
f(z) € 01U 0y, hence the contradiction. Thus f(z) C oy or f(z) N oy # 0, that

is, z € w(f)(01) Uy(f)(02).

Let § C O(Y) and let 01, 0, be two open subsets of ¥ such that N.SNo; C o,.
If z € w(f)(o) forall o € S and z € y(f)(01), then f(z) C NS and f(z)Noy #
(). Hence there exists y € f(z) such that y € NS No; C 0. It follows that

f(z) N oy # 0, and hence z € y(f)(02). Therefore the pair n(f) = (w(f),v(f))
is jointly multiplicative.

Consider now the pair (7, p) of jointly multiplicative predicate transformers
in O(Y) = O(X). Define n({(m, p))(z), for every z € X, by

(o€ O(V)[zen(o)}n (Y \ [ H{oeO(Y) ]|z ¢p(o)}). (6.2)
We prove that n~'((m, p))(z) is convex closed. Let cl be the closure operator

z)
induced by the topology O(Y). Since Y \U{o € O(Y) | z & p(0)} is a closed
set,

cl(n™ ((m, p))(2)) € Y\ Ho € O(Y) | z & p(o)}.
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Similarly, the upper closure 1t 77 ((r, p))(z), with respect to the order induced
by O(Y), is included in the saturated set N{o € O(Y) | z € m(0)}. Hence the
convex closure of n~1((m, p))(z) is included in (6.2). Since the other direction
is trivial, n7((m, p))(z) is convex closed.

Next we prove that n='((r, p)) is both upper and lower semi-continuous. For
every o € O(Y) we have

N ((m,0)) (o) ={z € X [ n7"({m, p)) () C 0}
={z € X |z €n(o)} [Lemma 6.3.4]

=m(0),

and also

N~ ((m,p) (o) ={z € X [ n~'((m, p))(z) N 0 # 0}
={z € X [n7'((m,p))(z) £ Y \ o}
={z € X |z€plo)} [Lemma 6.3.4]

=p(0).

This proves not only that n~!({, p)) is a convex state transformer, but also
that 7' ({m, p)) is a right inverse of 7. It not hard to see that it is also a left
inverse by combining Theorem 6.2.4 and Theorem 6.2.8.

Further, n and n~! are both monotone due to Lemma 6.1.5 and Theorems 6.2.4
and 6.2.8.

By Theorem 6.2.12 and because the intersection of a compact set with a
closed one gives again a compact set, it follows that the isomorphism (n,n7!)
cuts down to an order-isomorphism between the poset of compact and convex
state transformers, and the poset of all pairs of Scott continuous functions in
O(Y) — O(X) which are jointly multiplicative. O

As for the cases of the upper space and of the lower space, the above isomor-
phisms cuts down to a finitary isomorphism if we consider spectral spaces.

Corollary 6.3.6 Let X and Y be two spectral spaces. The poset of compact
convez state transformers X — PL(Y) is order isomorphic to the poset of all
pairs {m, p) of functions in KO(Y) — KO(X) such that

(i) 7 is finitely multiplicative;
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(ii) p is finitely additive;
(iii) 7m(01 U 02) C m(01) U p(02) for all 01,00 € KO(Y);
(iv) m(o1) N p(02) C p(or N o) for all 01,00 € KO(Y).

Proof. Immediate from Corollaries 6.2.5 and 6.2.14, and Lemma 6.3.2. O

Despite the mathematical elegance of the presentation of the convex space,
it does not have many of the closure properties which the other power con-
structions enjoy. In general, the underlying set of P2 (X) taken with the order
induced by the Vietoris topology, is not a complete lattice nor a dcpo even
if X is an algebraic dcpo with the Scott topology [4, Exercise 11.(e)]. As a
consequence, neither sober spaces nor sober and locally open compact spaces
are closed under the compact convex space construction. Using the above iso-
morphism and Lemma 6.3.3 we obtain an easy proof that P (X) is a cpo
whenever X is a coherent space. The general situation, i.e. to find a topolog-
ical characterization of the Plotkin powerdomain, seems to be hopeless. The
following characterization theorems can be found in [179] and [4,146].

Proposition 6.3.7 Let X be an w-algebraic cpo taken with the Scott topology.
The Plotkin powerdomain E(X) together with its Scott topology is isomorphic
in Sp to the non-empty, compact convex space P (X)\ {0}. The same holds
if X is an algebraic cpo such that, when taken with the Scott topology, it forms
a coherent space. 0O

From the above proposition and Theorem 6.3.5, we have, for w-algebraic cpo’s
X and Y, that the poset of Scott continuous functions X — £(Y) is order
isomorphic to the poset of all pairs of strict and Scott continuous functions
from the lattice of Scott opens O(Y') to the lattice of Scott opens O(X) which
are jointly multiplicative. If X and Y are SFP domains, then we can apply
Corollary 6.3.6 to obtain a finitary duality.

For metric spaces we have the following characterization result [141].

Proposition 6.3.8 Let X be a metric space taken with the metric topology.
The metric compact powerdomain P, (X) together with the metric topology
coincides with the compact convex space P(X) 0O

The above proposition can be applied as follows. If X and Y are two metric
spaces, by Theorem 6.3.5, the set of all metric continuous functions X —
P.(Y) (seen as a discrete poset) is order-isomorphic to the poset of all pairs
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of Scott continuous functions from the lattice of metric opens O(Y) to the
lattice of metric opens O(X) which are jointly multiplicative. If X and Y are
compact ultra-metric spaces, then in their metric topologies they are Stone
spaces. Hence we can apply Corollary 6.3.6 to obtain a finitary duality.

It is easy to see that if X is a set then the set of all finite subsets of X (taken
with the discrete topology) coincides with the compact convex powerspace of
X. Again, we can apply Theorem 6.3.5 to describe it by jointly multiplicative
functions.

6.4 Concluding notes

Dualities for the convex powerspace provide a natural setting for negation-free
modal logics (also called Hennessy-Milner logics). Our approach differs from
the one taken by Goldblatt [80] and Abramsky [3] because our axioms relating
the O operator with the < operator hold also in an infinitary setting. It is an
important topic for further investigation to define an infinitary Hennessy-
Milner logic for the convex powerspace.

The results in this chapter are in the concrete framework where predicate
transformers are functions between collections of open sets. More abstractly,
we could have used frames to represent abstract collections of affirmative pred-
icates by restricting our attention to sober spaces (for the results of last section
coherent spaces would be necessary). The duality between frames and sober
spaces [112] could then be used to reconstruct points from frames. In Chap-
ter 8 we discuss an abstract algebraic representation of 7, spaces. All results
in this section can be easily adapted to this algebraic framework.

To fully generalize the results of Part I, it remains a challenge to define a
‘meaningful’ notion of topological state transformers which are dual to the
monotonic (or perhaps Scott continuous) functions between lattices of affirma-
tive predicates. More speculatively, for algebraic cpo’s the duality of Chapter 4
seems to suggest the composition of the Smyth with the Hoare powerdomain
(or vice-versa, since they commute [89,132]). This is correct in the localic case:
the lower and upper powerlocales commute, and maps from X to P,(P;(Y))
are equivalent to Scott continuous functions from Q(Y') to Q(X) [115].
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Chapter 7

Predicate transformer semantics
for concurrency

Topological dualities can be used to define an indirect predicate transformer
semantics for programming languages: given a forward semantics, the duality
can be used to generate an equivalent backward semantics. A better approach
could be the following. Based on computational considerations construct a
semantic domain of predicate transformers, and then define semantic opera-
tors between predicate transformers corresponding to the syntactic operators.
Dualities with state transformers then can be used to prove the correctness of
the domain as well as of the semantic operators.

The main contribution of the present chapter is a direct construction of a com-
positional predicate transformer semantics for a simple concurrent language
with recursion. The correctness of the semantics is shown on the one hand
with respect to a metric state transformer semantics using a topological dual-
ity, and on the other hand with respect to the weakest (liberal) precondition
semantics that we defined in Chapter 3.

Several authors proposed a predicate transformer semantics for concurrent
languages, including Van Lamsweerde and Sintzoff [128], Haase [84], Flon and
Suzuki [71], Elrad and Francez [62], Zwiers [200], Best [29,30], Lamport [127],
Scholefield and Zedan [171], Van Breugel [46], and Lukkien [134,135]. Taken
all together, none of these references combines compositionality and recursion
for an explicit parallel operator.
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7.1 A simple concurrent language

In this section we define a simple concurrent language with recursion. We
consider a small variation of the sequential finite non-deterministic language
Ly introduced in Chapter 3 extended with a parallel operator.

As for Ly, to define the language Lo, we need as basic blocks the abstract sets
(v €) IVar of (individual) variables , (e €) Exp of expressions, (b €) BExp of
Boolean expressions, and (z €) PVar of procedure variables, respectively. For
a fixed set of values Val, the set of (program) states (s,¢ €)St is given by
St = IVar— Val. Also, we postulate valuations

Ev:Exp — (St — Val) and Bv: BExp — P(St).

The language £, below has assignments, conditionals ‘b—’, sequential compo-
sition ‘;’, choice ‘0’ parallel composition ‘||’, and recursion through procedure
variables. The only new operator with respect to the language £y of Chap-
ter 3 is the parallel operator ‘||’. Intuitively, the parallel composition of two
statements executes in an interleaved way actions of both statements, while
preserving the relative order of the actions in the statements.

Definition 7.1.1 (i) The set (S €) Staty of statements is given by
Su=v:i=el|b>|z|S5;5]5O85[5]S.
(ii) The set (G €) GStaty of guarded statements is given by
Gu=vi=e|b=>|G;S|GOG|G|G.

(iii) The set (d €) Decly of declarations is given by PVar — GStat,.
(iv) The language Lo is given by Decly X Stats.

Assignments and conditionals are the only atomic statements. Their execution
may not be interrupted by the other processes. Though resembling in their
name, the guarded statements in the above definition and elsewhere in this
chapter are completely different—both syntactically and as to their intended
meaning—f{rom Dijkstra’s guarded commands [56]. The declarations d € Decly
associate a procedure body to each procedure variable z. For technical reasons
(obtaining contractive higher-order transformations with semantic mappings
as their unique fixed point), we restrict procedure bodies to guarded state-
ments. Essentially, in a guarded statement G of GStats, every occurrence of
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a procedure variable is preceded either by an assignment or by a conditional
statement.

7.2 Metric predicate transformers

In this section we introduce a domain II, for a compositional backward seman-
tics of the language £, with parallel composition. This domain is obtained as
the solution of a domain equation involving a functor which delivers metric
predicate transformers. They are topological predicate transformers endowed
with a distance which can be characterized in terms of saturated sets. This
turns out to be convenient in formulating some properties of the domain II.
Because metric spaces taken with the ordinary metric topology are 71, every
subset is saturated. Thus, in the light of our discussion in Chapter 5, every
predicate is specifiable by a list of affirmative ones.

Definition 7.2.1 Let X be a set and Y be a metric space. A metric predicate
transformer over Y and X is a function w:P(Y) — P(X) such that it
is multiplicative (i.e. preserves arbitrary intersections) and, for all directed
collections D of subsets which are open in the metric topology of Y,

=(JD)=U{x(0) | 0 € D}.

We denote the set of all metric predicate transformers over Y and X by
MPT(Y, X).

Since a metric predicate transformer preserves arbitrary intersections, it is
determined by its values on the metric open subsets: for a metric predicate
transformer 7 and P C Y,

n(P)=n((Yo € O(Y) | P C 0}) = {n(o) | P C o}.

It follows that MPT(Y, X) coincides with the set of all M-multiplicative and
Scott continuous functions from O(Y') to P(X).

The set of all metric predicate transformers MPT(Y, X) can be turned into
a metric space as follows. For m,m € MPT(Y,X) define their backward
distance by

dB(Tfl,’]TQ) = ilel)l? dp(fp(y))({P ‘ RS 7T1(P)}, {P | S TQ(P)})
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Next we want to prove that if Y is a complete metric space, so is MPT(Y, X)
for every set X. Before proving this, formally stated below as Theorem 7.2.3,
we give an alternative definition of this metric. This alternative definition
is based on Proposition 2.3.3 and on the following lemma which resembles
Lemma 3.3.5 and Lemma 6.2.2.

Lemma 7.2.2 Let 7:P(Y) = P(X), where Y is a metric space. Then 7 is
a metric predicate transformer in MPT(Y , X) if and only if for every z € X
there exists a unique compact subset q(z,m) of Y such that

z € w(P) if and only if q(z,7) C P, (7.1)
forall PCY.

Proof. Suppose 7 is in MPT(Y, X) and define, for every z € X, the set
g(z,m)=({PC Y |z en(P)}

Since 7 is multiplicative, ¢(z, 7) satisfies the stability condition (7.1), whereas
Scott continuity with respect to metric opens implies that ¢(z,7) is a metric
compact subset of Y. Uniqueness of ¢(z,7) can be proved as follows. For
r € X, assume A C Y such that A C P if and only if z € #(P) for all
PeP(Y).If a€ A\ q(z,m) then we have the following contradiction:

q(z,7) CY\{a} & aen(Y\{a}) & AC Y \{a}.

Therefore ¢q(z,7) C A. We conclude, on symmetric considerations, ¢(z,7) =
A.

Conversely, suppose 7: P(Y) — P(X) satisfies the proposed criterion. To see
that it is multiplicative we have, for an arbitrary set / and P; C Y for all
1 e,

zen(Pi) < q(z,m) TP

& Viel:g(z,m) C P,

& g e(n(P).

From compactness of ¢(z,7) it follows that = preserves directed unions of
metric opens. Therefore 7 € MPT(Y,X). O
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As consequence of the above lemma we have that z € 7(g(z, 7)) and hence
q(z,m) € {P | z € n(P)}. Thus, by Theorem 2.3.3, for every z € X and
m,m € MPT(Y, X),

dpp(v))({P | z € m(P)},{P | z € m(P)}) = dp(v)(q(z,m), ¢(z, m2)).

Therefore we can conclude for every my,m9 € MPT(Y, X),

dp(mi,mo) = SU)I? dP(Y)(Q('T,ﬂ'I)a q(z,m2)).
FAS

We use this alternative definition of the metric on MPT(Y, X) to prove the
completeness of the space.

Theorem 7.2.3 If Y is a complete metric space then so is MPT(Y, X) for
every set X .

Proof. In verifying that dp is a metric, we only check that dg(m,m) = 0
implies m; = my. The other conditions follow from the respective properties of
the Hausdorff distance on the compact subsets of Y. Suppose dg(m, 7)) = 0.
Then ¢(z,m) = q(z,m) for all z € X. By Lemma 7.2.2, for all P C Y,

ze€m(P) & q(z,m)C P & q(z,m) CP & z €mP).

So, m(P) = my(P) for all P and hence m = ms.

Next we check completeness of MPT(Y, X). Suppose (7;); is a Cauchy se-
quence in MPT(Y,X). Then, for each z € X the sequence (q(z,m;)); is
Cauchy with respect to the Hausdorff distance in P (Y). Since the latter
is a complete metric space, lim; g(z, ;) exists for every z € X and it is a
compact subset of Y. Define the function 7 : P(Y) — P(X) by

m(P)={z € X [limq(z,m;) C P},
for every P C Y. By definition, the compact subset lim; ¢(z,7;) of Y satisfies

condition (7.1). Hence, by Lemma 7.2.2, 7 € MPT(Y, X). Notice that this
implies that ¢(z,7) = ¢(z,lim; 7;) = lim; ¢(z,7;) for all z € X. From

dp(m,m;) = sup dp(v(q(z, ), q(z, ;)
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it follows that 7 = lim; 7; in MPT(Y,X). O

For a fixed set X, the assignment Y — MPT(Y, X) between complete metric
spaces can be extended to a functor on the category CMS of complete metric

spaces with non-expansive maps. For a non-expansive function f: Y; — Y,
define MPT(f,X) = Aw.mo f~!, that is,

MPT(f,X)()(P) = n(f~(P))

forallm € MPT(Yy,X) and P C Y5. For proving that the functor MPT(—, X):
CMS — CMS is well-defined we need the following proposition.

Proposition 7.2.4 Let f: Y, — Y5 be a non-expansive map between complete
metric spaces, and let 1 € MPT(Y,,X) for a fized set X. Then o f~' is a
metric predicate transformer in MPT(Y,, X) such that, for any z € X,

q(z,mof)=f(q(z,7)).

Proof. Multiplicativity of mo f~1: P(Y) — P(X) follows from set-theoretic
laws for f~!, while Scott continuity with respect to the metric opens follows
from the metric continuity of f (the inverse image of an open set is open).
Furthermore, for x € X and P C Y5,

fla(z,m) C P« q(z,m) S f 1(P)
& zen(f~Y(P)) [Lemma 7.2.2 for ]

where the first equivalence is obtained from a standard set-theoretic argument.
Using Lemma 7.2.2 for 7 o f~! we obtain ¢(z, 7o f~') = f(q(z,n)). O

Lemma 7.2.5 The functor MPT(—, X ):CMS — CMS for some fized set X
1s well-defined and locally non-expansive.

Proof. To prove well-definedness of the functor MPT(—, X) we first check
whether MPT(f,X) is non-expansive for non-expansive f : Y7 — Y;. Let
m,me € MPT(M, X). Then

dB(MPT(f’X)(ﬂ-l)’MPT(faX)(ﬂ-2))
= Sup,cx dp(v)(q(z,m o f71), q(z,m0 f71))
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= sup,cx dp(v)(f(q(z, 7)), f(q(z,m2))) [Proposition 7.2.4]
< sup,cx dp(v)(4(z,m), ¢(2,72))  [f non-expansive]
= dB(ﬂ'l,ﬂ'Q).

For proving well-definedness of MPT(—, X)) it remains to establish its func-
toriality. Preservation of identities is immediate, whereas MPT(g o f,X) =
MPT(g,X)o MPT(f,X), for f: Y7 — Y5 and g: Y5 — Y3 in CMS, is directly
verified for all arguments 7 € MPT(Y1, X) using the equality (g o f)~! =
ftog™

Finally, we check that the functor MPT(—, X) : CMS — CMS is locally
non-expansive. Take f, g € CMS(Y7, Y5). We have to check

d(MPT(f, X), MPT(g, X)) < d(f, 9) (7.2)

with the distance on the left-hand side taken in MPT(Y;, X) — MPT(Y5, X),
and on the right-hand side taken in Y; — Y3. So, pick 7 € MPT(Y;, X). Then

dg(MPT(f, X)(m), MPT(g, X )(r))
= sup{dp(v,)(¢(z, MPT(f, X)(m)), ¢(2, MPT(g, X)())) | © € X}
(

q )
= sup{dp(v:)(f(q(z, 7)), 9(q(z,7))) | z € X}
< d(f,9),

since, for any 7 € X, d(f(q(z,7)), g(a(w, 7)) < d(f, g). Thus

dp(MPT(f, X)(m), MPT(g, X)(m)) < d(f, g)-
Now (7.2) follows direclty by the definition of the distance on MPT(Yy, X) —
MPT(Y,, X). O

We are now ready to define a recursive domain of metric predicate transformers
I1, using the functor MPT(—, X). In the next section we will use this domain
to give a compositional semantics to the language Ls.

Definition 7.2.6 Let St be the set of (program) states. The complete metric
space (m €)1y of metric predicate transformers with resumptions is defined
as the unique (up to isometry) fized point of the contractive functor in CMS

MPT(St + St x 5 - —,St).
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Therefore Iy is the unique (up to isometry) complete metric space satisfying

I, = MPT(St + St x 5 - II,, St).

Below we will omit the isomorphism pair relating the right and the left hand
side of the above domain equation.

The intuition behind an element 7 € Il, is as follows. Given a set P C St +
St x Il it yields the set of all states s € St such that when execution of the
program represented by 7 starts in one of these states, it either terminates after
an atomic step in a state ¢ € St satisfying P, or it makes a first (atomic) step
to a state s and immediately gives the control to another program, represented
by the predicate transformer p, with (s, p) € P. We have not yet made a formal
semantic mapping from syntax to the domain II,, but it might help the reader
to consider the following example. Consider the statement v :=1; v:=2. The
corresponding metric predicate transformer 7 is

m(P)={s [ (s[t/v],p) € P}

with p (the semantics of v := 2) such that p(Q) = {s | s[2/v] € @}. The
semantics is backwards: to give a semantic meaning to v :=1; v : =2 we
first need to give a semantic meaning to v := 2 and then combine it with the
semantical meaning of v := 1.

7.3 Metric predicate transformer semantics

The language £, can be considered to be an extension of the language £, pre-
sented in Chapter 3. Hence we will base our present semantics on the weakest
precondition semantics Wp,[-] of Chapter 3. However, the presence of the par-
allel operator ‘||’ in Lo, invokes, when insisting on a compositional treatment,
a more involved domain than PT r(St, St) used for the semantics of the lan-
guage Ly. We will employ the branching domain II, given in Definition 7.2.6
above. As maybe expected, atomic statements are treated in the same way as
for the language Ly. Hence we introduce the predicate transformers for the
semantics of the atomic statements: assignments and conditionals.

Definition 7.3.1 For every function f:St — Val, individual variable v € IVar
and subset V' of St define the predicate transformers ‘[f /v]’ and ‘V—" in Il

by
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[f/vl(P)={s € St | s[f(s)/v] € P},
V—(P)={sesSt|seV = se P},

for all P C St + St x 1ls.

Both the functions above are well-defined predicate transformers in I1,. Notice
that if P NSt = () then [f/v](P) = 0 and also V—(P) = ). In general for
7 € Iy, 7(St x II) = 0 if and only if 7 corresponds to an atomic program
(not necessarily in Lo, as it can be a specification construct like, for example,
an infinite multiple assignment). Every assignment v := e in Stat, induces
the predicate transformer [Ev(e)/v] in Iy, and every conditional b— in Stat,
induces the predicate transformer Bv(b)— € Il,.

In the domain I, interleaving points are explicitly represented. This compli-
cates the definitions of the operators on predicate transformers in Il which
reflect the constructions available in £5. Since infinite behaviour is allowed
by L5, some operators below have a recursive definition and therefore well-
definedness must be proved.

Definition 7.3.2 The operators ;’, ‘0’ and ‘||’ on Ily are given, for m,m €
H2 andPQSt+St XHQ, by

The intuition behind the above operators will be given after Lemma 7.3.12 by
means of some examples about the weakest precondition semantics for £,. Let
us for the moment concentrate on the well-definedness of the above operators.
For the ‘0’ operator it is immediate.

7

Lemma 7.3.3 The mapping ‘0’ is well-defined and non-expansive.

Proof. Choose 7y, m € Iy arbitrarily. Multiplicativity of m; O 7y is straight-
forward. Suppose V is a directed set of metric opens of St + St X % -II5. Then
we have

(m Om)(UV)
= UH{m(P) | PeV}nU{m(P)| P €V} [continuity of 7 and my]
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= U{m(P)Nmy(P)| P €V} [Vis directed and 7y, my are monotone]

Hence, 71 O 7y is Scott continuous on metric opens, and 7; O w9 € II,. Non-
expansiveness of O is readily checked. O

Well-definedness of the operator ‘;” and ||’ is less trivial and is supported by
higher order transformations €2, and €2, respectively.

Definition 7.3.4 Let (¢ €)Opr be the set of all non-expansive functions in
II, x Iy — IIy. The higher-order transformation €Y, : Opr — Opr is given by

Q:(0)((m1, m2))(P) = m({s | (s,m2) € PYU{(s,p) | (s,6({p, m2))) € P}),

where w1, 9 € Ily and P C St + St x Il,.

We will prove that the operator ‘;’ as defined in Definition 7.3.2 is the unique
fixed point of €2.. We need three technical lemma’s.

Lemma 7.3.5 Let m € Il,. Put

P'={sest|(s,7) € P}
for P C St + St x Il. Then it holds that

(i) If P is open then also P' is open.
(ii) If P is closed then also P' is closed.
(ili) For X CP(St + St x IL,), N{P' | P € X} = (NX).

Proof. We only check part (i); part (ii) is similar and part (iii) is straightfor-
ward. If s € P', then (s, m) € P. Hence, for some suitable e <1, B.({s, 7)) C P
and therefore B.(s) C P’, since B.(s) C St by the assumption e < 1. O

An immediate consequence of Lemma 7.3.5.(iii) is that if Py C P, then P] C P}
for all subsets P; and P, of St + St x II,.

Lemma 7.3.6 Let ¢: 1, x Il — IIy be non-expansive and m € 1I,. Put

P"={(t,p) € st x 1Ly | (t, 6({p,m))) € P}
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for P C St + St x Ily. Then it holds that

(i) If P is open then also P" is open.
(ii) If P is closed then also P" is closed.
(iii) For X CP(St+ St xIL,), \{P"| P e X} =(NX)".

Proof. In verifying part (i) and (ii) we observe that P” is the inverse image
under the continuous function (idgt, Ap.¢({p,7))) : (St x II;) — (St x II,)
of PN (St x IIy). Hence P" is open if P is open, and closed if P is closed.
Part (iii) is readily checked. O

As before, from Lemma 7.3.6.(iii) it follows that if P; C P, then P; C PJ for
all subsets P; and P, of St + St x 1l,.

Lemma 7.3.7 (i) For any non-expansive ¢ : Iy x [Iy — Iy, and my,m € Ty
it holds that S, (¢) ({71, ma)) € Ils.

(ii) For any non-expansive ¢ : Iy x Ily — Ily the function Q.(¢) is also
non-ezpansive. Moreover, for any i, Ta, p1, p2 € lla:

ity a1, (€, (9) (71, m2), 2,(6) (p1, p2)) < max{du, (71, p1), 5 di, (72, p2) }-

(iii) The transformation Q; is a 3-contraction.

Proof. (i) Let ¢ be a non-expansive map in Ily x Iy — Iy, m,m € Iy,
and put m = Q.(¢)((m1, m2)). Let P’, P" be as in Lemmas 7.3.5 and 7.3.6 with
respect to ¢, my and any P C St+St x IIy. We first verify Q.(¢)({m, m)) € .

To prove that 7 is multiplicative, take X C P(St +St X ng. By Lemmas 7.3.5
and 7.3.6,

M{P'| Pex}=(NX) and ({P"| P e Xx}=(X)"

Hence, by disjointness of the P' and P”,

M{P'UP"|Pex}t=(x)U(NX)"

Multiplicativity of m; now delivers

({m(P'UP") | PeXx}t=m((X)U()X)".

Since m;(P' U P") = w(P) by definition, we have that .(¢)(m,m2) is multi-
plicative.
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Next we prove that 7w preserves directed unions of metric opens. Suppose V is
a directed set of metric open subsets of St + St x % - II;. We then have

r(JV)=m(JH{P'| P eVIUJ{P"| P eV}
=m(J{P'UP" | P eV}
=J{m(P'"UP")| P eV} |[Lemmas 7.3.5, 7.3.6, and m € IIy]

=U{x(P)| P eV}

Hence 7 preserves directed joins of opens and thus « € Ils.

(ii) Choose @, 7y, T2, p1, po arbitrarily in I, and put 7 = Q,(¢)(m, 72), and
p=Q.(6)(p1, p2). We first establish

g(s,m)={(t,m) | t € q(s,m)} U

{(t,6({w',m2))) | (t,7") € q(s,m)} (7.3)

for every s € §, using Lemma 7.2.2. Let P C St + St x II,. Then
{(t,m) [t € q(s,m)} U{{t, 6((n',m2) | (,7) € q(s,m)} S P
q(s,m) C{t| (¢, m) € PYUL{(t, ) | (t, ¢({n',m2))) € P}
& q(s,m) C P"UP" [Definitions of P’ and P"]
& sem(P'UP") [Lemmas 7.2.2, 7.3.5, and 7.3.6]

& s € 7T(P). [Deﬁnition of 7r]

A similar result holds for ¢(s, p). Now, for every s € St we have (omitting the
subscripts on the distance function d)

d(q(s,m), q(s, p))
|t € q(s,m)}, {{t,p2) | t € q(5,p1)}),
)

', m))) | (t,7') € q(s,m1)},
05 p2))) | (t p') € q(s,p1)}) }

< max{ dn2(71,01),5dn2(72,/)2) }-
Taking the supremum over St, the result follows.

(iii) Let ¢1,¢o € IIy x II, — II, be non-expansive. Then, for arbitrary
m,me € II; and s € St, we have

d(q(s, (1) (71, m2)), q(s, Q,(B2) (1, 72)))
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< d({(t, 61(¢

{(t, ¢2(¢
< 5d(¢1, p2).
Hence d(;(41),Q;(¢2)) < 3d(¢1, ¢2) and Q; is 3-contractive. O

Ps 7T2>)> | <t’p) € q(saﬂ-l)}a
p,m2))) | (¢, p) € q(s,m)})  [Equation (7.3)]

Now we are in a position to prove well-definedness of the operator ‘;’: it is the
unique fixed point of (2..

Theorem 7.3.8 The operator ‘;’ as defined in Definition 7.3.2 is the unique
fized point of €1,.

Proof. Since (2, is a %—contraction it has a unique fixed point by Banach’s
fixed point theorem. It is easy to verify that ;’ is the fixed point of 2,. O

Next we proceed with the justification of the recursive definition of the oper-
ator ‘||’ in ITy given in Definition 7.3.2. We use again a higher-order transfor-
mation.

Definition 7.3.9 Let (¢ €) Opr be the set of all non-expansive maps in Iy X
Iy — IIy. The higher-order transformation € : Opr — Opr s gien by

Q) (¢)((m1, m2)) = 2,(¢) ({1, m2)) B Q;(4) ({m2, m1)).

Next we see that the higher-order transformation (2 is a contraction and has,
assured by Banach’s theorem, a unique fixed point, being—by definition—*||’.

Theorem 7.3.10 For every ¢ € Opr, §(¢) is non-expansive, whereas the
function Q) is an %—contmction. Further, the operator ‘||’ as defined in Defi-
nition 7.3.2 is the unique fized point of €1 .

Proof. The proof of the first part of the theorem is straightforward from the
definition of €|, and Lemmas 7.3.3 and 7.3.7. Since )| is an %—contraction it
has a unique fixed point by Banach’s fixed point theorem. It is easy to verify
that ‘|| is indeed the fixed point of Q. O

We are now ready to present the semantics Wp, for Ls.
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Definition 7.3.11 The weakest precondition semantics Wp, is the unique
function in Lo — 1y satisfying

Wp,[{d,v:=e)] = [Ev(e)/v],

Wp,[{d, b—)] = Bv(b)—,

Wp,[{d, z})] = Wp,[(d, d(z))],

Wp,[{d, (S1 5 $2))] = Wp,[{d, S1)] 5 Wp,[(d, $)],
Wp,[(d, 51 O 5)] = Wp,[{d, 51)] O Wp,[(d, 5],
Wpy[(d, S1 || S2)] = Wp,[{d, S)] || Wp,[{d, S2)].

Justification of the proposed definition can be obtained by an application of
the higher order transformation technique in a metric setting, as proposed
originally in [122]. We need first a map wgt, which assigns a natural number
to every program in L, to be used in proofs based on induction. It is defined
inductively as follows:

(

(

((d,z)) = wgty((d, d(éB))) +1,
wgty((d, $1 5 52)) = wgty((d, $1)) +
wgty((d, 1 B 83)) = max{wgt,({d, S >) wgty((d, $2))} + 1,
wgty((d, Sy || 52)) = max{wgty((d, 1)), wgt({d, 52))} + 1.

The weight function wgt, is well-defined for each pair (d,S) € L5 as can be
easily seen by induction on the syntactic complexity: first on the complexity of
guarded statements and then on the complexity of general statements (more
information on the weight functions can be found in [47] and [23]). We are
now ready for the justification of the semantic function Wp,. It is based on
a mapping Vs : Semy — Semy where (F' €)Semy = Lo — Ily. Pivotal is the
clause

Uy (F)((d, Sy ; S2)) =Wo(F)({d, S1)) ; F({d,S2))

for the sequential composition. Note that F' and not Wy (F) is applied to the
second component Sy. The unique fixed point of this continuous endomorphism
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will satisfy the conditions of Definition 7.3.11.

Lemma 7.3.12 Let F € Semy = Lo — Ils. Define Uy : Semy — Semy induc-
tively by

Ua(F)((d,v:=e)) = [Ev(e)/v],

Uy (F)((d, b—)) = Bv(b)—,

Uo(F)((d, ) = Vo (F)((d, d(x))),

Uo(F)({d, (815 52))) = Wa(F)((d, 51)) ; F({d, 52)),

Uy (F)((d, 851 8 83)) = Usy(F)((d, 51)) O Wa(F)((d, 52)),
Ua(F)((d, 81 || S2)) = Wa(F)((d, S1)) || Wa(F)((d, S2))-

Then ¥y is %—contmctive and Wpy[-] defined in Definition 7.3.11 is the unique
fized point of VU,.

Proof. We show, by induction on wgt,((d,S)), that

dSem, (V2(F1)((d, 5)), U2(F2)((d, §))) < 5 - A5y, (F1, )

for any Fy, Fy € Semy. We expand two typical sub-cases (omitting the sub-
scripts on the distance functions).

[z] d(Vo(F1)((d, z)), Vo F2)((d, z))
= d(Vo(F1)((d, d(2))), Va2(F2)((d, d(z)))
< 3d(Fi, F,).  [induction hypothesis|
[51 ) 52] d(q’2(F1)(<da51 ) S2>)a‘1’2(F2)(<da51 ) S2>)
= d(Wa(F1)((d, S1)) 5 F1({d, S2)), Wa(Fy)((d, 51)) 5 Fa({d, S2)))
max{d(V2(F1)({d, 51)), Y2(F2)({d, 51))),
sd(Fi((d, S:)), F2((d,S)))}  [Lemma 7.3.7.(ii)]
d(Fy, F3). [induction hypothesis, definition d(Fy, Fy)] O

VAN

VAN

1
2

The language Lo does not have the assert command {b} as primitive: it is
undefined if b fails whereas it acts as skip otherwise. A subsequent extension
of the models is necessary. However, an additional clause involving the operator
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Wpo[{0}](P)={s | s € Bv(b) & s € P}

is sufficient. The underlying domain then needs to be adapted as well. Preser-
vation of nonempty intersections will replace the multiplicativity condition.
Locality can also be dealt with, using techniques developed in the metric
setting (see [32] and also [23]). By adding a simple atomization operator on
sequential and non-deterministic statements, synchronization via semaphores
can be easily obtained in the setting of Il,. It is an open problem, however, if
it is possible to deal with angelic non-determinacy.

Let us now consider some examples, one of which involving the parallel oper-
ator, to illustrate the semantics Wp, and the definition of the operators given
in Definition 7.3.2. The sequential statement v; := 1 ; v, := 2 will act as the
first example. Maybe surprisingly we will obtain for the predicate

P={sest|s(n)=1%&s(vn) =2}

that Wp,[(d, v1:= 1; vp:=2)](P) = 0 (for some fixed, but arbitrary declara-
tion d). Let us write 7y, o for Wpy[(d, vi:=1)], Wp,[{d, vo:=2)], respectively.
We then have

Wpo[{d, vy :=1; v := 2)](P)

= (m 5 m2)(P)

= m({s | (s,m) € PYU{(s,p) [ (s,p;m) € P})
{s|(s[1/w],m) € P}

= 0.

The point is that P only allows immediate terminating computations, whereas
the sequential composition has also one intermediate state as reflected in the
pair (s[1/v1],ms). In general, if we want to use our predicate transformer se-
mantics to show that a program can achieve certain goals being indifferent as
to how it will be reached, we can incorporate such pairs as (s[1/v], m2) in the
predicate P. So the predicate P C St has to be ‘enhanced’ with pairs rep-
resenting the same input/output information to accommodate for composite
elements in St + St x II,.

Definition 7.3.13 For P C St define the enhanced predicate for total cor-
rectness P* on St + St x Il by
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Ptc — (0
P* =) Pl where 0
n Pty =P U{(s,p) | s €p(P)}

By induction on n > 0, it is straightforward to see that Pi C PL, . Further-
more, for every n > 0, Pl is open in the metric topology of the metric space
St + St x % - IIy. This is a consequence of the following lemma.

Lemma 7.3.14 Let P C St. For every n > 0, if z € Pl then By--(z) C Pl.

Proof. We prove the above statement by induction on n > 0. Since P = ()
the basis case is obviously true.

Assume z € Pl implies By-«(z) C Pi. Let z € Pl4,. By definition of Pf,

we have two cases: either z € P or z = (s, w) with s € 7(P[¢). In the first case

Byin(z) = {2} C P C Py

In the other case, ¢(s,7) C P by Lemma 7.2.2. Let (¢, p) € By-ns1y ({5, ).
Then t = s and dg(m, p) < 27" Hence d(q(s, ), q(s,p)) < 2~™. By Proposi-
tion 2.3.2 it follows that for every y € ¢(s, p) there exists z € ¢(s, 7) such that
d(y,z) <27" that is y € By-«(2). Since z € ¢(s,m) C P!*, by the induction
hypothesis it follows By-x(z) C P. Therefore (s, p) C Pi°. By Lemma 7.2.2,
s € p(P) and hence (s,p) € Plc,. O

Using the property that metric predicate transformers preserve directed unions
of metric open sets we have that

n(P*) =n(JPy) =Un(Py),

n

for P C St and 7 € Il,. This fact will be used later in Theorem 7.5.5 in order
to show the correctness of the Wp,[-] semantics with respect to the weakest
precondition semantics Wp,[-] given in Chapter 3. Moreover, using the above
equation it is immediate to see that for P C St the enhanced predicate P is
the least subset of St + St x Il satisfying

P=PU{(s,p) | s € p(P*)}.
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Therefore P consists of elements of P and those pairs (s, p) for which s is
appropriate in that it will lead to P following p. We will return to this point
in Section 7.5.

Returning to the example for v;:=1;v,:=2 we can now calculate the semantics
for P* where P = {s € St | s(v1) = 1 & s(vp) = 2}. Recall that we write 7y,
mo for Wp,[(d, v, :=1)], Wp,[(d, ve := 2)], respectively. We have

Wpo[{d, vy :=1 ; vy := 2)](P*)

= (m 5 m)(P%)

= mi({s | (s,m2) € P*}YU{(s,0) | (s,p; m2) € P*})
= {s | (s[l/vi],m) € P*}

= {s | s[1/un] € m(P*)}

= {s | s[l/w][2/v] € P*}

= {s | s[1/w][2/w](v1) =1 & s[1/w][2/w](vs) = 2}
= St,

which is the result to be expected.

As a second example, we compute the weakest precondition of the statement
(v1:=1 || v :=2) || v3:=3 for the enhanced predicate for total correctness of
the predicate

P={sest|s(v)+s(n)=-s(v)}.

Let m = Wpy[(d, v; :=1)], mo = Wp,[(d, v2:=2)] and 75 = Wp,[(d, v3:=3)].
We have

Wp,[(vr :=1 || va:=2) || w5 := 3] (P*)
= ((my || m2) [| w5)(P*)
= (m | m2)({s | (s,m3) € P¥}U{(s,p) | (s,p || m5) € P*})N
ms({s | (s,m || m2) € P*YU{(s,p) [ (s, (m || m2) || p) € P*})
= m({s | (s,m) € {s|(s,ms) € P*YU{(s,p) [ (s, p [l m5) € P*}}U
{(s,0) [ (s,p |l m2) € {s | (s,m5) € P*}U
{(s,p) [ (s,p |l ms) € P*}})N
ma({s | (s,m) € {s | (s,m5) € P*}U{(s,p) | (s,p]l 73) € P*}}U
{(s,0) [ (s, p |l m1) € {s | (s,m5) € P*}U
{(s,p) [ (s,p |l ms) € P*}})N
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ms({s | (s,m || m2) € P*}U{(s,p) | (s, (m || m) || p) € P*})
= m({s [ (s,m || m3) € P}U{(s,p} [ (s, (p || m) || ms) € P*})

ma({s | (s,m || ms) € P*YU{(s,p) [ (s, (m || p) | m5) € P*})N

ms({s [ (s,m || ma) € P*}U{(s,p} | (s, (m || m) || p) € P*})

= {s[s[1/v] € (m || m3)(P*)} N {s | s[2/vg] € (m1 || 75)(P*)} 00
{s | s[3/vs] € (my || m2)(P*)}

= {s | s[l/u][2/v][3/vs] € P*}
= St.

The example also indicates a more general relationship for parallel composi-
tions of predicate transformers. Let us use 7 _; to denote the left associated
parallel composition of 7y, ..., 7, 7], (with 1 < r < k) for m ;. but leaving
out the operand 7, and 7], for 7y __j but now replacing the operand m, by
the predicate transformer p. We then have

M,k (P)= (N m({s [ (s, 7] _x) € PYU{(s,p) | (5,71 _x) € P}). (74

r=1

The above equation can be verified by a straightforward inductive argument
using the various definitions.

In both the above examples we have used the semantic function Wp,[—] to
study correctness properties. A more involved and probably more interesting
example of application of the metric predicate transformer semantics Wp,[—]
will be given in Section 7.5, where we will make more precise the connection
with the weakest (liberal) precondition semantics introduced in Chapter 3.

7.4 Relationships with state transformers

Next we turn to a state transformer domain ¥, suitable for a compositional
forward semantics of the language £5. The metric resumption domain ¥, is
used to measure the ‘goodness’ of the weakest precondition semantics Wp,.
We define (0 €)%, as a variation of the domain introduced by De Bakker
and Zucker in [24]: it is the unique (up to isometry) solution of the domain
equation
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X =8t — P, (St + St x 1 - X).

The intuition behind the above domain is as follows: statements are functions
which deliver for each input state a set consisting of output states and/or pairs
composed from the output after one atomic computation step together with
a function representing the rest of the computation. The domain 35 comes
equipped with the following operations (see [24] for a justification of their
well-definedness).

Definition 7.4.1 For every function f:St — Val, individual variable v € IVar
and subset V' of St define the state transformers ‘[f /v]’ and ‘V—’ in ¥y by

[f/v](s) = {s[f (s)/ ]},
{s}ifseV

V—(s)=
0  otherwise

()

for every s € St. The binary operators *;’, ‘0’ and ‘||” on Ly are given by

o1;02(s) ={(t,02) | t € o1(s)} U{(t, 75 02) [ (£,7) € 01(5)},
o1 O 0'2(8) = 0'1(8) U OQ(S),
o1 [ oa(s) = {{t,02) | t € 01()} U{(t,7 || 02) [ (£,7) € 0u(s5)} U

{(t,00) [ t € aa(s)} U{{t, 00 [| 7) | {2, 7) € 02(5)},

for 1,00 € ¥y and s € St.

The above operations are all we need to give a compositional forward semantics
for L, along the lines of Definition 7.3.11. On the basis of the general isomor-
phisms between state and predicate transformers studied in Theorem 6.2.12 we
can formulate the relationship between ¥, and II,. The two domains are iso-
morphic. However, the isomorphism is not an order-isomorphism but an isom-
etry between the complete metric space ¥ and the complete metric space 1ls.
Since the isomorphism will preserve the operations defined above, it follows
that the backward and the forward semantics of £, are isomorphic.

We need some preparatory steps to prove an isomorphism between the two
semantic domains.
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Definition 7.4.2 Define the domain transformation pt: ¥y — Il by

pt(o)(P) ={sesSt|(tea(s) = teP)&
(t,7) € als) = (t,pt(7)) € P)},

for all 0 € ¥y, and P C St + St x Il,.

In order to justify the well-definedness of pt we introduce a higher-order trans-
formation in a such way that it is contractive and pt is its unique fixed point.
Define the higher-order transformation Q,; : (Sy = II,) — (S5 = IIy) by

Qu(tr)(o)(P) ={sesSt|(teo(s) = teP)&
((t,7) € a(s) = (t,tr(7)) € P)},

for all non-expansive tr: ¥, — Ily, 0 € ¥y, and P C St 4+ St x Il,.
Lemma 7.4.3 Let tr: Yy — I, be non-expansive and o € 9. Then

(i) Qpi(tr)(o) € 1L,
(ii) Qp(tr) is non-expansive,

(iii) the transformation Qpy is -contractive.

Therefore )y, has a unique fized point which is the function pt of Defini-
tion 7.4.2.

Proof. (i) Choose arbitrary tr:3 — IT, and o € 3, and put 7 = Qi (tr)(o).
Multiplicativity of « is straightforwardly checked. Preservation of directed
joins of opens by 7 is verified as follows. Take V to be a directed set of metric
opens of St + St x 3 - II,. Note that the set

{test|teao(s)}U{{t, tr(7)) € St xII5 | (¢t,7) € o(s)}

is compact: its first constituent equals o(s) N St, which is the intersection of
a compact and a closed set. Its second constituent is the continuous image —
under (idgt, tr) — of the compact set o(s) N (St x X5). Therefore,
sen(UV)
& {test|teo(s)iu
{{t, tr(T)) | (¢t,7) € o(s)} CUYV [definition Q]
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& dPeV:{t|teo(s)}U

{{t, tr(7)) | (t,7) € o(s)} C P [compactness]

s seU{n(P)|PeV).

S

(ii) For arbitrary tr: ¥, N Iy, 0 € ¥y, and P C St + St x I, we have
€ Qp(tr)(o)(P)

& (teo(s) = teP)&

((t,7) € o(s) = (t,tr(r)) € P) [definition Q)]

& {test|tea(s)U{(t, tr(r)) | (t,7) € a(s)} C P.
Therefore, by Lemma 7.2.2,

q(s,Qu(tr)(o)) ={test |t ea(s)}U{(t,tr(r)) | (t,7) € o(s)}. (7.5)

Now, let tr: ¥, 4 11, and choose, in order to show the non-expansiveness
of Q,(tr), 01,09 € L9. We then have (omitting the subscripts of the distance
functions)

d(Q2pi (tr)(01), Qpe(tr)(02))

<

(

sup{ d(q(s, Qp(tr)(01)), q(s, Qp(tr)(02))) [ s € St }
max{sup{ d({t €St |t € 01(s)},{t €St |t € 02(5)}) | s €St },
sup{ d({(¢, tz(7)) | (¢,7) € o1(s)},
{(t, tr(7)) | (¢t,7) € 02(8)}) | s €St} } [Equation (7.5)]
sup{ d(o1(s),02(s) | s € St} [tr non-expansive]
d(o1,09).

iii) Pick any try, try € X9 L I0,. Then we have

d(Qpi (tr1), Qi (tr2))

IN

= sup{ d(Qp(tr1)(0), Qpi(trz)(0)) |0 € X3} [distance on Ty — I,
sup{ d(q(s, Qp(tr1)(0)), q(s, Qp(tr2)(0))) |0 € Xy & s € St }
sup{ d({{t, tr: (7)) | (¢, 7) € o(s)},

{{t, tra(7)) | {t,7) € 0(s)}) |c €Ty & s €St} [Eq. (7.5)]

IN A

sup{ 2d(tr(7), trz(7)) | 0 € Ly & (t,7) € 0(s) }
%d(trl,tlé) .

From the proof of the Lemma 7.4.3 we have, taking pt for tr,

q(s, Qu(pt)(0)) ={t € St [ t € o(s)} U{(¢, pt(7)) | (¢, 7) € o(s)}.

Since pt is the unique fixed point of €2, the following corollary is immediate.
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Corollary 7.4.4 For every o € X9 and s € St, it holds that

q(s,pt(0)) ={t e st [t € a(s)} U{(t, pt(7)) | (¢, 7) € o(s)} O

Next we define a function which maps a predicate transformer to a state
transformer.

Definition 7.4.5 Define the domain transformation st : 1l — g by

st(m)(s)={t € 8t |t € q(s,m)} U{(t,st(p)) | (¢, p) € q(s,m)},
for all m € 11y, and s € St.

Again, to show the well-definedness of the function st we introduce the higher-
order transformation Qg : (Il = $5) — (I, = ¥,). It is given by

Qu(tr)(m)(s)={t € st |t € q(s,m)} U{(t, tr(p)) | (t,p) € q(s,7)},
for all non-expansive tr: I, — X9, m € II5, and s € St.

Lemma 7.4.6 Let tr: 11y — Xy be non-expansive and m € Ily. Then

(l) Qst(tr)(ﬂ') € 22,
(ii) Qg (tr) is non-expansive, and

(iil) the transformation Qg is %-contractive.
Proof. Similar to the proof of Lemma 7.4.3 and hence omitted. O
We are now in a position to prove the isometry between 35 and Ils.
Theorem 7.4.7 The non-expansive functions pt: g — Iy and st : 11y — 3
form an isometry between ¥y and Il,.
Proof. It is enough to check that pt: Xy — Il; and st : I, — 39 satisfy

st o pt = idy, and pto st = idyy,.
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First we verify st o pt = idy,. Note that by the respective definitions and
Corollary 7.4.4,

st(pt(a))(s)
= {t est|teq(s pt(a))} U{{t st(p)) | (&, p) € q(s,pt(0))}
= {test|tea(s)}U{({t,st(pt(n))) | (t;7) € a(s)}.

Suppressing the subscript ¥ for the moment, by the above characterization
of st(pt(o))(s) we derive

d(id, st o pt)
= sup{ d(o(s),st(pt(0))(s)) | o € La & s € St }

sup{ d((¢, ), (t,st(pt(7)))) | 0 € Xy & s € St & (t,7) € o(s) }
ssup{ d(r,st(pt(r))) |0 € T & s € St & (t,7) € 0(s) }
d(id, st o pt).

ININ A

From this we conclude stopt = idy,. Likewise, but slightly simpler, one derives

dH2 (idn2, pto St) < %dHQ (jdH2 ,pto St)

and, consequently, pto st = idy,. O

Next we prove that both the domain transformations pt and st preserve as-
signments and conditionals as well as the operations of sequential composition,
choice and parallel composition. Since they form an isomorphism, it is enough
to prove the result only for pt.

Lemma 7.4.8 Let f:St — Val, v € IVar, V C St, and 01,09 € ¥9. Then

) pt([f/v]) = [f /v];
) pt(V—=) = V—;

(iii) pt(o1 ; 02) = pt(o1) ; pt(oz);
) pt(oy O 0y) = pt(oy) O pt(og);
) pt(o1 || o2) = pt(o1) || pt(o2).

Proof. (i) For every P C St + St x II; we have

pt([f /v])(P)
= {s €St |s[f(s)/v] € P} [definition [f/v] in ]

= [f/v](P) [definition [f/v] in IIy]
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(ii) Let P C St + St x II,. Then
pt(V—=)(P)
={seSt|seV = se€ P} [definition V— in Iy]
= V—(P). [definition V— in IIy]

(iii) First notice the following
s € my 5 ma(P)

& sem{test|(t,m)e PYU{{t,p)| (t,p;m) € P})
& q(s,m) C{test|(t,m)e P}U

{{t,p) | (t,p;m) € P} [Lemma 7.2.2]

Aad {<ta7T2> | S Q(S,Wl)} U {<t’p ; 7T2> | <tap> € Q(S,ﬂ'l)} CP.
This means, by Lemma 7.2.2 that

q(s,m 5 m) ={{t,m2) [ t € q(s,m)} U{{L,p;m2) | (£,0) € q(5,m1)}-

Hence, for m = pt(o1), ma = pt(o2) and p = pt(7) (which is always the case
as pt is an isomorphism), we have

q(s, pt(o1) ; pt(o2)) = {{t, pt(o2)) | t € q(s, pt(o1))} U
{(t, pt(7) ; pt(o2)) | (t, pt(7)) € q(s, pt(o1))}-

On the other hand we have also
q(s, pt(o1 5 02))
= {t|te€or;os)} U{{t,pt(T)) | (t,7) € 01;02(s)} [Corollary 7.4.4]
= {(t,pt(o2)) | t € o1(s)} U{(¢t, pt(T ; 02) | {t,7) € 01(s)} [Definition *;’]
= {{t, pt(o2)) | t € q(s, pt(01))}V

{{(t, pt(7; 09)) | (t,pt(7)) € q(s,pt(c1))}. [Corollary 7.4.4]
It is now easy to verify that, for a fixed g, € ¥,

d(q(s, pt(o1) ; pt(o2)), q(s, pt(o1 5 02))) < 5d(pt(—) ; pt(o2), pt(— ; 02)).

Therefore we can conclude that
d(pt(— ; 02), pt(-—) ; pt(02))
= sup{ d(pt(o1 ; 02), pt(01) ; pt(o2)) | o1 € Lo }
= sup{ d(q(s, pt(o1 ; 02)), q(s,pt(o1) ; pt(o2))) | o1 € Lo & s € St }
< sup{ 3d(pt(— ; 02), pt(—) ; pt(os)) | o1 € Ty }
= 3d(pt(= ; 02), pt(=) ; pt(02)).
The above implies pt(o7 ; 02) = pt(o1) ; pt(os).
(iv) We have, for every P C St + St x Iy,
pt(O’l O JQ)(P)
={s|(t€o10os(s) = t€eP)&
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((t,7) € o1 Doa(s) = (¢,pi(r)) € P)}
={s|(t€oi(s) = teP)& ({t,7) € o1(s) = (t,pt(r)) € P)} N
{s|(t €0s(s) = te€P)& ((t,7) € 02(s) = (¢,pt(r)) € P)}

= pt(a1)(P) N pt(02)(P)
= pt(o1) O pt(o2)(P).
(v) The proof is similar to the proof of point (iii) and is hence omitted. O

The above lemma ensures that the predicate transformer semantics Wpy[—]
is isomorphic to the forward semantics with the operations given in Defini-
tion 7.4.1.

7.5 DPartial and total correctness

In the previous section we have shown the correctness of the semantics Wp,[—]
with respect to a forward semantics establishing a duality between the domain
I, of metric predicate transformers and the domain ¥, of state transformers.
In this section we answer the question concerning the correctness of the domain
[T, with respect to the three domains of predicate transformers PT r(St, St),
PTp(St,St), and PT y(St, St) introduced in Chapter 3.

A metric predicate transformer in Il records every intermediate step of the
computations it denotes. If we want to calculate the set of those input states
s € St for which each computation denoted by 7 terminates in a final state
satisfying a predicate P C St then we have to enhance P to obtain a pred-
icate on St + St X Il,. The idea is to define the enhancement of P C St by
incorporating in P all those pairs (s, p) € St x II; such that all computations
denoted by p started at s terminate and satisfy P.

Definition 7.5.1 For P C St define the enhanced predicates P for total
correctness as the least subset of St + St x Iy satisfying the equation
X=PU{(s,p) €St xIly| s € p(X)}.

The enhancement of P for partial correctness is defined as the greatest subset
Pr¢ of St + St x Iy satisfying the above equation.

In Definition 7.3.13 we have given the enhancement of P for total correctness
in terms of its approximants. Similarly, the enhancement of P C St for partial
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correctness can be defined by

PY =S8t +StxII
P¢ where 0 2

PpC = nPn v
: P = PU{(s.0) | s € p(PE)).

The next theorem shows that the enhancement for total and partial correctness
of a predicate P is appropriate for the study of partial and total correctness
properties in the domain IIs.

Theorem 7.5.2 Let m € IlI,. Then

(i) AP C st.w(P*) € PT7r(St,St);
(ii) AP C St.w(P?) € PTp(St,St).

Proof. (i) By Corollary 6.2.13 it is enough to prove that the predicate trans-
former AP.7(P*) is Scott-continuous and preserves finite non-empty intersec-
tions.

To prove Scott-continuity, let V' be a directed set of subsets of St. We first
show that for all n > 0,

Uwn =U{Ps 1 P eV} (7.6)

We proceed by induction on n. For n = 0, the Equation (7.6) is obviously
true. Assume it holds for n = k, then

UV)En

= UVU{(s,p) | s € p((UV)§)}

= UVU{(s,p)|s€p(U{P}| PeV})} [induction hypothesis]

= UVUU{{(s,p) | s € p(Pi¥)} | P €V} [Lemma 7.3.14, p continuous]

= U{P{5, | P V]
Hence (V)% = U{P* | P € V}, from which it follows that AP.7(P*) is Scott

continuous. Preservation of binary intersections follows similarly because, for
P, () C St it holds that

(PNQ) = P QY

n

for all n. The above can be proved by induction on n.

(ii) Since predicate transformers in Il are top-preserving (because they
preserve arbitrary intersections), St?¢ = St + St x Il,. Hence 7(St?¢) = St.
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Also, if V is a non empty set of predicates on St then

(W) =\{p* | Pev}

follows immediately from the characterization of the enhancement for partial
correctness as the countable intersection of its approximants. Since 7w preserves
arbitrary intersections we obtain that AP.w(PP¢) is a partial correctness pred-
icate transformer. O

Not only partial and total correctness are encoded in a predicate transformer
in ITy. Also their combination is present in the sense of Equation (3.9).

Theorem 7.5.3 For every m € Iy and P C St,

7(P*) = m(St*) N 7 (PFe).

Proof. The inclusion from left to right follows because 7 is monotone, P C St
implies P C St%, and P C P?¢. To prove the other direction we first show
that for all n > 0,

PleDstlen pre. (7.7)

We proceed by induction on n > 0. In case n = 0 then both P{* and St are
the empty set. Hence (7.7) holds. Assume now (7.7) holds for n = k and let
z € Stif, N PP. There are two cases. If z € St then z € P by definition of
P?e. Otherwise z = (s, p) € St x II,. Since (s, p) € Sti,, s € p(StL). Also,
since (s, p) € PP, s € p(PP). Because p preserves intersections and by the
induction hypothesis,

s € p(StL) N p(P™) = p(Stle N P™) C p(Pfe).

By definition of P[5, it follows that (s, p) € Pf5,. Hence (7.7) holds for every
n > 0. As a consequence

Ptc 2 Sttc N pre

from which we can conclude (P*) C w(St' N PP*) = x(St*) N« (PF¢). O

The enhancement of a predicate for total correctness preserves the semantical
operators corresponding to choice and to sequential composition. We cannot
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have a similar result for the parallel composition since it would allow for a
compositional semantics for £, by means of total correctness predicate trans-
formers.

Lemma 7.5.4 Let mi,m9 € Ily and P C St. Then

(i) (m O m2)(P) = m (P*) N my(P*);
(i) (my; m)(P*) = my(me(P)%).

Proof. (i) Immediate from Definition 7.3.2.

(ii) To begin with, we prove by induction on n that

(15 M) (Pryy) © mi(ma(Pr)iiy)- (7.8)

For n = 0 we have
(m1; m2)(P1)
= m({s|(s,m) € Pr}U{(s,p) | (s,p;me) € P1}) [Definition 7.3.2]
=m({s|sem(PE)U{(s,p)|se(p;m)(P)}) [Definition 7.3.13]
= m(m(Pg*) U{(s,p) [ s € p(Ps)})  [P5° =10, (p;m2)(0) = p(0)]
= m(m(Pg*) U{(s,p) | s € p(ma(Pg))})  [ma(PO)6° = P = 0]
= m(ma(Pl)1). [Definition 7.3.13]

Assume now (7.8) holds for n = k and we prove it for n = k + 1.

(15 m2) (Pr%o)
= m({s | (s,m2) € P} U{(s,p) | (s,p;m) € Pl,}) [Definition 7.3.2]

m({s|sem(Pi)}U{(s,p) | s €(p;m)(P{%)}) [Definition 7.3.13]
w1 (ma(PES1) UA{(s,p) | s € p(ma(Pf9)i,1)})  [induction, w1 monotone]
mi(m2(Pig1) U{(s, p) | s € p(ma(Pisa)i)}) PR C PGl
1 (ma (PG 1)1 e)-  [Definition 7.3.13]
Since 1, ma, and m ; mp preserve directed unions of opens, and all P!’s are
opens (Lemma 7.3.14) we obtain
(1 5 m2) (P*°)
= (7Tl ;@)(Un Ptc)
= (m 5 m)(Un Pr%y)  [PEE =10
= Un(m1 5 m2) (Prg1)
C Unmi(ma(Pr) 1)
= ﬂ—l(U(n m) WQ(Prtnc)n—f—l)
= 71(m2(Um Pr)")
=y (me(P¥)%).

Iﬁ Iﬂ
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In order to prove the converse, we first prove by induction on n that
mi(m2(Po)n) € (15 ) (P), (7.9)

for all m > 0. The base case is immediate: for n = 0 and m > 0,
1 (m2(P)5)
= Wl(@)
= (7T1 ;Wz)(@)
C (my 5 m)(P¥).
Assume now (7.9) holds for n = k. Then, for every m > 0,
71 (T2 (Prr) 1)

= m(m(Py) U{(s,p) | s € p(ma(P)i)})  [definition mo(P7)ic, ]

= m({s | (s,m) € P} U{(s,0) [ s € p(ma(Pr)E)})  [definition P72 ]
C m{s|(s,m) € Pry }U{(s,p) [ s € (p; m)(P*)}) [induction]

C m{s|(s,m) € PYU{(s,p) [ s € (p;m)(P*)}) [Py, € P

= m({s | (s,m) € PYU{(s,p) | (s,p; m) € P*}) [Definition 7.5.1]

= (my ; m2)(P%¥). [Definition 7.3.2]
By (7.9) we can conclude

7Tl(7T2(Ptc)tc)

= T (Un T2(Um Pri)%)

= Un Un m(m2(Pr)7)

C (m 5 m)(P™).
Hence we obtain m (me(P*)*) = (m; ; m)(P¥). O

Similarly one can prove that for 7,7 € II, and P C St,

(1 O m9) (PP¢) = 71 (PP) N mo( PP°);
(1 5 mo) (PP) = my(ma(PP)P°).

So far we compared the semantic domain II; of metric predicate transform-
ers for concurrency to the semantic domains PT 7(St,St), PT p(St, St), and
PT y(St,St) of predicate transformers for total and partial correctness. An-
other enterprise is to compare the metric semantics Wp,[-] with the partial or-
der semantics Wpy[-] and Wip,[-]. Since the language Lo was introduced at the
beginning of this chapter as an extension of the sequential non-deterministic
language £y of Chapter 3, we expect that both the Wpy[-] and the Wip[-]
semantics can be retrieved from the Wp,[-] semantics.

There are two main aspects to be considered: declarations of procedure vari-
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ables in Ly need not to be guarded as for those in Ly, and the semantics
Wp,[-] is defined as the unique fixed point of a contractive function, whereas
the semantics Wpy[-] and Wip,[-] are defined, respectively, as the least and
the greatest fixed point of a monotone function.

As for the first aspect, define for every declaration d € Decly a new declaration
d' € Decly by

d'(z) = true— ; d(z)
where z € PVar and true € BExp such that Bv(true) = St. It is immediate
to see that if (d,S) € Ly then (d', S) € Lo N Ly. Moreover,

Wpo[(d, S)] = Wp,[(d', )] and Wip,[(d, S)] = Wipy[(d', S)].
Therefore below we will consider, without loss of generality, only programs

(d,S) in Ly which are also in £,. The second aspect requires more attention
and it is formally treated in the theorem below.

Theorem 7.5.5 Let (d,S) € LoN Ly and P C St. Then

Wpo[(d, SYI(P) = Wp,[(d, )] (P*).

Proof. The proof consists of two parts. In the first part we prove the inclusion
from left to right whereas in the second part we prove the converse.

(i) Define F: (Lo N Ly) — PT(St,St) by
F({d, 8))(P) = Wp,[(d, $)](P*). (7.10)
In Chapter 3 we introduced the weakest precondition semantics Wp,[-] as
the least fixed point of the monotone function ¥, defined in Lemma 3.3.3.
Below we prove, by structural induction on S, that for (d, S) € Lo N Ly
and P C St,
Vo (F)((d,$))(P)=F({d,5))(P), (7.11)

from which it follows that

Wpy[(d, $)](P) € Wpo[(d, SY)(P™). (7.12)
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We expand two typical sub-cases.

A

[z] F((d,z))(P)
= Wp,[(d,2)](P*) [Equation (7.10)]

= Wp,[(d, d(z))](P*) [Definition 7.3.11]

= F((d,d(z)))(P) [Equation (7.10)]
= U (F)((d,z))(P). [Lemma 3.3.3]
[S15 %] F((d, S ; 52))(P)
= Wpo[(d,Si ; S2)](P¥*) [Equation (7.10)]
= (Wpy[(d, 51)] ; Wp,[(d, S5)])(P*) [Definition 7.3.11]
Wpo[(d, S)|(Wpy[{d, S2)](P*)*)  [Lemma 7.5.4]
= F((d: SI(F({d, Sg))A(P)) [Equation (7.10)]
= W (P)((d, $) (U (F)({d, )(P))  [imduction]
= WUy(F)({d, S ; $))(P). [Lemma 3.3.3]
(ii) Next we claim that for (d,S) € Lo N Ly, P C St, and n > 0,

Wp,[(d, $)](Py) € Wpol(d, $)](P). (7.13)

From the above claim it follows that
Wp,[(d, S)](P*)
= Wpy[{d, $)](U, Pl¢)  [Definition 7.3.13]
= U, Wpy[(d, S)](Pl) [Lemma 7.3.14, Wp,['] open-continuous]
C Wpy[(d, S)](P). [Equation (7.13)]
The above and Equation (7.12) imply

Wps[(d, S)](P*) = Wpq[(d, $)I(P).

It remains to prove the claim (7.13). We prove it by induction on n > 0.
If n = 0 then Pl = (). It is easy to see by induction on wgt,(S) that
(7.13) holds. We treat two simple cases as illustration.

(] Wp,[(d, 2)](0)
= Wpy[(d, d(z))](#) [Definition 7.3.11]
C Wpyl{d, d(z))](P) [induction, wgty(d(z)) < wgty(z)]

= Wpo[{d, z)](P). [Lemma 3.3.3]

[S15 %] Wpy[(d, 515 52)](0)
= (Wp,[(d, S1)] ; Wp,[(d, $2)])(0)  [Definition 7.3.11]
= Wp,[(d, $1)](0#) [Definition 7.3.2]
= Wp,[(d, S)I(Wp,[(d, $2))(P)°)  [Wpl(d, $:)](P)§* = 0]
C Wpo[{d, S1))(Wp,[(d, 52)](P))  [induction, (on wgty(S))]
= Wpyl{d,S; ; S2)](P). [Lemma 3.3.3]

182



Chapter 7. Predicate transformer semantics for concurrency

Assume now (7.13) holds for n = k and we prove it for n = k + 1.
As before we proceed by induction on wgt,(.S). We expand two typical
sub-cases.
(2] Wp,[(d, 2)](Pg%1)

= Wp,[(d, d(z))]

€ Wpol(d, d(z))]

(P{,) [Definition 7.3.11]
(P)  [induction, wgty(d(z)) < wgty(z)]

= Wpol(d, z)](P). [Lemma 3.3.3]

[Sl ) 82] Wp2[[<da 513 2)]] Plzj—l)
= (Wpy[(d, S1)] ; Wpo[(d, S2)])(Pf%,)  [Definition 7.3.11]
C Wpo[{d, S)I(Wp,[(d, $)1(P)iy1)  [Equation (7.8)]
C Wpy[(d, S))J(Wpo[(d, S2)](P)f¢.,)  [induction, k < k + 1]
C Wpo[{d, S)](Wpo[{d, $2)](P))  [induction (on wgty(S))]
= Wpo[(d,Si ; S2)](P). [Lemma 3.3.3] O

In a similar way one can prove that, for (d,S) € Lo N Ly and P C St,

Wip,[{d, $)](P) = Wp,[{d, S)](P™).

Hence both the weakest precondition semantics Wp,[-] and the weakest lib-
eral precondition semantics Wip,[-] are encoded in the metric predicate trans-
former semantics Wp,[-].

We conclude this section with an example of the use of the metric predi-
cate transformer semantics Wp,[-] for calculating a total correctness prop-
erty of a concurrent program. We treat the accumulator example (stemming
from. [191]). Consider the program

vi=v+2 |vi=v+2 ... || vi=v 2"

Under the assumption of atomic execution of the assignments v := v + 2¢,
we want to calculate the weakest precondition for P = {s | s(v) = 2""'}.
As discussed, we first have to enhance the predicate P for total correctness
yielding

P={s]s(v)=2""}U{(s,p) | s € p(P*)}.

Let, for convenience, m; = Wp,[(d, v := v + 2')]. So, we are heading, under
the notational conventions given in the examples at the end of Section 7.3, for
7o,...n(P). First we establish, for 0 < i; <... < i < n, the equation

183



Marcello M. Bonsangue

Tiy,i (P)={s] s(v) + Z 20 = gntiy (7.14)

by induction on k. We leave the base case, & = 1, to the reader. For the
induction step, k + 1 we will employ equation (7.4).

iy e (PY)
= NeZimi({s [ (s,m] i) € PYU{(s,0) | (s,7] i) € P})  [(7.4)]
= NS | (s]s(v )—1—2“/1)] T i) € Pt} [definition 7, |
NE s | s[s(v) + 2+ /v] € 7} i (P¥)}  [definition P]
NErls | (s(v) +2%) + (Zzié,q# 2%a) = 2711 [induction hypothesis]
k+1{8 ‘ S( )_|_ 21}) + (Elqc—lz—(l) Qiq) — 2n—|—1}
= {5 ] s(v) +27) + (SEH 20y = 2041},

From the above Equation (7.14) we immediate derive

Wl,..,n(Ptc)
= {s[s(v) + (i 2") = 2"*'}
= {s]s(v) = (2"+1 1) =21}
= {s]s(v) =1}

Hence only if we start the accumulator in a state where v = 1 can we guarantee
that it terminates in a state where v = 2"+

Enhancement and abstraction

Next we use the isomorphism 7 : PT y(St,St) — ST r(St, St) given in Equa-
tion (3.10), the isomorphism pt: Xy — Ily, and the enhancement for partial
and total correctness to relate the metric domain Y5 of De Bakker and Zucker
with the domain of Egli-Milner state transformers given in Chapter 3.

We begin by defining a divergence predicate on St x Y,. The idea is that a
state transformer o € 3, diverges in a state s € St if it fails to terminate.
Termination can be easily expressed in terms of predicate transformers using
a total correctness predicate: a state transformer o € ¥, terminates at input
s € St if and only if s € pt(o)(St?¥). This fact leads us to the following
definition.

Definition 7.5.6 Let 0 € ¥ and s € St. Define the divergence predicate 1
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on St X Yo to be the complement of the convergence predicate |}. The latter is
defined by

(s,o) | if and only if In > 0: (s, 0) |y,

where

(s,0) Yo if and only if o(s) =0,
(s,0) Yns1 if and only if (t,7) € o(s) = (t,7) In -

The above definition agrees with the intuition about termination in terms of

predicate transformers.

Lemma 7.5.7 For s € St and 0 € X,

(s,0) | if and only if s € pt(o)(St™).

Proof. We prove by induction on n > 0 that

s € pt(o)(St¥) if and only if (s,o) |, . (7.15)
If n = 0 Equation (7.15) holds because
pt(o)(Sty) = pt(o)(@) = {s [ o(s) = 0}.

Assume now (7.15) holds for n = k. Then

s € pi(0)(Stj;,)
& sept(o)(StU{(s,p) | s € p(Sti)}) [Definition St ,
(

& (teo(s) = test)& ((t,7) € o(s) = t € pt(r)(Stl))
[Definition pt]
& (t,7)y €o(s) = (t,7) Jx. [induction]

Therefore (7.15) holds and we can immediately conclude that (s, o) | if and
only if s € pt(o)(St¥). O

The set of outcomes of the terminating computations of o € ¥y can be ex-
pressed in terms of the corresponding predicate transformer pt(o) and the
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enhancement for partial correctness, or, more directly, via a flattening func-
tion.

Definition 7.5.8 Define the flattening operator |- |: 3y — ST g(St,St) by

lol(s) = U lola(s)

n

where

olo(s) =0
|o|ns1(s) ={tesSt|tea(s)or((t'r)€o(s)&tel|r|,(t))},

for all o € ¥y and s € S.
We have the following characterization of the flattening operator.

Lemma 7.5.9 For every o € Yo,
lo|=w (AP C St.pt(c)(P™)).

Proof. By definition |o| is a Hoare state transformer in STy (St, St). Since
w™l: PTp(St,St) — STy (St,St) is part of an isomorphism preserving the
opposite order, it is enough to prove that, for all 0 € X5 and n > 0,

oo =w™'(pt(0),), (7.16)

where pt(o),, is a shorthand for the predicate transformer AP C St.pt(o)(PZ2°).
We prove the above equation by induction on n > 0.

If n = 0 then P} = St + St x II,. Since pt(o) is top preserving, pt(P}“) = St.

Hence pt(o),(P) = St for all P C st. It follows that

w Y(AP C st.pt(0)(P§))(s) .

= w™(pt(0),)(s) [our convention: pt(c), = AP C St.pt(c)(P{°)]
= N{P Cst|s € pt(0),(P)} [definition w ]

= N{P | P CsSt} [pt(o),(P)=St]

=0
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= ‘0’|0.
Assume now (7.16) holds for n = k. We first note that

pilo)(PE5,)
= pt(a)(PU{(t,p) | t € p(P*)}) [Definition PfL)]
={sest|(teoa(s) = teP)&((t,7) €o(s) = tept(r)(Pi))}
[Definition pt]
={sest|(t€o(s) = teP)&((t,1)€0o(s) = te ptZT)k(P))}
[our convention: ptZT)k = AP C St.pt(r)(PF)]
={sesSt|(tea(s) = teP)&
(t,7) € o(s) = w'(pt(7),)(t) C P)} [Lemma 3.3.5]
={sest|(t€ea(s) = teP)& ((t,7) € a(s) = |T|x(t) C P)}
[induction)]
= {S € St | |O'|k_|_1 - P} [deﬁnition |U|k+1]

= w(|o|g+1)(P). [definition w]

o

Since w and w ™! form an isomorphism, we can conclude that Equation (7.16)
holds also for n =k +1. O

We use Lemma 7.5.7 and Lemma 7.5.9 to obtain an Egli-Milner state trans-
former from o € 5. We proceed as follows.

(i) By the duality Theorem 7.4.7 we have that pt(c) is a predicate trans-
former in Il.

(ii) By the correctness Theorem 7.5.2, AP C St.pt(c)(P%) is a total correct-
ness predicate transformer in PT 7(St,St), and AP C St.pt(o)(P*°) is a
partial correctness predicate transformer in PT p(St, St).

(iii) By Theorem 7.5.3, the pair (AP C St.pt(c)(P*),\P C St.pt(c)(P?")) is
a Nelson predicate transformer in PT y(St, St).

(iv) By the duality Theorem 3.3.14,

n (AP C St.pt(0)(P), AP C St.pt(0)(P*)))(s)
= w (AP C 8t.pt(a)(P7))(s) U{L | s & pt(o)(St*)}
is an Egli-Milner state transformer in STz (St, St).

(v) By Lemma 7.5.7, s & pt(o)(St%) if and only if (s,0) 1.

(vi) By Lemma 7.5.9, |o|(s) = w (AP C St.pt(c)(P*))(s).

This yields an abstraction function absg : X9 — ST r(St, St) by putting

absg(0)(s) = |o|U{L | (s,0) 1}
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for 0 € ¥y and s € St. Moreover, using the function Ey : ST (St,St) —
STy (St,St) and Eg: STg(St,St) — ST s(St,St) defined in Section 3.2 we
obtain two other abstraction functions

absy = Ey o absg : ¥9 — ST g (St,St)
absg = Eg o absg : 39 — ST5(St, St).

Thus the three basic denotational models for sequential non-deterministic lan-
guages can be encoded into the forward metric semantics with resumptions.

Theorem 7.5.10 Let o0 € ¥y and P C St. Then

(i) m(absg(0))(P) = (pt(o)(P"), pt(c)(P™));
(ii) w(absy(0))(P) = pt(o)(PF);
(iii) w(abss(0))(P) = pt(o)(P*).

Proof. The first item follows immediately by definition of absg and because
n~! is the inverse of 1. The other two items can be proved simultaneously as
follows.

~—

(pt(a)(P*), pt(o)(PP))
= n(absg(o))(P) [by the above item (i)]

(w(Es(absg(0)))(P),w(Ey(absg(0)))(P))  [Equation (3.10)]
(w(absg(0))(P),w(absy(c))(P)). [Definition of abss and absy| O

~—

W

An immediate consequence of the above Theorem, Lemma 7.5.4, Lemma, 7.4.8,
and Lemma 3.3.7 is that all the three abstraction functions absy, abss and
absp preserve both the union function ‘O’ and the composition function ;.

7.6 Temporal properties

We conclude this chapter by showing (without going into details) how (linear)
temporal properties of programs can be treated within the metric predicate
transformer semantics Wp,[—]. Branching temporal properties could be stud-
ied in a similar way.
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Let St be the set of all finite and infinite sequence of states in St. A sequence
of states in St can be thought of as the juxtaposition of the states in which a
computation may result when executing a program. A predicate P C St is
said to be linear time. For example, if P C St then the predicate

always(P)={w € St® | Vu,v € St*Vs € St:w = usv = s € P}

is linear time. Informally, a program S satisfies the linear predicate always(P)
if the predicate P holds in any state of any computation of S.

For every linear time predicate P C St*°, define the truncated predicate
trunc(P) and the first state predicate first(P) respectively by

trunc(P)={w € 8t* | 3s € St: sw € P}
first(P)={s € St | Jw € St*:sw € P}.

Informally, if a linear predicate P holds for a computation then trunc(P) holds
for the rest of the computation after its first atomic step, and first(P) holds
for the first state of the computation. The truncated predicate and the first
state predicate are used for defining the linear enhancement of P C St* as
the least subset P C St + St x II, such that

P = first(P) U {(s,p) | s € first(P) & s € p(trunc(P)"™)}. (7.17)

Hence P'" consists of all strings of length one of P and of all those pairs (s, p)
for which s is appropriate in the sense that it satisfies the first state of the
predicate P and it will lead to trunc(P)"" following p. By taking the greatest
solution of the above equation we obtain both a weakest and a weakest liberal
linear semantics in the style of Lukkien [134,135].

For example consider the program (d,v; :=1; v :=2) in Lo, and let m =
Wp,[{d, v;:=1)] and my = Wp,[(d, v2:=2)]. We want to calculate the seman-
tics of the above program for the linear enhancement P! of the linear time
predicate

P= {8182 € St™ | 81(7)1) = 32(7}1) =1& 32(02) = 2}

Intuitively P says that after the first atomic step the value of v is 1, and
immediately after the value of v, is 2 while the value of v; remains the same.
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We have
Wp,[(d, v, := 1 ERES 2)]](Plin)
= (my ; m2)(P"")
= m({s| (s,m) € P} U {(s,p) | (s,p;m) € Pi"})
= {s | (s[1/un],m) € P}
= {s | s[l/v] € first(P) & s[1/v] € WQ(tTunc(P)li”)}
= {s|s[1/v](n) =1 & s[1/w][2/ %] € trunc(P)"™}
= {s|s[1/n](v) =1 & s[1/w1][2/w](v1) = 1 & s[1/m][2/vs)(w) = 2}
= St

which is indeed the result to be expected. From the above it follows that if we
take P to be the linear time predicate

{s1w € St™ | s1(v) #1 & w € 5t*°}

then Wp,[{d, v, :=1; v := 2)](P"") = .

Returning to the predicate always(P) for P C St, it is immediate to see that
trunc(always(P)) = always(P) and first(always(P)) = P. Hence the linear
extension of always(P) according to the Equation (7.17) is the least subset
Pov of St + St x II, such that

P =PU{(s,p)|s€P&secpP™)]}. (7.18)

As for P* we can give a characterization of P* in terms of its approximants.
Define, for n > 0, P inductively by

P¢v =0 and
Pats = PU{(s,0) | 5 € P& s € (P2},

Using a proof similar to that of Lemma 7.3.14 we can show that for all n > 0,
P2 is open in the metric topology of St + St x % -II5. From this fact it follows
immediately that

Palw — UPT(Lle_

n

Informally, this means that m(P%*) holds exactly for those input states s such
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that all computations of the program denoted by 7 started in s terminate and
every state that is reached satisfies the predicate P. By taking the greatest
solution of the Equation (7.18) we obtain a more liberal version in which
termination is not required.

7.7 Concluding notes

The language we considered in this chapter assumes a global shared state
for all parallel components, and it does not have a synchronization operator.
Hence the domain of ‘sequences of pairs’ of [21] could have been used in order
to obtain a fully abstract model. We opted for a branching domain because it
gives a finer equivalence on processes and supports both linear and branching
time properties. In fact the domain I, is internally fully abstract with respect
to bisimulation [44], that is, two predicate transformers 7, p € Il are equal if
and only if the computations they denote are bisimilar.

Synchronization by shared variables can be implemented in our language us-
ing, for example, semaphores [55]. This requires a simple form of atomization
for sequential and non-deterministic statements [44].

In the last section we focused on two classes of properties of programs, namely
classes of properties based on partial and total correctness. In the area of
parallel programming many other properties are of importance as well. The
metric predicate transformer domain I1; supports reasoning about both linear
and branching time predicates. We briefly studied the linear time predicate
‘always P’ (during an execution the predicate P always holds). It would be
interesting to investigate other more specific linear predicates like ‘eventually
P’ (during an execution the predicate P will holds), or ‘P leads-to @’ (during
an execution if P holds then at some point later ¢ will hold’).
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Chapter 8

Topological spaces and
observation frames

In this last part we make an abstraction step towards an axiomatic approach
to the semantics and the specification of programming languages. We consider
predicates as elements of an abstract algebra. For example, we may think of
an abstract algebra as stemming from a logical system: elements correspond
to equivalence classes of formulae which are provably equivalent, and the order
corresponds to the entailment relation.

In order to show that the axioms of the class of algebras we consider capture
exactly the collection of predicates we have in mind, a representation theorem
is necessary. A representation theorem is a correspondence between an ab-
stract algebra and its set-theoretical model. The first representation theorem
is due to Cayley [50] showing that every abstract group is isomorphic to a
concrete group of permutations. A representation theorem for the algebra of
all predicates was first proved by Lindenbaum and Tarski [188]. They proved
that a Boolean algebra is isomorphic to the collection of all subsets of some set
if and only if it is complete and atomic. This general result restricts the class of
Boolean algebras for which a concrete representation exists. It was Stone [184]
who first saw a connection between algebra and topology. He constructed from
a Boolean algebra a set of points using prime ideals which can be made into
a topological space in a natural way. Conversely, using a topology on a set
of points he was able to construct a Boolean algebra. For certain topological
spaces (later called Stone spaces) these constructions give an isomorphism. In
a later paper [185], Stone generalized this correspondence from Stone spaces
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to spectral spaces and from Boolean algebras to distributive lattices. Hofmann
and Keimel [107] described the Stone representation theorem in a categorical
framework showing a duality between the category of Boolean algebras and a
sub-category of topological spaces. A representation theorem for Boolean alge-
bras with operators has been considered by Jénsson and Tarski [116,117]. By
means of an extension theorem they proved that operators on a Boolean alge-
bra can be naturally extended to completely additive operators on a complete
and atomic Boolean algebra.

Stone’s representation theorem leaves open the problem of finding an abstract
characterization of topological spaces. For every topological space, its lattice
of open sets forms a frame. This fact leads Papert and Papert [156] to a
representation theorem between spatial frames and sober spaces. Even further,
Isbell [109] gives an adjunction between the category of topological spaces
with continuous functions and the opposite category of frames with frame
homomorphisms. This adjunction yields a duality between the category of
sober spaces and the category of spatial frames.

The importance of Stone-like dualities in a mathematical context is shown in a
book of Johnstone [112], and in the context of domain theory in [77]. Abram-
sky [1] applied Stone duality to get logics of domains, as used in denotational
semantics. He argues that Stone duality is the bridge between denotational
and axiomatic semantics.

In this chapter we consider a topological space as a function from its frame
of open sets to its completely distributive lattice of saturated sets. More ab-
stractly this structure is an observation frame. In the light of our discussion in
Chapter 5, an observation frame is a map from affirmative predicates to speci-
fiable predicates preserving the geometric logic of the affirmative predicates.
We construct topological spaces from observation frames by taking as points
special kinds of prime elements. In this way we obtain a duality between ob-
servation frames and 7 spaces. We also give a logic of observation frames with
arbitrary conjunctions and disjunctions. This is done by the introduction of
M-topological systems, which are a generalization of the topological systems
of Vickers [192]. Finally we consider some examples of interesting 7, spaces
which need not to be sober.

196



Chapter 8. Topological spaces and observation frames

8.1 Observation frames

Complete lattices are closed under infinite meets and infinite joins. However
these operations do not need to represent infinite conjunctions and infinite
disjunctions even if the elements of the lattice are subsets of some set. For
example, the lattice of open sets of a topological space X is complete since an
arbitrary union of open sets is open, but the meet of an arbitrary collection
of open sets S is given by the interior of the intersection of S, which does not,
in general, coincide with the intersection of S.

In this section we introduce a mathematical structure which represents ab-
stract topological spaces and which supports both the arbitrary conjunctions
and the arbitrary disjunctions of the abstract open sets.

Our starting point is the fact that the lattice of open sets of a topological
space X can be embedded in the lattice of saturated sets of X. The saturated
sets are closed under arbitrary unions and intersections. Since every open set
is saturated, the logic of the affirmative predicates is preserved.

Definition 8.1.1 An observation frame is a frame morphism «: F — L from
a frame F to a completely distributive lattice L such that every element q in
L is saturated , that 1is,

¢=IHa(z) | ¢ Eelz)}.

For clarity we use the following convention for an observation frame a:: F — L.
The order, the meet and the join in F are denoted by (<, A, V), respectively,
while the order, the meet and the join in L are denoted by (C,[ 1, ). In case
F (or L) is a subset of P(X) for some set X we use the standard (C,N,U)
whenever these coincide with the order, the meet or the join in F' (or L)

The identity function d;, : L — L, for L a completely distributive lattice,
is an observation frame. If L is the two point completely distributive lattice
2={L1,T} with L C T, we refer to the observation frame idy, : L — L simply
by 2. Another example of an observation frame is given by the inclusion map
O(X) — Q(X), where X is a topological space, O(X) is the frame of opens
and Q(X) is the completely distributive lattice of the saturated sets. We
denote this observation frame by Q(X).

Next we organize observation frames into a category. We need an appropriate
notion of morphism for observation frames. It can be obtained by adapting
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Definition 6.2.1.

Definition 8.1.2 A morphism from an observation frame o : F — L to an
observation frame B3 : G — K consists of a frame morphism ¢ : F — G which
15 M-multiplicative, that is, for all subsets S and T of F

Ma(S) CMa(T) implies T15(s(5)) T T158(4(1)).

This gives a category (with composition as for ordinary functions) which is
denoted by OFrm.

The idea is that a morphism between observation frames preserves the logic
of affirmative predicates, but also takes into account what happens to infinite
conjunctions of these affirmative predicates (which are usually outside the
frame). The above definition of morphisms between observation frames can be
justified by the following example:

Assume that X and Y are two topological spaces and let f : X — Y be a
continuous function (i.e. a map in the category of topological spaces Sp). The
function f induces a morphism Q(f) : Q(Y) — Q(X) in OFrm defined by
its inverse image, i.e., Q(f)(0) = f (o) = {z € X | f(z) € o} for every
0o € O(Y). We check the multiplicativity condition. Assume S, T C O(Y)
with NS €N T. Then

ze(UMN(S) & Yoe S:f(z) €o
& f(z)e)S
= fl@)eNT [NscnT]

Thus we have a functor 2: Sp — OFrm®. Later it will be shown that {2 has
a right adjoint.

The next theorem gives a mathematical justification of the definition of a
morphism between observation frames. First we need the following preparatory
lemma.

Lemma 8.1.3 Let a: F — L be an observation frame, 3: G — H be a
frame morphism from a frame G to a completely distributive lattice H, and
¢:F — G be a frame morphism. If: L — H 1s a function preserving arbitrary
intersections and such that 3o ¢ = Yo, then 1) preserves also arbitrary joins
(and hence is a morphism between completely distributive lattices).
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Proof. Let S be a subset of L and consider the following set of sets

A={{a(a) la € F& qEa(a)}|qe S}

Because a : F — L is an observation frame ¢ = [ [{a € F | ¢ C a(a)} for all
g € S. Hence we have that

Y(LS)=v(L{ITA| A€ A}
= {Uf(A) | f € ®(A)}) [complete distributivity]
=[{op(LUf(A) | f € ®(A)} [ preserves arbitrary meets]
={U{v(a(a)) | ala) € f(A)} | f € (A)}, (8.1)

where the latter equality holds because for every f € ®(A), f(A) is a subset
of the image under « of F' (since f: A — [J.A) and because the commutativity
B o¢ =1 oa implies that ¢ preserves all joins L« (T) in L for every T C F.

Consider now the following set of sets

B={{y(a(a)) |ac F&q¢Ea(e)}|qe S}

We have
Uy(8)=LH{yp(Ha(a) [ a € F & ¢ E afa)}) | ¢ € S}
=U{I {y(a(a)) | a € F& g C afa)} | g € S}
=LH{l'1B|BeB}
=l g(B) | g € ®(B)}. [complete distributivity] (8.2)

But for every g € ®(B) there exists f € ®(A) such that f(¢) = a(a) if
g(q) = ¥(a(a)). Hence

{Ug(B) | g€ 2(B)} € L{v(a(a)) | afa) € f(A)} | f € B(A)}

from which it follows, using the equalities (8.1) and (8.2), that

(L S) C Lwp(s).

The converse of the above inequation holds by monotonicity of v». O
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A frame morphism is a morphism between observation frames if and only
if it can be uniquely extended to a morphism between completely distribu-
tive lattices. This result is similar to the extension theorem of Jénsson and
Tarski [116] for Boolean algebras.

Theorem 8.1.4 Leta: F — L and : G — H be two observation frames and
¢:F — G be a frame morphism. Then ¢ is a morphism in OFrm if and only
iof there exists a unique morphism </5 L — H in CDL such that Bo¢ = qﬁ o q.

F & L 4
|
¢ * ¢ a
Y
G 5 H H

Proof. Assume gg : L — H is a morphism between completely distributive
lattices such that S o ¢ = ¢ o a. We need to prove that ¢ : I — G is M-
multiplicative. Let S, T C F be such that [ 1a(S) T [ Ta(T). Then we have:

[16(6(5)=16(c(S)) [Bo¢=doal
= &Z(|—| a(S)) [¢ is meet preserving]
Co(IMa(T)) [monotonicity of ¢ and [1e(S) C [a(T)]
=[] qg(a( T)) [¢ is meet preserving]
=M1B(6(T)). [Bod=goa]

Conversely, assume ¢ is an observation frame morphism and define, for S C F,

o(Ma(8)) = T15(6(S)).

It is well-defined because ¢ is M-multiplicative: if [ 1a(S) = [ 1a(T) for sub-
sets S and T of F then, [18(¢(S)) = ['13(¢(T)). By definition, ¢ preserves
arbitrary meets and it is the unique function preserving arbitrary meets such
that fo ¢ = d) o . By Lemma 8.1.3 it follows that q5 preserves also arbitrary
joins. O
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M-filters and M-prime elements

In this subsection we introduce the notions of M-filter and of M-prime element
of an observation frame. They will be used later to construct the points of a
topological space associated with an observation frame. Furthermore we prove
that completely prime M-filters and the M-prime elements of an observation
frame a:: L — F and morphisms from « to 2 in OFrm are essentially the same.
In the next chapter we will state the precise relationships to the standard
notions of filter and prime elements of a frame.

Definition 8.1.5 Let a: F — L be an observation frame. A subset U of F is
an M-filter of a if for all a € F,

[MaU) C ale) = acl.

An M-filter U of a s called completely prime if for every S C F,

VSeuU = 3IseS:s el

Notice that a completely prime M-filter ¢/ cannot contain L because Lp
equals the empty join and hence by the definition above there should be s € ()
such that s € U.

The condition defining an M-filter can be described as closure under arbitrary
meets as distinguished from the closure under finite meets of a filter. It is easy
to see that every M-filter U of an observation frame a: F' — L is a filter of F'.
Indeed, it is non-empty because [ 1a(U) E T = a(Tr) implies Tp € U. It is
an upper closed subset of F' because if a € U and a < b then, by monotonicity
ofa, [ 1a(U) C a(a) C a(b). Hence b € U. Finally, suppose a and b € Y. Then
[Ma) C a(ae) and [ 1a(U) C a(b). Hence [ Ta(U) C a(a)Ma(b) = a(aAb),
which implies a A b € U.

The converse is in general not true. This can be shown using a counter-example
due to Chellas [51] in the context of minimal augmented models for modal
logics. Consider the observation frame idpr):P(IR) — P(IR), where IR is the
set of real numbers ordered as usual. For r € IR define

Fr={VCR|IseRir<s& (r,s) C V}

where (r,s) = {t € R | r <t < s}. Hence F, is the set of all sets of real
numbers that include some open interval (r,s) for some r < s. It is an easy
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verification to prove that F, is a filter of P(IR). However F, is not an M-filter
of the observation frame idpr) because N F, is the empty set since there is
no smallest open interval (r, s) for r < s, whereas () € F, because (r, s) is not
empty for every r < s. Therefore N F, = () but § € F,. We will return to the
relation between filters and M-filters in the next chapter.

Lemma 8.1.6 Let a: F — L be an observation frame. The assignment U —
M Ta(U)) is an isomorphism between M-filters of o and principal filters of L,
where 1(-) denotes the upper closure with respect to the order of L.

Proof. The above map is well-defined because, by definition, (I 1a(/)) is a
principal filter of L. Assume U; and Us are two different M-filters of «, say
there exists a € Uy but a & U,. Then a(a) € ([ Ta(lh)) but [ Ta(ls) Z a(a)
because otherwise a € U, since U, is an M-filter. Hence the above map is
injective. Next we show it is also onto: let V be a principal filter of L and
consider the set U = {a € F | a(a) € V}. For every a € F, if [ 1a(U) C a(a)
then [ 1V C «(a) because a(U) = V N «(F). Since V is a principal filter
of L, a(a) € V and hence a € U. Therefore U is a M-filter of . It remains
to prove V = ([ Ta(Uf)). The inclusion from right to left follows because
o) = VNa(F)and V =111V, being V a principal filter. Conversely, let
q € V. Then a(a) € V for all a € F such that ¢ C a(a) because V is upper
closed. Hence a(a) € V N a(F) = a(U), which implies

o) CTHa(a) |a€ F& qC ala)} =g

where the latter equality follows because « is an observation frame. Therefore

get(Ma@)). O

In other words, the above lemma says that M-filters of a: FF — L are in
bijective correspondence with elements of L. As an immediate consequence we
have, for every M-filter 4 of a: F — L,

a) =1 Ta()) Na(F).
Let X be a topological space and consider the observation frame Q(X). Every

saturated set ¢ € Q(X) induces an M-filter

U(g) ={0o € O(X) | ¢ C o}
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Indeed, if NU(q) C o then g C o because ¢ = NU(q). Therefore o € U(q).
Also, for every z € X the set

Uy(z)={0o € OX) |z € o}

is clearly an M-filter of Q(X). Furthermore, Uy(z) is completely prime since
for every S C O(X) and o € Up(z) such that o CUS we have z € 0 CUS.
Hence there exists s € S such that z € s. Therefore s € Uy(z).

Definition 8.1.7 For an observation frame ao: F — L, an element p € F s
called M-prime if for all S C F,

[Ta(S) C a(p) = Is€ S:s<p.

The set of all M-prime elements of a is denoted by MP(c).

Consider the observation frame Q(X) of a topological space X. Define for
every £ € X the open set

0, = int(X \{z}) =(H{o € O(X) |z ¢ o} C X\ {z},

where int(-) is the interior operator associated with the topology on X. By
definition o, is the greatest (with respect to subset inclusion) open set not
containing z, that is, for an open o', z & o' if and only if o' C o,. It is also
an M-prime element. Indeed, for every subset S of O(X) if NS C o, then
z & (S because otherwise we would have z € NS C o, contradicting z & o,.
But then there exists an s € § such that z ¢ s. Since o, is the greatest open
set not containing z, s C 0,. Thus o, € MP(2(X)) for every z € X.

Notice that for every o € O(X) we have N{o, | z & o} = o:

(©) If y € N{o, | z & o} then y € o because otherwise y € X \ o and
hence o, € {0, | £ & o}. But this yields y € N{o, | z &€ o} C o,, a
contradiction.

(D) Forevery z € X\o,0 C (X\{z}). Hence by idempotency and monotonic-
ity of the interior operator we obtain o = int(0) C int(X \ {z}) = o, for
every = ¢ o. Therefore o C N{o, | z & 0}.

(For the case when o = X observe that {0, | z € 0} = 0 and that N0 = X =
0.) Next we show that every M-prime element in 2(X) is of the form o, for
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some z € X. Indeed, let p be an M-prime element of Q(X). Since p € O(X)
we have just seen that N{o, | z & p} C p. But then o, C p for some z & p.
The latter yields p C o, and hence p = o,. This fact will be crucial later on for
obtaining our duality. If X is a 7, space then clearly every M-prime element
of Q(X) is of the form o, for a unique z € X.

The next lemma is the main result of this subsection. It gives isomorphisms
between M-filters, M-prime elements of an observation frame o : F' — L and
also morphisms from « to 2 in OFRm.

Lemma 8.1.8 For an observation frame o : F — L there are bijective cor-
respondences between

(i) morphisms ¢ from « to 2 in OFrm,
(ii) completely prime M-filters U of «,

(iii) M-prime elements p of c.
The correspondences are given by:

(i) = (i) ¢o—Usy={a€F|¢d(a)=T}
(i) = (i) U—du=Xa€eF. THacl
L otherwise;
(i) = (i) U > pu=V{a e F|adg U},
(i) = (i) p—= U, =F\ (p);
Liifa<yp

(iii) = (i) p—o¢,=Aa€F.
T otherwise;

(i) = (i) ¢—py=V{ae F|¢(a)=_1L}.

Proof. Let a: F — L be an observation frame, ¢ : « — 2 be a morphism
in OFrm, U C F be a completely prime M-filter and p € F be an M-prime
element. We prove only (i) = (ii) = (ili) = (i). The verification of the
other correspondences is left to the reader.

(i) = (ii): We have to prove that Uy is a completely prime M-filter. We start
by proving that U, is an M-filter. For every z € F such that [ 1a(U,) C
a(z) we have A{¢(a) | a € Uy} < ¢(x) since ¢ is a morphism in OFrm.
But a € U, if and only if ¢(a) = T by definition, hence also ¢(z) = T.
Therefore z is in Uy.
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It remains to show that U, is completely prime. Let S C F and a € Uy
be such that @ <\ §. Then ¢(\/ §) = T because ¢ is a frame morphism
and T = ¢(a) < ¢(VS) = Vo(S). Therefore there is s € S such that
#(s) = T, that is, there is a s € S such that s € U,.

(ii) = (iii): We have to prove that py is an M-prime element. Let S C F
be such that [ 1a(S) C a(py). Then [a(S) C a(V{a € F | a € U}) =
LI{a(a) | a ¢ U}. There must exist s € S such that s & U because if not,
S C U would imply [ TaU) C () C a(V{a € F | a ¢ U}) and hence
V{a € F | a¢g U} €U as U is an M-filter. Since it is also completely
prime we have the contradiction that there exists a € U such that a € U.

(iii) = (i): We have to prove that ¢, is a morphism in OFrm. It is easily
verified that it is a frame morphism from F' to 2. Hence we concentrate
on the proof that ¢, is M-multiplicative. Let S, T C F be such that
[Ma(S) C T 1a(T). Assume A ¢,(S) = T but suppose A ¢,(T) = L. Then
there exists ¢ € T such that ¢,(f) = L and hence ¢t < p. Since p is
an M-prime element, we have that [ 1a(S) C [1a(T) C a(t) C a(p)
implies there exists s € S such that s < p. Hence ¢,(s) = L contradicting
Nop(S)=T. O

Completely prime M-filters are preserved by the inverse image of a morphism
in OFrm: let ¢: (a: F — L) — (#: G — H) be a morphism in OFrm and let
U be a completely prime M-filter of 5. Then ¢y, : B — 2 is also a morphism
in OFrm which hence yields by composition a morphism from « to 2, or,
equivalently, a completely prime M-filter ¢! () of a.

We conclude this subsection by taking a closer look at Galois connections
between posets. Galois connections play an important role in spectral theory
(see for example [77]) and in general in lattice theory. In particular we are
interested in those posets which constitute the frame part of an observation
frame.

Definition 8.1.9 Let F and G be two posets and f: FF — G, g: G — F be
two functions. We say the pair (f, g) is a Galois connection between F and G
iof both f and g are monotone, and, for all z € F and y € G,

flz) <y & 2 <g(y).

For a Galois connection (f, ¢g) the function g is called upper (or left) adjoint
and the function f is called lower (or right) adjoint. A Galois connection
is a special case of adjoint functors, where the posets F' and G are seen as
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categories [136, Chapter IV]. Any upper adjoint g preserves all meets in G,
while any lower adjoint f preserves all joins in F'. More generally we have the
following characterization of Galois connections.

Lemma 8.1.10 Let F, G be two complete lattices.

(i) A function g : G — F preserves all meets in G if and only if g is
monotone and has a lower adjoint f : F — G given, for all x € F, by f(z) =
MyeGlz<gy)}

(ii)) A function f : F — G preserves all joins in F if and only if f is
monotone and has an upper adjoint g : G — F gqiven for all y € G, by
9(y) =V{z € F | f(z) < y}.

(iii) A pair of monotone functions (f,g) with f : F — G and g: G — F is
a Galois connection if and only if f(g(y)) <y and z < g(f(z)) for allz € F
and y € G.

Proof. See Corollary 0-3.5 and Theorem 0-3.6 in [77]. O

If F and G are frames and ¢ : F — (G is a frame morphism then, since
¢ preserves arbitrary joins, it has an upper adjoint, say g : G — F, which
preserves arbitrary meets by the above Lemma. Also, the upper adjoint g
preserves prime elements because ¢ preserves finite meets [77, Lemma IV -
4.5]. If ¢ : F — G is also an observation frame morphism from o : F — L to
B: G — H then we have the following.

Lemma 8.1.11 Assume ¢ is a morphism in OFrm between the observation
frames ao: F — L and 3: G — H. Then ¢ : F — G has an upper adjoint
g: G — F which preserves arbitrary meets of G, prime elements and also the
M-prime elements of (3.

Proof. Since an observation frame morphism ¢ is a frame morphism from ¥
to G it has an upper adjoint g : G — F which preserves arbitrary meets of G
and prime elements of G. Let now p € MP(3) and S C F, then

#(g(p))) [M-multiplicativity]
p) [Lemma 8.1.10 (iii)]
[p is M-prime]

Ma(S) Calg(p)) = [15(6(5)) E
= [18(s(5)) C
S dseS:p(s)<p
& 3sS:s < g(p) [(4,9) is a Galois connection]

) C B(
) E B(
(s) <
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that is, g(p) € MP(a). O

For a Galois connection (f, g) there does not seem to be any condition on g
alone which implies that f preserves finite meets (see [112]). However, for lat-
tices in which every element is the meet of all the primes above it, g preserves
prime elements if and only if f preserves finite meets (see [77]).

Duality for Ty spaces

In this subsection we define a point functor Pt from the opposite of the cate-
gory of observation frames to the category Sp of topological spaces by topolo-
gizing the M-prime elements. We show that the functor Pt is a right adjoint to
the functor 2 : Sp — OFrm® and that this adjunction restricts to a duality
for 7Ty spaces.

In order to define a topology for the set of M-prime elements MP(«) of an
observation frame a : F — L, define the ‘open set’ A(a) by

Aa) = MP(a)\ ta={p € MP(a) | a £ p},

for all g element of F.

Lemma 8.1.12 Let a: F — L be an observation frame. Then:

b
<
|

=U{A(a) | a € S} for all subsets S of F;
ANS) =N{A(a) | a € S} for all finite subsets S of F.

Proof. We prove only the second item. The other one is trivial.

pe(H{A(a)|ae S} & pe MP(a)andVa e S:a L p
& peMP(@)and AS £p
& peANY),

where the implication ( < ) is trivial and for ( = ) we use that p is an M-
prime element: if A .S < p then also [ 1a(S) C a(p) and hence a < p for some
acsS. O
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The above lemma implies that, for every observation frame o : F — L, the
collection of sets of the form A(a), for a € F, forms a topology on MP(«). We
denote it by Oa(MP(a)) and the corresponding topological space by Pt(a).
Notice that Pt(«) is 7g. Indeed, let p and ¢ € MP(«) be such that p <o ¢ and
q <o p in the specialization preorder induced by the topology Oa(MP(c)).
Equivalently, p € A(a) if and only if ¢ € A(a) for every a € F. Hence,
for every a € F, a £ p if and only if a £ ¢, that is p = ¢. Therefore the
specialization preorder is a partial order, that is, the topological space Pt(«)

is To.

Lemma 8.1.13 Let ao: F — L be an observation frame. The map ¢ : F —
OnA(MP(«)) defined by e(a) = A(a) for every a € F is a morphism in OFrm

from « to the observation frame Q(Pt(«)). It is surjective as a function.

Proof. By Lemma 8.1.12, ¢ is a frame morphism which is surjective as a
function by definition. It remains to prove that it is M-multiplicative. Let
S and T be two subsets of F be such that [ 1a(S) C [1a(T), and take
p € Ne(S). From the definition of ¢, p € MP(«) and s £ p for every s € 5. We
claim that also t £ p for every ¢t € T'. If not then there would exist ¢ € T such
that ¢ < p and hence a(t) C «(p). Since [ 1a(S) C ['Na(T) C a(t) T ap)
there would exist s € S such that s < p (because p is an M-prime element),
therefore contradicting the hypothesis. Thus p € A(t) for every ¢t € T, that

is, pe Ne(T). O

We are now ready to formulate the relationship between topological spaces
and observation frames.

Theorem 8.1.14 Let X be a topological space, a: F — L be an observation
frame and ¢ be a morphism in OFrm from « to Q(X). Then there is a unique
continuous function fy : X — Pt(a) in Sp such that Q(fy) oe = ¢.

o < Q(Pt()) Ptia)
P Q(fs) :f¢
Q(X) X

This extends the assignment a — Pt(«) to a functor from OFrm® to Sp
which s a right adjoint of 2.

208



Chapter 8. Topological spaces and observation frames

Proof. Let a € F. In order to obtain the required commutativity we have to
prove

Ve X:z € ¢(a) & zeQfy)(e(a))
& fo(z) € e(a) [definition of Q(fy)]
& fo(r) € Aa) [definition of £(a)]
& a £ fy(z). [definition of A(a)]

This determines fs(z) uniquely as \V/{b € F | z & ¢(b)}. Indeed, for all z € X,
if a £ fs(z) then z € ¢(a) because otherwise we would have a € {b € F |z ¢
#(b)} and hence the contradiction a < V{b € F |z & ¢(b)} = fy(z).

Conversely, if z € ¢(a) then a £ f,(z) because otherwise a < f(z) = V{b €
F |z & ¢(b)} would imply, after applying ¢,

¢(a) Co(V{b e F |z ¢ o(b)}) =U{8(b) € OX) |z & ¢(b)}.

Since z € ¢(a) we would get that there exists b € F such that z € ¢(b) and
z & ¢(b).

Next we show that f;(z) is an M-prime element, i.e. f;(z) € MP(«). Let S be
a subset of F such that [ 1a(S) C a(fs(z)). Then from the definition of fy(z)
and after applying ¢ we obtain

N6(S) Co(V{aeF |z éd(a)}) =) € OX) |z & ¢(a)}.

Hence there exists s € S such that s < f,(z) because otherwise for all s € S
we would have s € fs(z) and hence by the above, z € ¢(s) for every s € S.
But then z € N ¢(S) which implies there exists a € F such that z € ¢(a) and

z & ¢(a).

The function f, is also continuous. Let a € F' and consider the open set A(a)
of Pt(a). Then we have:

Is {(A(a))={z € X | fy(z) € Aa)}
={z € X |adgfy(x)} [definition of A(a), fy(z) M-prime]
={z e X[zed(a)}
= (a).

Since ¢(a) € O(X) is open, we have that f; is continuous. 0O

209



Marcello M. Bonsangue

The unit of the above adjunction is given by the function n defined in the
following Lemma.

Lemma 8.1.15 Let X be a topological space. Then the unit of the adjunction
between OFrm® and Sp is given by function n: X — Pt(Q(X)) defined
by n(z) = int(X \ {z}) = 0,. It is a continuous surjective function in Sp.
Moreover, n is injective and preserves open sets if and only if X s Ty.

Proof. By Theorem 8.1.14 the unit of the adjunction between OFrm® and
Sp is uniquely determined by the function f;, where ¢ : Q(X) — Q(X) is
the identity morphism in OFrm?. Therefore, for every space X, the unit
n:X — Pt(2(X)) is defined by n(z) =U{o € O(X) | z &€ o} = 0,. Next we
show 7 is a continuous surjective function in Sp.

We have already seen that the M-prime elements of (X) are exactly those of
the form o, = int(X \ {z}) in a topological space X. Hence 7 is clearly onto.
Let us now check it is also continuous. For 0 € O(X) we have:

n H(A0))={z € X | n(z) € A(0)}
={z e X[oZn(x)}
={z € X |z € o}

This proves also that 7 is injective as a function and hence an isomorphism
between X and MP(2(X)). It remains to prove that it is also an open mabp,
i.e. it preserves open sets. For o € O(X) we have:

n(o) ={n(z) € MP(Q(X)) | z € o}
={n(z) € MP(2(X)) | o Z n(z)} [by definition of n(z)]
={n(z) € MP(2(X)) | n(z) € A(0)} [by definition A(0)]
={p € MP(Q2(X)) | p € A(o)} [nis an isomorphism]|

=4A(0),

which is open in the topology of Pt(€2(X)). Therefore, if X is a 7y space then
7 is an isomorphism in Sp.

Finally, if 7 is injective and open then it forms an isomorphism in Sp between

X and Pt(Q2(X)). However, for every observation frame «: F — L the space
Pt(«) is To. Hence also X is 7. O
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By Lemma 8.1.15 and because Pt(«) is a Ty space for every observation frame
a: F — L, the adjunction of Theorem 8.1.14 restricts to a reflection of Sp,
into the full image of the functor 2: Sp, — OFrm. Therefore the adjunction
between Sp, and OFrm is Galois. Next we characterize this full sub-category
of OFrm and hence we prove directly that the adjunction of Theorem 8.1.14
restricts to an equivalence.

A subset X of a complete lattice L is said to be order generating in L (or
equivalently L is said to be order generated by X) if

r=A\tznX)=A\{yeX |z <y}

for every z € L.

Proposition 8.1.16 For X C L where L is a complete lattice the following
statements are equivalent.

(i) X is order generating in L;
(ii) every element of L can be written as a meet of a subset of X;
(iii) L is the smallest subset containing X closed under arbitrary meets;

(iv) whenever y £ x, then there is a p € X with z < p but y £ p.
Proof. See Proposition 1.3.9 in [77]. O

For example, for a topological space X the lattice of open sets O(X) is order
generated by MP(2(X)): we already know that every M-prime element of
Q(X) is of the form o, = int(X \ {z}) for some z € X. Therefore we need to
show 0 = A{o; | 0 C o,} for every open set o.

Clearly, 0 C A{o; | 0 C o,}. To prove the other direction of the inclusion,
consider y € A{o; | 0 C 0,} and assume towards a contradiction that y & o.
Then o, = int(X \ {y}) is the greatest open set not containing y, so o C o,.
But then o, € {0, | 0 C 0,} and hence y € o, because y € A{o; | 0 C 0,} C
0y.

By definition, in an observation frame « : F' — L, every element of L can be
written as the meet of elements in aF). The following corollary to the above
proposition is then immediate.

Corollary 8.1.17 A frame morphism o : F — L from a frame F to a com-
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pletely distributive lattice L is an observation frame if and only if a(F) is
order generating L. 0O

Define the category of spatial observation frames SOFrm to be the full sub-
category of OFrm with as objects the observation frames «: F' — L in which
F is order generated by the set MP(«) of M-prime elements.

The previous example shows that the functor 2 maps every topological space
to an object of SOFrm. We have already seen that the functor Pt maps every
observation frame to an object of Sp,. Moreover for every 7; space X the unit
of the adjunction is an isomorphism by Lemma 8.1.15. The following lemma
gives a similar result for the counit.

Lemma 8.1.18 Let a: F — L be an observation frame. The counit morphism
e from a to Q(Pt(«)) is an order isomorphism if and only if o : F — L is
order generated by its M-primes (i.e. it is in SOFrm).

Proof. (only if) Assume a £ b for some a,b € F. Since ¢ is an order isomor-
phism (and hence order reflecting), ¢(a) = A(a) € A(b) = £(b). Hence, by
definition of A(—), there exists p € MP(«) such that ¢ € p and b < p. Thus,
by Proposition 8.1.16, F is order generated by MP(«).

(if) Define e (A(a)) = A(MP(a) \ AA(a)) for every a € F. Then we have:

e (e(a)) =" (A(a))

= /\(MP(a) \ A(a))
= A\(MP(a) \ (MP(a) \ 1 a))
/\(MP(a) Nta)

Therefore ¢ is injective. We have already seen in Lemma 8.1.13 that ¢ is
onto, therefore ¢ is an isomorphism with inverse e !. It is also order reflecting
because if a £ b for @ and b in F', by Proposition 8.1.16, there is a p € MP(«)
such that @ € p and b < a. Therefore e(a) = A(a) € A(b) =¢(b). O

Now our main result follows.

Corollary 8.1.19 The adjunction between Sp and OFrm® restricts to an
equivalence of categories Spy, ~ SOFrm. Hence Sp, and SOFrm are each
other’s duals and the adjunction is Galois. O
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Notice that if a: F' — L is an observation frame such that F' is order generated
by the M-prime elements, then « is order-reflecting (and hence injective): by
Lemma 8.1.18 there is an order isomorphism ¢ from a to Q(Pt(«)), and by
Theorem 8.1.4 there exists a unique complete distributive lattice morphism
£:L — Q(MP(«)) such that &(a(a)) = €(a) for all a € F. Hence, for a and b
in F,if a(a) C «(b) then, by monotonicity of &,

e(a) = &(a(a)) E &(a(b)) = £(b).

Since ¢ is order-reflecting, ¢ < b. From the monotonicity of « it follows that
a < b if and only a(a) C «a(b).

8.2 M-topological systems

Topological systems were introduced by Vickers [192] in order to have a frame-
work of which both topological spaces and (ordinary) frames are instances. In
a topological system we have a set of subjects (points) and a set of predicates
(opens) and a satisfaction relation matching the geometric propositional logic
(the logic of finite observations). In this section we generalize these topolog-
ical systems in order to obtain a satisfaction relation of propositional logic
for observation frames (with both infinite conjunctions and disjunctions). Our
interest in M-topological systems is justified since they clarify the connection
between the infinitary operations of an observation frame o : F — L (the
arbitrary joins L] and the arbitrary meets [ 1 living in L) and the points of a.

Definition 8.2.1 Let X be a set, let a: F' — L be an observation frame, and
let = C X X L be a relation. Then (X, =, ) is called an M-topological system
if and only if = satisfies

tEUS & 3seS ks
t=l18 & VseS:rl=s
for all subsets S of L.

Directly from the above definition we can deduce that

(i) z T for all z € X
(ii) z | L forno z € X
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(iii) ¢ = ¢ and ¢ C ¢, implies z = ¢, for every ¢; and ¢ in F.

Next we give the two main examples of M-topological systems. Let X be a
topological space and define, for every z € X and ¢ € Q(X),

z = qif and only if z € ¢.

Then 7(X) = (X, ,Q(X)) is obviously an M-topological system.

Let o: F — L be an observation frame and define a relation = C MP(«a) x L
by

plEqgifand only ifVa € F: ¢ C aa) = a £ p.

Next we show that S(«) = (MP(«), =, ) is an M-topological system. Let p
be an M-prime element of o, ¢ € L, ¢, : F — 2 is the morphism in OFrm
corresponding to the M-prime element p € F' (Lemma 8.1.8) and let ¢,,: L — 2

be the unique complete distributive lattice morphism such that ¢, oc a = ¢,
(Theorem 8.1.4). We have

pEqge Va€eF: gL afa
(a) =T) [Lemma 8.1.8]

& N\ép(a) [¢Ca(a)} =T
& N{dy(a(a)) | ¢Ca(a)} =T [Theorem 8.1.4]

< @(ﬂ{a(a) l¢Ca(a)})=T [(Z;; preserves meets|
& dp(0)=T. [¢=Na(a)|qC afa)}]

Since qz; preserves arbitrary joins and arbitrary meets, it is now easy to verify
that S(«) is an M-topological system.

Next we organize M-topological systems in a category for which we introduce
the following morphisms.

Definition 8.2.2 Let a:F' — L and 3:G — H be two observation frames, and
D= (X,E,a)and E = (Y, |, ) be two M-topological systems. A morphism
from D to E consists of a pair (f,¢) where f is a function from X to Y and
¢ is a morphism from 3 to a in OFrm such that, for everyz € X and a € G,

z = a¢(a)) if and only if f(z) = B(a).
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It is straightforward to check that composition of two morphisms defined as
the usual element-wise composition is again a morphism. Hence M-topological
systems together with these morphisms form a category to which we refer to
as MTS.

For a continuous function f : X — Y in Sp, the pair 7(f) = (f,Q2(f)) is
a morphism from 7 (X) = (X, =, Q(X )) to T(Y) = (Y,=Q(Y)) in MTS
because

z = Q(f)(0) & z € Q(f)(0) [definition of = in T(X)]
< f(z) € 0o [definition of Q(f)]
f(z) = 0. [definition of = in T(Y)]

It is easy to check that 7 is a functor from Sp to MTS.

Next we show that the adjunction of Theorem 8.1.14 can be split into two
parts: one from topological spaces to M-topological systems and one from M-
topological systems to observation frames. We start with the first adjunction.

Every M-topological system D = (X, =, a: F — L) induces a topology on X
by taking as open sets the extent of all a € F:

ext(a) ={z € X | z E a(a)}.

By definition of = and since « preserves finite meets and arbitrary joins we
have that the collection of all extents forms a topology on X. We denote
this topological space by Sp(D). Furthermore the assignment a — ezt(a)
is a morphism in OFrm from « to idp(x): P(X) — P(X). Indeed, it is a
frame morphism as the collection of all extents forms a topology and it is
M-multiplicative because if [ 1a(S) C [ 1a(T) for subsets S and T of F then

z€()ext(S) & Vs € 5:x = afs) [definition of ext(—)]
& v E=l1a(S) [definition of =]
=z E=l1la(T)
& Vie T:z =a(t) [definition of ]
& z€(ext(T). [definition of ezt(—)]
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This shows also that the pair (idx, ext) is a morphism in MTS from T (Sp(D))
to D.

Theorem 8.2.3 Let D = (X, =, a: F — L) be an M-topological system and
let Y be a topological space such that there is a morphism (f, ¢) in MTS from
T(Y) to D. Then there ezists a unique continuous function g:Y — Sp(D)
in Sp such that the following diagram commutes

(idx ,ext)

D T (Sp(D)) SpﬁD)
) ) g
T(Y) y

This extends Sp to a functor from MTS to Sp which is a right adjoint of T .

Proof. Take ¢ = f. It is clearly continuous and the unique one such that
T (g) makes the diagram commute. O

An M-topological system is called spatial if it is isomorphic in MTS to 7 (X)
for some topological space X.

Next we give the second adjunction between M-topological systems and obser-
vation frames. There is an obvious forgetful functor MTS — OFrm® which
maps every M-topological system (X, =, a:F — L) to o and every morphism
(f,¢) in MTS to the observation frame morphism ¢.

Lemma 8.2.4 Let D = (X,=,a: F — L) be an M-topological system and
p: X — MP(a) be a function which assigns to a concrete point © € X the
abstract point p(z) = V{a € F | z = a(a)}. Then p(z) is an M-prime element
of a for every © € X and the pair (p, idp) is a morphism in MTS from D to
S(a).

Proof. We first show that p(z) is M-prime. Let S C F be such that [ 1a(S) C
a(p(z)). There must be an s € § such that s < p(z), (or, equivalently, = [~
a(s)) because otherwise z = [ 1a(S). Since [ 1a(S) C a(p(z)), z | a(p(z)).
But then 7 = a(V{a € F | z }£ a(a)}) = W{a € F | z i~ a(a)}. From the
definition of |= this holds if and only if there exists a € F such that z ~ a(a)
and z = a(a). Contradiction.
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Consider now the pair (p, idg) : D — S(a) where D = (X, =,a: F — L). We
show that it forms a morphism in MTS. By the above it is enough to prove
z | a(a) if and only if p(z) E a(a), where p(z) | a(a) means a(a) C «a(b)
implies b £ p(z) for all b € F.

=) Let b € F be such that a(a) C «(b). Then b £ p(z) =V{c € F |z [~
a(c)} because otherwise z = «a(a) and a(a) C «a(b) implies z = «(b)
and hence also z = a(p(z)). But this leads us to the contradiction that
there exists a ¢ € F such that z = a(c) and z = a(c).

<) If p(z) = o(a) then a £ p(z) =V{b € F |z~ a(b)}. Hence z = a(a)
because otherwise a € {b € F | z = «(b)} and hence the contradiction
a <p(z). O

Theorem 8.2.5 Let a: F' — L be an observation frame and let D be an M-
topological system (Y, =, 3: G — H) such that there is a morphism ¢ from o
to B in OFrm. Then there exists a unique function g:Y — MP(«) such that
(g,9) is a morphism in MTS from D to S(a).

Proof. Define g(y) = V{b € F | z [~ 3(¢(b))} for all y € Y. It is not hard
to see that ¢g(y) is an M-prime element of a. We only prove y = 3(¢(a)) if

and only if g(y) F «a(a) forall y € Y and a € F.

=) If y = B(¢(a)) then also ¢g(y) = a(a) because otherwise by definition
of = in S(a) there exists b € F such that a(a) C «(b) and b < ¢g(y) =
V{c e F |yt B(¢o(c))}. Hence, by M-multiplicativity of ¢,

B(¢(a)) EB(4(b))
CA@6(V{ce F |y~ B(c)})
=LI{B(6(c)) | y = B((c)}.

But y = B(¢(a)) and hence also y = LI{B(g(c)) | y ¥ B(s(c))}-
Therefore, by definition of =, we get the contradiction that there exists

¢ € F such that y = 3(4(c)) and y E B(¢(c)).

<) If g(y) = a(a) then a £ g(y) = V{b € F | z # B(¢(b))} by definition
of = in (). But then y = B(¢(a)) because otherwise a € {b € F |

z [~ B(¢(b))} and hence a < V{b € F | z &= B(¢(b))} contradicting
a £ g(y).

Clearly g is the unique function with the required property. O
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As a consequence of the above theorem, the assignment a — S(a) extends
to a functor from OFrm® to MTS which is a right adjoint of the forgetful
functor MTS — OFrm®.

An M-topological system is called observational if it is isomorphic in MTS
to S(«) for some observation frame o : F — L. Clearly the full sub-category
of spatial observational M-topological systems is equivalent to the category of
To topological spaces and is equivalent to the category of observation frames
a:F — L with F order generated by the M-prime elements of .. The following
diagram summarizes the situation.

Sp S
//\ - __ T
Sp -~ . wmMrs. T OFrm®
T
Sp, ~ MTSm ~ SOFrm®

Next we show that spatiality of an observational M-topological system corre-
sponds to the completeness of the logic. To show this we need the definition
of semantic entailment.

Definition 8.2.6 For an observation frame o : F — L define the relation of
semantic entailment on F as follows. For all elements a and b of F', a Fr b
if and only if for every M-topological system (X, =,«a) and z € X, z = aa)
implies © = a(b).

We also define the relation of semantic entailment on L for all ¢ and r in L
by putting q b1, r if and only if for every M-topological system (X, =, «) and
€ X,z = q impliesz = .

The next lemma states that for every observation frame «: F' — L the order
on F' is contained in the entailment relation. This gives us the soundness for
the logic of F. Similarly we have soundness for the logic of L.

Lemma 8.2.7 (soundness) Let a:F — L be an observation frame. Then

(i) a < b implies a Fp b for all a,b € F,
(ii) q C r implies q -1 r for all q,r € L.

Proof. We prove only the first item. If a < b for a,b € F then a(a) C «(b).
Therefore, in every M-topological system (X, =, ) if z = a(a) then z | «(b).
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Hence a 5 b. The proof of the second item is equally simple. O

The entailment relation of ' and L is included in the order of F', L respectively,
if and only if the observation frame a:: F' — L is such that F' is order generated
by the M-prime elements of «.

Lemma 8.2.8 (completeness) Let a: F — L be an observation frame. The
following statements are equivalent.

(i) F is order generated by the M-prime elements of «;
(ii) a kg b implies a < b for all a and b in F;

(i) g by r implies ¢ C r for all ¢ and r in L and « is order-reflecting.

Proof. (i) = (ii). Suppose F is order generated by the M-prime elements of
a:F — Landlet a - b for some a, b € F. Hence for all M-topological systems
(X,=,a) and z € X if z |= a(a) then z = a(b). In particular consider the
M-topological system S(«) and the isomorphism (idyp, €) in MTS from S(«)
to T (Pt(c)). We have

p € N(a) & p = /A(a) [definition of = in T(Pt(a))]
< p Ee(a) [definition of €]

< p =ala) [(idyp,€) is a morphism in MTS]|
= p Ea(b) [because alrp b |
< p e Ab).

Hence ¢(a) = A(a) C A(b) = €(b). But € is an order-preserving isomorphism
by Lemma 8.1.18, therefore a < b.

(ii) = (i). We use the formulation of Proposition 8.1.16(iv). Let a,b € F be
such that a £ b. Then a t/r b, that is, there exists an M-topological system
D = (X,F,a) and an £ € X such that z = a(a) but z % «(b). Consider
the morphism (p, idp) in MTS from D to S(«). Then z = a(a) if and only if
p(z) = a(a), where p(z) € MP(«). Hence, by definition of |= in S(a) we have
found an M-prime element p(z) such that a £ p(z) but b < p(x). Therefore,
by Proposition 8.1.16 we have that F' is order generated by MP(«).

(il) = (iii). Suppose a Fp b implies a < b for all a,b € F and let ¢, € L be
such that ¢ F;, r. Then for all M-topological systems (X, =, «) and z € X we
have that = = ¢ implies z = r. But ¢ = [ Ha(a) | e € F & ¢ C a(a)} and
also r = Ha(b) | b € F & r C «(b)}, hence, by definition of =, z = a(a)
for all @ € F such that ¢ C «(a), implies z = «(b) for all b € F such that
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r C «(b). But this means that a Fr b for a,b € F such that ¢ C «(a) and
r C a(b). Hence a < b (which implies a(a) C a(b)) for all a, b € F such that
q C a(a) and r C «(b). Therefore ¢ C r. It is easy to see that « reflects the
order: assume a(a) C «(b), but @ € b. Then a I/ b and hence a(a) i/, a(b).
This is a contradiction.

(iii)) = (ii). If a k5 b, then a(a) Fr a(b), so a(a) C a(b) and thus a < b
since o reflects the order. O

8.3 Some further equivalences

In this section we restrict our attention to sub-categories of Sp. We consider
topological spaces which are not, in general, sober. For these spaces we give a
duality by restricting the adjunction of Theorem 8.1.14. Of special interest is a
duality for the category PoSet. We derive a pointless version of the (directed)
ideal completion of posets.

T spaces

An observation frame o : F — L will be called atomic if for all M-prime
elements p and ¢ of «, if p < ¢ then p = ¢. The full sub-category of OFrm
whose objects are atomic observation frames is denoted by OFrm,, whereas
the full sub-category of SOFrm whose objects are atomic observation frames
is denoted by SOFrmp .

Lemma 8.3.1 The functors €2 : Sp — OFrm® and Pt : OFrm° — Sp
restrict to an adjunction between the category of T1 spaces Sp, and the category

of atomic observation frames OFrma °?. Hence we have a duality between Sp,
and SOFrmp, .

Proof. If a space X is 7; then the specialization preorder is the equality.
Moreover, since every 7T space is Ty, we have that points are M-prime elements
0o, =U{0 € O(X) | z & o}. Therefore, for every o, and o, in MP(2(X)) of a
given 7T space X, if o, C o, then £ < y and hence z = y, i.e. 0, = o0,.

Conversely, let «: F — L be an atomic observation frame and take p,q €
MP(«) with p # ¢. This implies p £ g or ¢ £ p. Suppose p £ ¢ then clearly
q is in the open A(p) = {r € MP(c) | p £ r} but p is not. The other case
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can be treated similarly. Hence Pt(«) is a 7; space. O

Notice that for an atomic observation frame «: F — L with F' order generated
by the M-prime elements, there can be no element different from the T which
is above some other M-prime element. This means that the M-prime elements
of a are exactly the co-atoms of F' (that is, maximal elements which differ
from the top).

Locally open compact spaces

Denote by OKSp, the full sub-category of Sp, whose objects are locally open
compact spaces. Let SOFrm 4, denote the full sub-category of SOFrm whose
objects are observation frames a: F' — L such that F' is an algebraic lattice.

Lemma 8.3.2 The functors 2 : Sp — OFrm® and Pt : OFrm° — Sp
restrict to a duality between OKSp, and SOFrm 4.

Proof. It is enough to prove that a space X is open compact if and only
if O(X) is an algebraic complete lattice. Let X be an open compact space
and let 0 € O(X). For every z € o, since X is open compact, there exists a
compact open u such that z € u C 0. Hence 0 C U{u € KO(X) | u C o}.
The reverse inclusion is clear, and hence O(X) is algebraic.

Conversely, if O(X) is algebraic then for every open set o we have 0o = U{u €
KO(X) | u C o}. Hence for every z € X, if z € o then there exists a compact
open u € KO(X) such that z € u C o, that is, X is open compact. O

Posets and complete lattices

Let AlSp, denote the full sub-category of Sp whose objects are 7, spaces
X in which open sets are closed under arbitrary intersection (i.e. they form
the Alexandrov topology). The full and faithful functor from the category
PoSet (posets and monotone functions) to Sp, which maps a poset (X, <)
to the underlying set X equipped with the Alexandrov topology, determines
an equivalence of categories between PoSet and AlSp,.
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Lemma 8.3.3 The functors Q: Sp — OFrm® and Pt : OFrm® — Sp re-
strict to an equivalence between A1Sp, and A\-SOFrm®” | the full sub-category
of SOFrm® whose objects are observation frames a.: F — L for which o pre-
serves arbitrary meets and F is order generated by the M-prime elements of
Q.

Proof. It is enough to prove for every a: F — L in A-SOFrm that N A(A) =
A(NA) for every A C F.

pe({A(a) ea€c A} & pe MP(a)andVa € A:a £ p
& pe MP(a)and NALp
& pe A(N\A)

where the implication ( < ) is trivial and for ( = ) we use that p € MP(«) and
the following contradiction: if A A < p then also a(AA) = [Ta(4) T a(p)
and hence a < p for some a € A. O

Let now CLat be the category whose objects are complete lattices and whose
morphisms are functions preserving arbitrary joins and arbitrary meets. Given
a complete lattice L, an element p € L is called completely prime if NA < p
for A C L implies there exists a € A such that a < p.

Lemma 8.3.4 The category A\-SOFrm is equivalent to SCDL, the full sub-
category of CLat whose objects are completely distributive lattices order gen-
erated by the completely prime elements.

Proof. Let a: F — L in A-SOFrm. Then « is order-reflecting, preserving
arbitrary meets and arbitrary joins. Since every element of L is the meet of
elements of «(F), « is an isomorphism between the complete lattices F and
L. Therefore F' is a completely distributive lattice. It is not hard to see that a
morphism in A-SOFrm between two observation frames preserves arbitrary
meets and arbitrary joins.

Conversely, if L is a complete distributive lattice order generated by its com-
pletely prime elements, then id;, : L — L is clearly an object in A-SOFrm.
Moreover, every morphism between completely distributive lattices is a mor-
phism between the corresponding observation frames. Since the two construc-
tions are each other’s inverse, we obtain the required equivalence of cate-
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gories. O

Since complete rings of sets are closed under arbitrary unions and intersections,
they are in one-to-one correspondence with posets taken with the Alexandrov
topology. By combining Lemma 8.3.3 and Lemma 8.3.4 it follows that a com-
plete lattice L is isomorphic with a complete ring of sets if and only if every
element of L is the meet of a set of completely prime elements. A very similar
result is due to Raney [164]: A complete lattice L is isomorphic to a com-
plete ring of sets if and only if every element of L is the join of a set of
completely join-irreducible elements (an element z € L is called completely
join-irreducible if for every S C L such that z < \/ S there exists y € S such
that z < y).

The above result suggests that we can give a sharper representation theorem
for the category PoSet in terms of algebraic completely distributive lattices.

Corollary 8.3.5 The category PoSet is dual to the category AlgCDL (the
full sub-category of CDL whose objects are algebraic completely distributive
lattices). This duality is given by the functor O (—) : PoSet — AlgCDL%
which assigns to a poset its Alezandrov topology and by MP(—) which assigns
to every algebraic completely distributive lattice L the set of all its completely
prime elements ordered as in L°P (the specialization order induced by the topo-
logical space Pt(id,: L — L)).

Proof. Every poset X in the Alexandrov topology is an open compact space.
Hence by Lemma 8.3.2 and Lemma 8.3.4 we have that every complete lattice
L which is order generated by its M-prime elements is an algebraic complete
lattice. Since the Alexandrov topology is a complete ring of sets, it is also a
completely distributive lattice. Therefore O4,(X) is an algebraic completely
distributive lattice.

Conversely, it is enough to prove that every algebraic completely distributive
lattice L is order generated by its completely prime elements. We begin by
showing, using Lemma 8.1.16, that L is order generated by its completely
irreducible elements, where p € L is called completely irreducible if for all
S C L such that p = A S there exists s € § such that p = s (notice that
if p is completely prime then p is completely irreducible, but the converse,
in general, is not true). Let z,y € L such that z £ y. Since L is algebraic
by [77][Theorem 4.22, page 93] there exists a completely irreducible element
p € Lsuch that z < p but y £ p. We need to prove now that p is completely
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prime. Let S C L be such that p < AS. Then p V AS = p and hence by
complete distributivity of L we obtain A{p Vs | s € S} = p. Since p is
completely irreducible there exists s € S such that p V s = p, that is s < p.
Therefore p is completely prime and by Lemma 8.1.16 we have that L is order
generated by its completely prime elements. O

By combining the above result with Lemma 8.3.1 we obtain that the category
of sets Set is dual to the category of atomic algebraic completely distributive
lattices.

In [77,4] it is shown that the category AlgCDF of algebraic completely dis-
tributive frames with frame morphisms is dual to the category AlgPos of
algebraic depo’s and Scott continuous functions. This duality is given by the
functor Og.(—): AlgPos — AlgCDF? which assigns to every algebraic dcpo
its Scott topology and by Spec(—) which assigns to every algebraic completely
distributive frame F' the set of all its prime elements Spec(F') with the inher-
ited opposite order. Notice that the categories AlgCDF and AlgCDL differ
only in the morphisms: they preserve finite meets and arbitrary joins in the
first category and both arbitrary meets and joins in the second one. Hence,
we have an inclusion functor ¢ : AlgCDL — AlgCDF.

Next we give the pointless version of a result by Hoffmann [106]: the soberifi-
cation of a poset in its Alexandrov topology equals the ideal completion in its
Scott topology. Alternatively we can see it as the ideal completion of a poset
without considering points and even without considering ideals but working
only on the lattice-side of the duality. The function which maps every poset
P to the set of its directed ideals Idl(P) ordered by subset inclusion, extends
to a functor Idi(—) : PoSet — AlgPos which is a left adjoint of the forgetful
functor U : AlgPos — PoSet (see for example [160]).

Lemma 8.3.6 The inclusion functor i : AlgCDL — AlgCDF has a left
adjoint j that 1s given by assigning to every algebraic complete lattice L the
Alezandrov topology of the set of all prime elements Spec(L) (with the opposite
of the inherited order). Moreover the two rounded squares below commute.

PoSet - AlgCDL?”
m| 4 |Uu ior| o |jor
AlgPos ~ AlgCDF
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Proof. Let us first notice that the inclusion functor ¢°? is naturally isomor-
phic to the functor given by the composition Og. o Idlo MP(—). Indeed for
every algebraic complete lattice L we have Og.(Idl(MP(L))) = O (MP(L)) =
L = i°?(L), where the latter isomorphism holds by Corollary 8.3.5. Naturality
follows from the fact that the functor Idl: PoSet — AlgPos is faithful.

Since the functor Og,. o Idlo MP(—) has a right adjoint, namely Oy 0 U o
Spec(—) = Oy 0 Spec(—) = j°P(—), we have that j°P(—) is also a right ad-
joint of i°?(—). Therefore j : AlgCDF — AlgCDL is a left adjoint of i(—).
Commutativity of the diagram is immediate from the definition of j(—). O

The above implies that the completely distributive lattice of the Alexandrov
opens of a dcpo X is free over the frame of the Scott opens of X. In the next
chapter we will generalize the above results to sober spaces.

8.4 Concluding notes

In this chapter we studied topological spaces in terms of the inclusion of the lat-
tice of open sets into the lattice of saturated sets. Our representation theorem
differs significantly from previous representation theorems of (some) topologi-
cal spaces in algebraic terms because observation frames are not algebras in the
traditional sense. However, in the next chapter we will prove that observation
frames are also algebraic structures, even if they are not set-based.

Our work on observations frames is strictly related to the work of Jénsson
and Tarski on Boolean algebras [116,117]. In particular we generalize the no-
tion of perfect extension of a Boolean algebra to that of observation frame
(a completely distributive lattice which ‘perfectly extends’ a frame). Both the
extension theorems for Boolean algebras and for Boolean algebras with oper-
ators in [116] are generalized to frames (in Theorem 9.1.5 and Theorem 8.1.4,
respectively).

Our main application for the theory we developed so far is that it can be used
to extend a finitary logic based on a topological model to an infinitary one
without changing the model. We will treat an example of such an extension
in Chapter 10.

Further research is needed to describe limits, colimits, monos, and epis in the
category of observation frames. A related question is whether the category of
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observation frames is any good for doing some form of pointless topology, as
in the category of frames [114].

Finally, we mention one more point which needs to be exploited further:
it is possible to find an algebraic representation of general (non-sober) di-
rected complete partial orders with the Scott topology. In fact the category
of dcpo’s is fully and faithfully embedded into Sp,, and hence into some full
sub-category of OFrm.
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Frames and observation frames

Traditionally, topological spaces are studied in an abstract way by considering
the lattice of open sets. In this case, it is convenient to regard open sets as
elements of a frame. Frames are infinitary algebras which can be presented
by a set together with a proper class of operations (finite meets and arbitrary
joins) which satisfy some suitable axioms. In particular finite meets distribute
over infinite joins. For any set X the free frame over X exists, and every frame
F can be presented as the free frame over a set of generators modulo some
(proper class of) equations. The category of frames is of interest because it is
the ‘right’ place to do pointless topology [114]. Indeed, the (opposite of the)
category of frames is related by an adjunction to the category of topological
spaces. In particular, a full sub-category of frames is dual to the category of
sober topological spaces [112].

In this chapter we continue our study of topological spaces as functions map-
ping the lattice of open sets into the lattice of saturated sets. We relate these
two abstract approaches to topology by constructing the free observation frame
over a given frame. Abstract points are preserved in constructing the free ob-
servation frame. As a consequence we obtain a characterization of sober spaces
in terms of its lattice of saturated sets, which will be the key mathematical
tool in the next chapter in which we give a conservative extension of Abram-
sky’s finitary domain logic of transition systems [2] to an infinitary domain
logic. We also study the relationship between ordinary filters and M-filters.

Observation frames are also shown to be (categorical) algebras over onto func-
tions between two sets, that is, the forgetful functor from the category of
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observation frames to the category of onto functions between sets (with the
evident commutative squares as morphisms) is monadic. Using results on the
presentation of frames and of completely distributive lattices, a universal pre-
sentation of observation frames is given.

9.1 Two infinitary algebraic theories

In this section we investigate frames and completely distributive lattices as
infinitary algebras. We show that for the theory of frames, as well as for the
theory of completely distributive lattices, every presentation always presents
an algebra.

Presenting frames

The algebraic theory of frames has a proper class of operators, A; (the I-ary
meet for each finite set I) and \/; (the J-ary join for each set J), and a proper
class of equations:

(i) zAhy=yAz (commutativity)
) eA(ynz)=(zAy) Az (associativity)
(iii) zAz =1z (idempotency)
(iv) zAT =2 (unit)
(v) sgAV{zj |jeJ} =, forkeJ (join absorption)
(Vi) zAV{z; |jeJ}=V{zAz|je ]} (infinite distributivity)

where A is the binary meet and T is the 0-ary meet. The category of algebras
of the above algebraic theory is equivalent to the category Frm.

First we construct the free frame over a set X. Let Fr(X) denote the set of all
lower-closed subsets of (P, (X ), D) ordered by subset inclusion, where Pg, (X)
is the collection of all finite subsets of X. The poset Fr(X) is a complete
lattice with arbitrary intersections as arbitrary joins and finite unions as finite
meets. Hence the equations (i) - (v) hold. Because Fr(X) is a sub-lattice of
P(Ppn(X)), the infinite distributivity law (vi) also holds.

The set X can be embedded into the frame Fr(X) by the map nx:X — Fr(X)
defined, for every every z € X, by
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nx(z)={ACsmn X | z € A}
The above construction is universal in the following sense.

Theorem 9.1.1 Let X be a set and F be an arbitrary frame. For any function
f:X — F there exists a unique frame morphism f*: Fr(X) — F such that

fﬂOUXZf-

X X Fr(X) Fr(X)
|
; I 7
\i
F F

Proof. For every element I of Fr(X), it holds that

I'=J{Mnx(z) [z € A} |AeT}.

Since f*: Fr(X) — F must preserve arbitrary joins and finite meets, and
ffonx = f, its only possible definition is given, for I € Fr(X), by

=\ A fl)

A€l z€A

The function f* preserves all joins and all finite meets [112, Lemma 4.4 and
Theorem 1.2]. O

By Proposition 2.1.1 it follows that the assignment X +— Fr(X) can be ex-
tended to a functor Fr: Set — Frm which is a left adjoint to the forgetful
functor Frm — Set. By Proposition 2.1.3, Frm has all small limits and all
small colimits.

Next we come to the presentation of frames. For a set G of generators, an
expression e formed from generators in G by applying the frame operators is
said to be in frame-normal form if

€= \//\gi,j7 (9.1)

for some set I, finite set J and g;; € G. An expression formed from elements
of G by applying the frame operators can always be reduced to an equivalent
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expression in frame normal form using the equations of the algebra of frames.

Corollary 9.1.2 In the theory of frames, any presentation Fr(G | R) by a
set of generators G and a set of relations R presents a frame.

Proof. Construct the free frame Fr(G) and assume, without loss of generality,
that every expression in the relations of R is in frame normal form. There are
two functions f;, f, : R — Fr(G) defined by

fille, er) = LIJOHG(%,J')

for e, = V; A 9i,, and similarly for f.. By Theorem 9.1.1 we can extend the
above functions to the frame morphisms f/, f!: Fr(R) — Fr(G). Let F be the
coequalizer in Frm of this diagram and let h: Fr(G) — F be the canonical
frame morphism associated with this colimit. The frame F' together with the
function h ong : G — F is a model for the presentation, and by universality
of the construction, F presents Fr(G | R). O

Also the converse of the above corollary holds: every frame F' has a presenta-
tion. For each = € F, let  be a generator, and take as relations

(N z, //\\x) for every finite subset S of F

z€S €S
(V 2, \/ z) forevery subset S of F.
z€S €S

Notice that for each frame we use only set-many relations.

Presenting completely distributive lattices

Next we turn to the theory of completely distributive lattices . It has a proper
class of operators, [ 1; (the I-ary meet for each set I) and LI, (the J-ary join
for each set J), and a proper class of equations:

(i) zMNy=yNx (commutativity)
i) zN(ynz)=(zNy) Mz (associativity)
(iii) zNz =12z (idempotency)
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(iv) 2N T =z (unit)
v) znl Wz |iel}=[Wznz|iecl} (meet absorption)
(vi) gz |jeJ} =z for ke J (join absorption)

1

(vii) (complete distributivity)
L{THfG) i€ I} f € @(T)}

where M is the binary meet, T is the 0-ary meet, and Z = {{z;; | j € J;} |
i € I}. Recall, from Section 2.2 that ®(Z) denotes the set of all functions
f:T — UZ with f(¢) in the set {z;; | j € J;} for all ¢ € I. From the above
equations it follows that every completely distributive lattice is also a frame.
The category of algebras of the above theory is equivalent to the category
CDL of completely distributive lattices together with functions preserving
arbitrary meets and arbitrary joins.

As before, we begin by constructing the free completely distributive lattice over
a set. The construction we present is similar to the free frame construction and
differs only slightly from the construction presented (without proof) in [139].
Recall from Definition 4.3.1 that for a set X, CDL(X) denotes the collection
of all lower-closed subsets of the poset (P(X), D) ordered by subset inclusion.
Since CDL(X) is closed under arbitrary unions and arbitrary intersections, it is
a complete sub-lattice of P(P(X)). Hence CDL(X) is a completely distributive
lattice.

The set X can be mapped into CDL(X) by the function x : X — CDL(X)
defined by

Ox(z)={AC X |z € A},

for every z € X. The above construction is universal.

Theorem 9.1.3 Let X be a set and L be a completely distributive lattice. For

any function f : X — L there exists a unique morphism f': CDL(X) — L in
CDL such that ff oy = f.

X b CDL(X) CDL(X)
|
7 4 g
Y
L L
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Proof. For every element J in CDL(X), it holds

J=UlN{0x(x) |z € A} | A€ ).

Since fT: CDL(X) — L preserves arbitrary joins and arbitrary meets, and
fTofx = f, its only possible definition is given, for J € CDL(X), by

I =L{T{f(z) |z € 4} [ A e T}

From the form of the above definition it follows that f! preserves arbitrary
joins. So it remains to prove that f7 preserves all meets. Let J; € CDL(X)
for all ¢ in an arbitrary set I, and let ¢ : P(X) — L be the function mapping
every subset A of X to N{f(z) | z € A}. It is not hard to see that ¢ preserves
arbitrary meets. Moreover ff(.J) = LI{¢(A) | A € J}. We have

M) Lie Iy =TH{g(A) [ A€ Ji} | i€ T}

=L H{p(g(i)) | i€ I} |ge @)} [complete distributivity]
=LHo(T H{g(i)|i€I})|ge ®()} [ppreserves meets]
=L{a(A) | A€ ({Ji|i€I}} [all Js are lower sets]

=f{("{Ji liel}),

where ®(7) is the set of all functions g: I — U; J; such that g(i) € J;. O

By Proposition 2.1.1 the assignment X — CDL(X) can be extended to a
functor CDL : Set — CDL which is a left adjoint to the forgetful functor
CDL — Set. Moreover, by Proposition 2.1.3, CDL has all small limits and
all small colimits.

For a set G of generators, an expression e formed from generators in G by
applying the operators of the theory of completely distributive lattices is said
to be in cdl-normal form if

€= |71 |;| 95> (9.2)

for some sets I and J, and generators g;; € G. Every expression formed
from elements of G by applying the operators of the theory of completely
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distributive lattices can always be reduced to an equivalent expression in cdl-
normal form by using the equations of the algebra of frames and the dual
completely distributive law as given in Section 2.2.

Corollary 9.1.4 In the theory of completely distributive lattices, any presen-
tation CDL{G | R) by a set of generators G and a set of relations R presents
a completely distributive lattice.

Proof. Similar to that of Corollary 9.1.2. O

As for the case of frames, also the converse of the above corollary holds: every
completely distributive lattice L has a presentation. For each z in L, let Z be
a generator, and take as relations

[z, |=|\a:> for every subset S of L
z€S TES
LI z, LI z) for every subset S of L.
z€S z€S

Notice that also for completely distributive lattices we use set-many relations.

We conclude this section by constructing the free completely distributive lat-
tice over a frame, using the results on the presentation of frames and com-
pletely distributive lattices.

Theorem 9.1.5 The forgetful functor CDL — Frm has a left adjoint de-
noted by (-) : Frm — CDL. Moreover, for every frame F, the unit of the
adjunction, (g : F — F defines an observation frame.

Proof. Let F be a frame presented by Fr(G | R) and let [[—]]g :G — F beits
associated function. Say F' is the completely distributive lattice which presents
CDL{G|R) (notice that we have used the same generators and relations as in
the frame presentation of F). Because F is a model for CDL(G|R), it comes
equipped with a canonical function |[—]]g : G — F. Since F is also a frame
and, by construction a model for Fr(G | R), Corollary 9.1.2 gives us a unique
frame morphism (p: F — F such that ¢z ([g]%) = [g]% for all generators g in
G, i.e. (r maps each generator of F' to the corresponding generator of F'. The
morphism (g is the unit of the adjunction between the category of frames and
that of the completely distributive lattices.
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Moreover, for every other completely distributive lattice L, if f : FF — L is
a frame morphism then L together with the function f o [[—]]Z :G — Lis a
model of Fr(G | R) and also of CDL(G | R) (only finite meets are present
in the relations of R). By Corollary 9.1.4, there exists a unique morphism
h:F — L in CDL such that h([g]%) = f([g]%) for all generators g € G.
Since |[—]]g = CF(II—]]Z), f and (r are frame morphisms, and every element in
F is the join of finite meets of elements in [[G]]g, we have that h: F — L is the
unique morphism in CDL such that h o {(r = f. Thus, by Proposition 2.1.1,
the first statement of the theorem follows.

Next we prove that the frame morphism (z : F — F mapping each genera-
tor of F to the corresponding generator of F', defines an observation frame.
By construction, each element in F' is the join of the meets of elements in
[[G]]g Using the dual of the complete distributive law (which holds for every
completely distributive lattice [164]) we obtain that, for every element z € F

T = C' |7||[9i,j]lg

for some sets I and J, and generators g;; of F. But [gi;] = Cr([gi;]5), the
unit (r preserves arbitrary joins, and for all ¢ € I, V Jﬂgi,j]]g is an element
in F. Hence every element in F' is the meet of elements in (r(F'), that is, by
Proposition 8.1.16, (p(F) is order generating F. By applying Corollary 8.1.17
we conclude that (z : F — F is an observation frame. O

Free objects are unique up to isomorphism, and hence the above theorem
implies that Fr(X) is isomorphic in the category CDL to CDL(X) for every
set X. But Cpr(x): Fr(X) — Fr(X) is an observation frame, hence also the
unique frame morphism 6% : Frr(X) — CDL(X) such that 6% onx = 6x (given
in Theorem 9.1.1) defines an observation frame.

9.2 Observation frames as algebras

Using the results of the previous section, we are now in a position to view ob-
servation frames as algebras. Since an observation frame is a function between
two ordinary algebras (frames and completely distributive lattices, respec-
tively), we expect it to be an algebra over a function between sets.
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Let f: X — Y be a function in Set. By Theorem 9.1.1 and because every
completely distributive lattice is a frame there exists a unique frame morphism
(By of)*: Fr(X) — CDL(Y) such that (fy of)*onx =0y of. Let f© denote
(By of)*. Using the definition of #y and Theorem 9.1.1, f©: Fr(X) — CDL(Y)
can be characterized directly, for all I € Fr(X), by

= N{BC Y| f(z)e B} (9.3)

Acl z€A

In general, f©: Fr(X) — CDL(Y) will not be an observation frame, as can
be seen by taking, for example, f to be the inclusion of a one-element set X
into a two-element set Y. The following lemma gives a necessary condition on
f:X — Y in order that f®: Fr(X) — CDL(Y) be an observation frame.

Lemma 9.2.1 Let f : X — Y be a function between two sets X and Y. If f
is onto then the function f© : Fr(X) — CDL(Y) is an observation frame.

Proof. Because f© is a frame morphism, we only need that every element in
CDL(Y) is the intersection of elements in the image under f© of Fr(X). Since
0% : Fr(Y) — CDL(Y) is an observation frame, and Fr(Y) = Fr(f(X)), f
being onto, every element in CDL(Y) is the meet of elements in 6% (Fr(f(X))).
Since Fr(f(X)) is the free frame over Y = f(X), every element in Fr(f(X)) is
the join of finite meets of elements in 7y (f (X)), where ny : ¥ — Fr(f(X)) is
the unit of the adjunction in Theorem 9.1.1. But Hﬂy preserves arbitrary joins
and finite meets, and, for all z € X,

0% (ny (f(z))) =0y (f(«)) [defining property of 6} ]
=(0y o f)*(nx(z)) [defining property of (9 o f)?]
=f9(nx(z)). [definition of f©]

Since every element in Fr(f(X)) is the join of finite meets of elements in
ny (f (X)) and f© preserves both arbitrary joins and finite meets, we have that
0% (Fr(f(X))) = f©(Fr(X)). Therefore every element in CDL(Y) is the meet
of elements in f®(Fr(X)). By Corollary 8.1.17, it follows that the function
f@:Fr(X)— CDL(Y) is an observation frame. 0O

Consider now the full sub-category of Set? whose objects are onto functions,
and denote it by Set®”. Thus objects in Set®”* are onto functions f: X — Y
between sets, and morphisms from f: X — Y to g: X' — Y’ are pairs of
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functions (h: X — X', k:Y — Y') such that ko f = g o h. Composition
is defined componentwise. The category Set®” has all small limits and all
small colimits (which are constructed as in category Set?). There is a functor
U : OFrm — Set®’ mapping every observation frame o : F — L to the onto
function U(a) = a: F — «(F) (the co-restriction of « to its image). The
functor U is defined on morphisms as follows:

U(g)=(¢:F — G,¢:a(F) — B(G)),

where ¢ is a morphism from the observation frame «: F' — L to the observation
frame 8: G — H, and ¢ : a(F) — B(G) is the restriction and co-restriction
of the unique morphism form L to G in CDL such that poa = B0 ¢ (see
Theorem 8.1.4). By the above commutativity, U(¢) is well-defined.

Theorem 9.2.2 Assume that f: X — Y is an onto function between the sets
X and Y and let 3: G — H be an observation frame. For every morphism
(h:X = G, k:Y — B(G)) in Set” from f to U(B), the frame morphism
h*: Fr(X) — G is the only morphism in OFrm from f© to 3 such that
U(h¥) o {(nx,0y) = (h, k) in Set®".

Y > fO(Fr(X))

! 7©

Proof. By Theorem 9.1.1, A = h* o nx. Hence B o hf ony = B o h. Also
kt o f© onyx = B o h because

Elof®onxy=kTo(@yof)fonyx [definition of f©]
=ktoby of [by Theorem 9.1.1 (y of)fonx =0y o f]
=kof [by Theorem 9.1.3 kT o 0y = k]
=foh. [(h,k)is a morphism in Set®’]

Therefore, by Theorem 9.1.1, B o hf = kf o f©. Using Theorem 8.1.4 it follows

that h* is a morphism in OFrm from f©® to 8 with h* = kf. Moreover, by
Theorem 9.1.1 and Theorem 9.1.3,
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HE,hE) o (nx, Oy)
h¥, k') o (nx, Oy)
R onyx, ki o fy)
h, k).

U(h*) o (nx,0y)

P

Uniqueness of h* follows immediately from Theorem 9.1.1, Theorem 9.1.3 and
Theorem 8.1.4. O

The above theorem and Proposition 2.1.1 imply that the assignment

(f:X—=Y)— (f: Fr(X)— CDL(Y))

extends to a functor from Set* to OFrm which is a left adjoint to the functor
U : OFrm — Set®'. Next we want to prove that the functor U is monadic.
As a consequence we have that the category of observation frames OFrm is
equivalent to the category of algebras induced by the monad U o (—)®. We
need the following three lemmas.

Lemma 9.2.3 The functor U : OFrm — Set®" reflects isomorphisms.

Proof. Assume that a: FF — L and : G — H are observation frames such
that U(a) is isomorphic to U(8) in Set®'. Then F = G and o(F) = 3(G).
Since every element in L is the meet of elements in «(F'), the isomorphism
a(F) = B(G) can be extended to an isomorphism between L and G. Hence F
and G are isomorphic as frames while L and G are isomorphic as completely

distributive lattices, that is « and (3 are isomorphic as observation frames. O

Lemma 9.2.4 The category OFrm has all coequalizers.

Proof. Assume that ¢; and ¢, are morphisms in OFrm from the observation
frame a: F — L to the observation frame §: G — H. By Theorem 8.1.4,
¢1: F — G induces uniquely a morphism ¢; : L — H between completely
distributive lattices such that ¢; o o = o ¢;. Similarly, ¢ : F — G induces
uniquely a morphism ¢,: L — H between completely distributive lattices such

that ¢9 0o @ = 3 o ¢s.

Let (G', c1: G — G') be the coequalizer in Frm of ¢; and ¢, and let (H', cy:
H — H') be the coequalizer in CDL of ¢; and ¢,. Notice that
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c20/6'oq51:cQO&S:oa:cQoa;oa:CQOﬂong,

By the defining property of coequalizers, there exists a unique frame morphism
v:G" — H' such that yo ¢; = ¢y o 5. We claim ~ is an observation frame.
Indeed, since ¢ = [ 1{3(z) | ¢ C B(z)} for all ¢ € H and c, preserves arbitrary
meets, we have

ex(q) =T Wea(B(2)) | ¢ T B(z)}
31 Hea(B(2)) | e2(q) T e2(B(x))}  [eo is monotone]
=[1{y(ci(2)) | e2(@) Ev(ci(2))}.  [defining property of 7]

The reverse of the above inequality holds by the defining property of meets.
Hence v: G' — H' is an observation frame. Notice that o ¢; = ¢y 0o § implies
¢a = ¢; by Theorem 8.1.4. One can now easily verify that 7 is indeed the
coequalizer in OFrm of ¢; and ¢,. O

Lemma 9.2.5 The functor U : OFrm — Set®" preserves all coequalizers

Proof. Assume ¢; and ¢, are two morphisms in OFrm from the observation
frame o : F — L to the observation frame §: G — H. By Theorem 8.1.4,
¢1: F — G induces uniquely a morphism ¢; : L — H between completely
distributive lattices such that ¢, o a = o ¢;. Similarly, ¢, : F — G induces
uniquely a morphism ¢,: L — H between completely distributive lattices such
that ¢9 0 @ = [ o ¢s.

Let (y: G" — H',¢; : G — G') be the coequalizer in OFrm of ¢; and ¢
as described in Lemma 9.2.4. Then (G',¢; : G — G') is the coequalizer in
Frm of ¢; and ¢, and (H', o : H — H') is the coequalizer in CDL of ¢;
and @, where ¢y is the unique morphism in CDL such that yo ¢; = ¢y 0 .
We need to prove that (U(7), U(c1) = (e1, ¢2)) is the coequalizer in Set of

U(d1) = (¢1, ¢1) and U(d2) = ($2, d2).
Assume there is an object f : X — Y in Set®”* and a morphism (h;, hy) from
U(B) to f: X — Y such that U(¢1) o {(hi,k) = U(ds) o {h1, hy). Define the
functions k; : G' — X and ky : y(G') — Y as follows:

ki(ci(z)) = hi(z) and ky(ca(y)) = ha(y)

forall z € G and y € B(G). By the standard theory on congruences, the above
maps are well-defined and they are the unique ones such that k; o ¢; = h; and
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ky o ¢y = hy. It remains only to prove that (ki, k) is a morphism in Set®”"
that is, kp oy = f o ky. For all ¢;(z) € G,

ko (v(er(2))) = ka(e2(B(2))

h2 (ﬂ(l‘)) [deﬁnition kz]
f(hi(z)) [{h,k) is morphism in Set "’
f(k1(01 (.’L‘))) [deﬁnition ]{71]

O

Theorem 9.2.6 The functor U : OFrm — Set®* is monadic.
Proof. Apply Proposition 2.1.2 using Lemmas 9.2.3, 9.2.4, and 9.2.5. O

Since Set”’ has small limits and monadic functors create limits [136], the
category OFrm has all small limits too.

Presenting observation frames

Consider a frame F = Fr{G; | R;) and a completely distributive lattice L =
[-]g :Gi— F and []g, : Go — L

be the two canonical embeddings of the generators into F' and L, respectively.
Assume there exists an onto function f: G; — Gy between the generators of
the two presentations. If the relations in Ry and Ry (in their respective normal
forms) satisfy the following commutativity property

VAGN Aoy € B = (LTI, LTI (a7) € Re, (9.4)

then the function [~] ; of :Gi — L makes L a model of the frame presentation
Fr{G; | R;). Hence, by Corollary 9.1.2, there exists a unique frame morphism
f*: F — L such that, for all generators g € G,

*(lgle,) = (9]
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In a way similar to the proof of Lemma 9.2.1, it is possible to show that every
element in L is the meet of elements in f*(F). Hence, by Corollary 8.1.17,
f®:F — L is an observation frame.

Conversely, every observation frame o : F' — L can be ‘presented’ as follows.
Consider the following two sets of generators

—_—

Gi={z|z€F} and Gy ={a(z) |z € F},

and define the function f: Gy — Gs by f(Z) = oz/(E) for all 7 € G;. Clearly f
is an onto function. Define also the sets of relations

Ri={(N\Z \z)|SCmFYU{(\V 2\ 2)|§CF},

Ro={(TWz |z €5},(IT8)|8CaF)& S e alF)
V{(L{E |z € S}, (8)) | S Ca(F) & LIS € a(F)}.

The frame F presents Fr(G; | R;) and the completely distributive lattice L
presents CDL{Gs | Rs). By universality of the presentation of F it follows that
f*:F — Lisequal to a: FF — L.

9.3 Frames and observation frames

In this section we take a closer look at the relationship between frames and
observation frames. We start by relating the categories of frames, completely
distributive lattices and observation frames.

There is a functor Dom:OFrm — Frm mapping an observation frame o: F' —
L to Dom(«) = F and a morphism ¢: (a: F — L) — (f: G — H) in OFrm,
to the frame morphism Dom(¢) =¢: F — G.

Theorem 9.3.1 The functor Dom : OFrm — Frm has a left adjoint.

Proof. Let F be a frame and consider the observation frame (p : F — F
given in Theorem 9.1.5. By definition, Dom({r) = F. Let now §: G — H be
another observation frame together with a frame morphism ¢: F — Dom/(f3).
The composition fo¢: F — H is a frame morphism. Hence, by Theorem 9.1.5
there exists a unique morphism 1: F — H in CDL such that ¢ o(z = 30¢. By
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Theorem 8.1.4 this implies that ¢ is a morphism in OFrm. Since Dom/(¢) = ¢,
by Proposition 2.1.1 we have that the functor Dom : OFrm — Frm has a left
adjoint. O

Next we consider the relationship between observation frames and completely
distributive lattices. Let Cod : OFrm — CDL be the functor which maps an
observation frame a: F' — L to the completely distributive lattice Cod(a) = L,
and every morphism ¢ in OFrm, between the observation frames a.: FF — L
and f: G — H, to Cod(¢) = é, where ¢ : L — H is the unique morphism in
CDL such that oo = o ¢ given in Theorem 8.1.4.

Theorem 9.3.2 The functor Cod : OFrm — CDL has a right adjoint.

Proof. For any completely distributive lattice L consider the observation
frame ¢d,: L — L. If 3: G — H is another observation frame and ¢ : H — L
is a morphism in CDL, then ¢ = 1o 3: G — L is the unique frame morphism
such that idpo ¢ = 1o 3. Hence, by Theorem 8.1.4, ¢ is a morphism in OFrm
and Cod(¢) = & = 1. From the dual of Proposition 2.1.1 it follows that the
functor Cod : OFrm — CDL has a right adjoint. O

It is not difficult to see that an element p of a completely distributive lattice L
is completely prime if and only if p is an M-prime element of the observation
frame id;,: L. — L. By Lemma 8.3.4 it follows that id;, : L — L is spatial if and
only if L is isomorphic in CDL to a complete ring of sets.

Filters and M-filters

In this section we investigate, for an observation frame «: F' — L, some of
the relationships between elements of the completely distributive lattice L,
M-filters of the observation frame a and ordinary filters of the frame F. We
will use these relationships for a characterization of sober spaces.

We start by showing that points are preserved by the construction of the free
observation frame over a frame in which a point in a frame F' is a completely
prime filter of F', whereas by Lemma 8.1.8 a point in an observation frame
a: F — L is a completely prime M-filter of «.

Theorem 9.3.3 The collection of all completely prime filters of a frame F
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is isomorphic to the collection of all completely prime M-filters of the free
observation frame (p: F — F.

Proof. Let 2 ={T, L} be the two point completely distributive lattice with
1 C T, and write 2 for the observation frame idy : 2 — 2. Let CPF(F)
be the set of all completely prime filters of F' and CPMF((r) the set of all
completely prime M-filters of (» : F — F. By Lemma 8.1.8, OFrm({r, 2) &
CPMF((r), whereas Frm(F',2) = CPF(F) (see [192, Proposition 5.4.7] for the
latter isomorphism). But Dom(2) = 2 and (r is the free observation frame
over F' by Theorem 9.3.1. Hence Frm(F',2) 2 OFrm((p,2). O

A frame F' is called spatial, or said to have enough points, if for all z and y in
F.if z «£ y then there exists a completely prime filter F of F' such that o € F
and b ¢ F. The full sub-category of Frm whose objects are spatial frames
F is denoted by SFrm. If X is any topological space then its lattice of open
sets O(X) is a spatial frame, since we can take F to be the completely prime
filter 7, = {0 € O(X) | z € o}. The following corollary is an immediate
consequence of the above theorem.

Corollary 9.3.4 A frame F 1is spatial if and only if the observation frame
Cp: F — F is spatial. Hence the adjunction of Theorem 9.3.1 restricts to an
adjunction between the category of spatial frames SFrm and the category of
spatial observation frames SOFrm. O

In Definition 5.2.3 we have seen that a topological space X is sober if the
assignment z — F,, for all x € X, defines an isomorphism between X and
CPF(O(X)). Given a frame F, we can construct a sober space Pt,(F) by
taking the set of all completely prime filters of F', denoted by CPF(F), together
with the collection of open sets

F(a) ={F € CPF(F) | a € F},

for every a € F. This collection forms a topology on CPF(F'). The following
proposition can be found in [112, I, Corollary 1.7].

Proposition 9.3.5 The assignment F — Pt,(F) defines a functor from the
category Frm® to Sp which is a right adjoint of O(—) : Sp — Frm® (the
functor which maps every topological space to its lattice of open sets and every
continuous function to its inverse restricted to the open sets). Furthermore we
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have that

(i) the adjunction restricts to a duality between the SFrm and Sob;
(ii) the inclusion Sob — Sp, has left adjoint Pt,(O(—));
(iii) the inclusion SFrm — Frm has left adjoint O(Pt%P(—))°?. O

The soberification of a topological space X is the sober space Pt,(O(X)). No-
tice that the process of soberification of a topological space X can be replaced
by the process of constructing the topological space which best approximates
the ‘frame part’ of the observation frame associated with X, that is,

Pt,(O(X)) = Pt,(Dom((X)).

Since adjoints are defined uniquely (up to natural isomorphisms), the above
implies that the two rounded squares below commute.

Spy ~ SOFrm?
P, (O(-))| o Ji Dome? | - |()”
Sob ~ SFrm®

The functor Dom : OFrm — Frm can therefore be considered as the pointless
soberification of an abstract topological space. Next we use the above results
(which generalize Lemma 8.3.6) for a characterization of sober spaces.

Theorem 9.3.6 A 7y space X is sober if and only if the completely distribu-
tive lattice of saturated sets Q(X) is free over the frame of open sets O(X).

Proof. Assume X is a sober space. By the commutativity of the above di-
agram it follows that the observation frames Q(X): O(X) — Q(X) and

Cox) : O(X) = O(X) are isomorphic in OFrm. Hence O(X) is isomorphic to

Q(X) in CDL. But O(X) is the free completely distributive lattice over the
frame O(X), by Theorem 9.1.5.

For the converse, assume X is a 7, space and Q(X) is the free completely
distributive lattice over the frame O(X ). Then the set of all completely prime
M-filter of Q(X) coincides with the set of all completely prime M-filters of
C@(X), that iS,

CPMF(Q(X)) = CPMF(Co(x))-
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Notice that we have an equality and not an isomorphism because the frame
parts of the two observation frames are identical. By combining Lemmas 8.1.8
and 8.1.15, and because X is 7y, the assignment z — {0 € O(X) | z € 0} isan
isomorphism between X and CPMF(2(X)). On the other hand, CPMF({o(x))
coincides with CPF(O(X)) by Theorem 9.3.3. Hence X is sober. O

The characterization of sober spaces by means of saturated sets can intuitively
be explained as follows. Sober spaces are precisely those spaces whose com-
pletely distributive lattice of saturated sets can be presented without infinite
meets in its relations. The following corollary is then immediate.

Corollary 9.3.7 A 7T, space X is sober if and only if the completely prime
filters of O(X) coincide with the completely prime M-filters of Q(X).

Proof. If X is sober then X is isomorphic to the set CPMF(Q(X)) of all
completely prime M-filters of Q(X) by Lemma 8.1.15. By Theorem 9.3.6,
CPMF()(X)) coincides with the set CPMF((o(x)) of all completely prime
M-filters of (o(x). The latter set coincides with the set CPF(O(X)) of com-
pletely prime filters of O(X) by Lemma 9.3.3 because O(X) is a spatial frame.

Conversely, assume CPMF(Q(X)) coincides with CPF(O(X)). Because X is
7o the mapping z +— {0 € O(X) | z € 0} is an isomorphism between X and
CPMF(Q(X)). Hence, by definition, X is sober. 0O

Recall from Chapter 5 that a sober space X is said to be spectral if finite
intersections of compact open sets are still compact, and the compact open
sets form a basis; a spectral space X is a Stone space if the complement
of compact open is compact open. For a 7y space X, we have the following
characterization ‘by freeness’:

(i) X is a Stone space if and only if its frame of open sets O(X) is free
over the Boolean algebra of compact open sets KO(X);

(ii) X is a spectral space if and only if its frame of open sets O(X) is free
over the distributive lattice of compact open sets KO(X);

(iii) X is a coherent space if and only if its frame of open sets O(X) is free
over the distributive lattice of compact saturated sets KQ(X);

(iv) X is a sober space if and only if the completely distributive lattice of
saturated sets Q(X) is free over the frame of open sets O(X).
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The first three characterizations are standard and can be easily derived from
similar results in [112,192].

We conclude this chapter by establishing the fundamental role of M-filters in
the setting of observation frames.

Lemma 9.3.8 Let a: FF — L be an observation frame. There is an order iso-
morphism between L and the collection of M-filters MF(«) ordered by superset
inclusion.

Proof. We have already seen in Lemma 8.1.6 that the map U — 1([ 1a(U))
is an isomorphism between M-filters of a and principal filters of L. Since
[ Te(U)) is isomorphic to [ 1a(U) we have that the map

U T a(l)

is an isomorphism between M-filters and elements of L with as inverse the
mapping ¢ — U(q) = {a € F | ¢ C «(a)}. It is not difficult to see that both
mappings are order preserving. O

Let a: F — L be an observation frame. An element g € L is said to be compact
with respect to F if for all directed subsets S of F, ¢ C Ll (S) implies that
there exists s € S such that ¢ C «fs). For example, for every topological
space X, a set ¢ € Q(X) is compact with respect to O(X) if and only if ¢ is
compact.

The order-isomorphism of Lemma 9.3.8 restricts to elements of L compact
with respect to F' and Scott open M-filters of o, where an M-filter I/ of « is
said to be Scott open if it is an open set in the Scott topology on F'.

Lemma 9.3.9 Let a: F — L be an observation frame.

(i) An element q of L is compact with respect to F if and only if U(q) is
a Scott open M-filter of c.

(ii) A subset U of F is a Scott open M-filter of o if and only if [ 1a(U) is
compact with respect to F.

Proof. By Lemma 9.3.8 it is enough to prove only one implication for each
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item.

(i) Let ¢ € L be compact with respect to F' and let S C F be a directed
set. If V.S € U(q) then ¢ C a(V S) = Ll a(S). Since ¢ is compact with respect
to F there exists s € S such that ¢ C «(s). Hence s € U(q), that is, U(q) is a
Scott open subset of F. It is also an M-filter of  because if [ 1a(U(q) C a(a)
for some a € F, then ¢ C a(a) and hence a € U(q).

(ii) Assume U is a Scott open M-filter of o and let .S be a directed subset
of F. If [ Ta(U) C Lla(S) = a(V S) then \/ S € U because U is an M-filter.
But it is also Scott open, hence there exists s € S such that s € Y. Hence
[Ma(U) C als), that is, [ Ta(U) is compact with respect to F. O

For an observation frame o : FF — L we can obtain a relationship between
completely prime M-filters and elements ¢ € L such that for every S C F' if
g C LJa(9) then there exists an s € S such that ¢ C «(s). The proof is as
before.

Lemma 9.3.9 is of a more fundamental nature than what is normally called
the Hofmann-Mislove theorem (also known as the Scott-open filter theorem)
given in Corollary 9.3.11 below. The latter is about Scott-open sets F' C
O(X) of a (sober) space X, which are ordinary filters. This theorem is due
to Hofmann and Mislove [108], and can in our present setting be obtained
from the following result. It is stated where the Axiom of Choice is used and
when the soberness of the space is needed. We sketch the proof for reasons of
completeness. It is very similar to Lemma 8.2.2 in [192].

Lemma 9.3.10 For a sober space X, a Scott-open set F C O(X) is an M-
filter if and only if it is an ordinary filter.

Proof. The (only-if) part is obvious, so we concentrate on the (if) part. Take
a Scott-open filter F C O(X). We have to show

(NFCo = o eF.

Towards a contradiction, suppose o’ ¢ F. Then we have to produce an element
z € X with z € NF but z ¢ o'. Because X is sober it suffices to give a prime-
open p € O(X) with p ¢ F and o’ C p, where we think of p as the directed
union U{o € O(X) | z & o}. Hence one considers the poset
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P={ueO(X)|o Cuandu¢F}, ordered by inclusion.

Every chain in P has an upper bound, so by Zorn’s Lemma we get a maximal
element p € P. It remains to show that p is prime-open. Towards the contrary,
assume

01MNoy Cp but 0oy € p and also 0y Z p.

Because p is maximal, both the open sets o] = pUo0; and 0} = pU o, are in F
and hence, because F is a filter, also ojN o} € F. But 0jNoj = pU(01Noy) = p.
Contradiction. O

Finally we obtain the result of Hofmann and Mislove [108] as a direct conse-
quence of Lemma 9.3.10 and Lemma 9.3.9.

Corollary 9.3.11 (Hofmann-Mislove theorem) Let X be a sober space.
There is an order isomorphism between the poset (KQ(X),<y) of compact
saturated sets and the poset of Scott-open filters F C O(X), ordered by inclu-
ston. O

In general, even for a sober space X, the set of all M-filters of the observation
frame Q(X) is strictly included in the set of all ordinary filters of O(X). We
have already seen in the previous chapter an example of filter which is not an
M-filter. Alternatively, consider an infinite set X with the discrete topology.
There are many filters F for which N F is empty, ranging from the filter of
cofinite sets to P(X) itself, and including all non-principal ultrafilters. But
the empty set is a saturated subset of X, and hence, by Lemma 9.3.8, it
corresponds to only one M-filter of Q(X).

9.4 Concluding notes

The construction of the free completely distributive lattice over a frame which
we presented in this chapter is rather indirect. First we construct the free
completely distributive lattice CDL(F') over the underlying set of a frame F'
and then we impose relations on CDL(F') in order to turn it into a model of a
presentation of F'. It would be nice to characterize the free completely distrib-
utive lattice over a frame directly. The intuitively appealing filter completion
of a frame in order to add the missing codirected meets unfortunately does
not work: by Theorem 9.3.6, it would imply the existence of an isomorphism
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between filters of open sets and saturated sets of a sober space. Such an iso-
morphism does not always exists, as can be deduced from the last example
after Corollary 9.3.11.

Presentations by generators and relations of observation frames enable us to
define new observation frames for old. Much of the theory presented by Vick-
ers [192] for frames can be exported to observation frames. An interesting
related question is whether the coproduct of two spatial observation frames
gives a spatial observation frame. For ordinary frames coproduct does not need
to preserve spatiality [112, Proposition 2.14].
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Chapter 10

An infinitary domain logic for
transition systems

The aim of this chapter is to apply the framework of observation frames in
order to provide a bridge between the semantics of computations and their
logic.

We treat a case study based on the theory developed by Abramsky [1]. Our
starting point is Abramsky’s domain logic for transition systems [3]: his logic
is equivalent to the Hennessy-Milner logic in the infinitary case, and hence it
characterizes bisimulation for every transition system. However, in the finitary
case it is more satisfactory than the Hennessy-Milner logic in the sense that it
characterizes a finitary preorder (the finitary observable part of bisimulation)
for every transition system. Abramsky’s infinitary logic can be used to charac-
terize the class of transition systems for which the bisimulation preorders are
algebraic, in the sense that they coincide with the finitary preorders. These
transition systems are called finitary and satisfy two axiom schemas: one about
bounded nondeterminism and another about finite approximation.

The main result of Abramsky [3] is that the Lindenbaum algebra generated
by his finitary logic is a distributive lattice dual to an SFP-domain obtained
as a solution of a recursive domain equation. We extend Abramsky’s result
by proving that the Lindenbaum algebra generated by the infinitary logic is a
completely distributive lattice dual to the same SFP-domain. As a consequence
soundness and completeness of the infinitary logic is obtained for the class
of finitary transition systems. On the way to prove our completeness result,
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we also show soundness and completeness of Abramsky’s logic with infinite
disjunctions for the class of compactly branching transition systems.

10.1 Domain theory in logical form

Complete partial orders were originally introduced as a mathematical struc-
ture to model computation [173], in particular as domains for denotational
semantics [177]. Successively, Scott’s presentation of domains as information
systems [176] suggested a connection between denotational semantics and log-
ics of programs. Abramsky [1,2] uses Stone duality to relate two views of
complete partial orders: one in terms of theories and one in terms of models.

Abramsky’s starting point is that for an algebraic cpo P, its compact elements
completely determine P, whereas for a logic the Lindenbaum algebra provides
a model from which the logic can be recovered. If P is an SFP-domain, then
the collection KLO(P) of all Scott compact open subsets of P ordered by sub-
set inclusion forms a distributive lattice, that is, P in its Scott topology is
a spectral space. The distributive lattice XO(P) can be viewed as the Lin-
denbaum algebra of some logic. Conversely, given a distributive lattice L we
can first construct the free frame Idl(L) by ideal completing L, and then we
derive a topological space from IdI(L) using using the adjunction given in
Proposition 9.3.5.

In this way, the duality between the category of spatial frames SFrm and
the category of sober spaces Sob given in Proposition 9.3.5 cuts down to a
duality between the category of distributive lattices DLat and the category
Spec of spectral 7 spaces and continuous functions which preserve compact
open subsets under inverse image ([112, I7.2.11 and II.3.3]).

In his thesis [1] Abramsky considers a typed language together with a denota-
tional interpretation which takes values in the category SFP of SFP-domains.
The language has several type constructors which are interpreted denotation-
ally as the ordinary domain theoretical constructors, such as products, co-
products, function space and powerdomains. A second logical interpretation
associates to each type of the language a propositional theory. Each theory
has axioms and rules which enforce a distributive lattice structure with finite
meets and finite joins. Moreover, for each type constructor there is a corre-
sponding constructor between propositional theories.

The logical interpretation and the denotational interpretation are connected
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using the duality between the categories DLat and Spec: for each type of the
language, its logical interpretation is isomorphic as lattice to the Scott compact
open subsets of its denotational interpretation; conversely, its denotational
interpretation is isomorphic as complete partial order to the complete partial
order of the prime filters of its logical interpretation.

This implies that an element of an SFP-domain can be considered equivalent
to the set of all properties satisfied by that element, which therefore gives a
logical characterization of it. Even more, the order of the SFP-domain can
be characterized in terms of the properties satisfied by the elements, that is,
an element is smaller or equal to another one if and only if every property
satisfied by the first element is also satisfied by the other one.

It is important to stress here that the propositional theories used by Abramsky
for the logical interpretation of the type language are finite. Moreover, the
logics of compact opens obtained are weak in expressive power, and inadequate
as a general specification formalism [2]. What we need is a language, with an
accompanying semantic framework, which permits to go beyond compact open
sets.

A first step would be to allow more general open sets by means of infinite dis-
junctions. Since the spaces considered by Abramsky are spectral, this would
not require a major adjustment of the semantic framework. Consider a new
logical interpretation for each type of the language which extends the previous
one as follows. For every type there is an associated propositional theory with
axioms and rules enforcing a structure of a frame, with infinite joins and finite
meets, and such that every element of the theory can be proved equivalent
to an (infinite) join of elements of the finitary theory used by Abramsky. In
other words, the Lindenbaum algebra of the infinitary propositional geometric
theory is the free frame over the distributive lattice of the finitary theory con-
sidered by Abramsky. Since Scott open subsets of an SFP-domain ordered by
subset inclusion form the free frame over the distributive lattice of the Scott
compact subsets [112], it follows that for each type of the language, its new
logical interpretation is isomorphic as lattice to the Scott open subsets of its
denotational interpretation. Conversely, its denotational interpretation is iso-
morphic as SFP-domain to the domain of completely prime filters of its logical
interpretation. Hence the connection of Abramsky between finite propositional
theories and SFP-domains extends smoothly if we consider propositional the-
ories with infinite joins and finite meets.

For specification purposes we also need the ability to express infinite con-
junctions. Using results from the previous two chapters—characterizing sober
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spaces in terms of the completely distributive lattice of saturated sets—we can
extend the logical interpretation of the type language even further. We can as-
sociate to every type an infinitary propositional theory with axioms and rules
enforcing a structure of a completely distributive lattice, with both infinite
joins and infinite meets, and such that it freely extends Abramsky’s interpre-
tation. This means that the Lindenbaum algebra of the infinitary propositional
theory is the free completely distributive lattice over the distributive lattice
of the Lindenbaum algebra induced by Abramsky’s original logical interpre-
tation. Since an SFP-domain is a sober space when taken with the Scott
topology, its saturated sets form the free completely distributive lattice over
the frame of the open sets and hence over the distributive lattice of the Scott
compact open subsets. It follows that for each type in the language, its infini-
tary logical interpretation is isomorphic as lattice to the saturated sets of its
denotational interpretation, while its denotational interpretation is isomorphic
as SFP-domain to the domain of completely prime M-filters of the observa-
tion frame induced by its logical interpretation (the map which embeds the
restricted theory with infinite joins and finite meet into the infinitary one).

10.2 Transition systems

As an application of the techniques discussed above, we treat Abramsky’s do-
main logic for labelled transition systems with divergence [3]. We begin by
recalling some notions on labelled transition systems (with divergence). In
Chapter 4 we have already introduced transition systems as a basic mathe-
matical structure for modeling computations of programming languages (see
also [161]).

Definition 10.2.1 A labelled transition system with divergence is a tuple
(P, Act,—,ft) where P is a set of processes, Act a set of atomic actions,
—C P x Act x P is a transition relation and {} is a predicate on P. The
predicate {} s called the divergence predicate. The convergence predicate |} on
P is defined to be the complement of the divergence predicate, that is = P\ 1.
We use p ft and p | to denote that the process p diverges and converges,
respectively.

Transition systems can be used to identify processes with the same observ-
able behaviour. One of the well-known behavioral equivalences on processes is
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bisimulation [144,157].

Definition 10.2.2 Given a transition system (P, Act, —, 1), a relation R C
P x P is called a partial bisimulation whenever, if (p,q) € R then for all
a € Act

i) p——p = 3¢ eP.qg-q¢d &, ¢)ER;
(i) pl= ql &(¢g——¢ = Fp' eP:p—=p &(p,q¢)€R).

We write p <P q if there exists a partial bisimulation R with (p, q) € R.

Often we will use partial bisimulations to compare processes from different
transition systems. This can be formally done by taking the disjoint union
of the two systems, and using the above definition of partial bisimulation.
Partial bisimulations can also be described in terms of iteration [157], but in
general one needs to consider a non-countable sequence of relations (in the
complete lattice P(P x P) ordered by subset inclusion) approximating <%.
By considering only countable approximants of <? one obtains the so-called
observable equivalence <=, <" [144], where

- <%= P x P, and
— p <" g if and only if for all a € Act
) p—p =3P qg—=q¢&p <",
(i) pl= gl &(g— ¢ = W' ePip—p &p 5" 7).
In general for a transition system 7, <PC<¥. However, if T is image-finite

then the two notions coincide [93], where T = (P, Act,—, 1) is said to be
image-finite if for all processes p € P and actions a € Act the set

{glp—q}

is finite.

A particular example of a transition system is given by the collection of all
(finite) synchronization trees over an alphabet Act of actions. Define the set
(t €)ST(Act) of finitary synchronization trees over Act by

ti= E[O,Z'ti | E]Cliti + Q,

where [ is a finite index set, and all the a;’s are actions in Act for ¢ € I. If
I = () then we write © for X a;t;, and Q for X;a;t; + €. The set of all fini-
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tary synchronization trees can be turned into a transition system ST (Act) =
(ST (Act), Act,—, ), where

— ¢ 1t if and only if 2 is included as a summand of ¢, and
— t 25 ¢; for each summand q;t; of ¢.

Synchronization trees can be used to define a finitary preorder on processes
of more general transition systems [83].

Definition 10.2.3 For a transition system (P, Act, —,{}) define the finitary
preorder <FC P x P by

p <P qif and only ifVt € ST(Act): t <P p = t <P g

~Y

Since finite synchronization trees are a model for finite processes, the finitary
preorder can be considered as the finite observable part of partial bisimulation.
For every transition system 7', it holds that

sPegves”.

In general, these inclusions are strict [3, pag. 191]. If p € P is a process of a
transition system (P, Act,—,{}) and t € ST (Act) is a finite synchronization
tree it holds that ¢ <? p if and only if ¢ <¥ p [3, Lemma 5.10].

Another example of a transition system is given by the SFP-domain D ob-
tained as the initial (and final) solution in the category SFP of the recursive
domain equation

X=(1), @ PC"(Z X) \ {0}),

a€Act

where 1 is the one-point cpo, Act is a countable set of actions, (=), is the lift,
@ is the coalesced sum, 3" ¢ 4., is the countable separated sum, and P2(—) \
{0} is the Plotkin powerdomain (we use Proposition 6.3.7 to characterize it in
terms of Scott-compact and convex sets). Below we will omit the isomorphism
pair relating the left and the right hand side of the solution D of the above
domain equation. The SFP-domain D can be seen as the transition system
(D, Act, —, ft) where

— d — d" if and only if (a, d') € d and
— d 1 if and only if 1 € d.
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The above definition implies, for d € D, that if d = 1 then d | and for all
a € Act and d' € D there is no transition d — d'; whereas if d = {1} then
d 1) and for all a € Act and d' € D there is no transition d — d’.

Abramsky’s logic for transition systems

Like the Hennessy-Milner logic [93], the idea of Abrasmky’s infinitary logic
L for transition systems [3] is to obtain a suitable characterization of
partial bisimulation in terms of a notion of property of processes: p <P ¢
if and only if every property satisfied by p is also satisfied by ¢. However,
the finitary restriction of Abramsky’s logic differs from the finitary Hennessy-
Milner logic in the sense that it characterizes the finitary observable part of
partial bisimulation for all transition systems.

Definition 10.2.4 Let (a €)Act be a set of actions. The language Lo « over
Act has two sorts: m (processes) and k (capabilities). We write (¢ €)L7, ., for
the class of formulae of sort @, and (¢ E)L’&D’Oo for the class of formulae of
sort k, which are defined inductively as follows:

p=Noi |\ i | O | Oy
1 1

Y= N | Vi | a(e),
I I

where I is an arbitrary index set. If I = O then we write tt for A\; ¢; and

A; Ui, and we write ff for \I; ¢; and /[ Y;.

Before we interpret the language £ o we need the following definitions. For
a transition system (P, Act, —, f}) define the set Cap of capabilities by

Cap = {L} U (Act x P).
The set of capabilities of a process p € P is given by
Clp)={Lpt}u{(a,q)|p— g}

For a transition system T = (P, Act,—, f}), we interpret the language Lo oo
by means of the satisfaction relations =-C P x L7, ., and |=xC Cap x LE,
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defined as follows:

P Ex N1 9
P Ex Vi ¢i
pEx 09
pEr O

Viel:p =r ¢
e lp o

pd andVe e C(p): ¢ 4 6
dee C(p):ckFi ¢

SO R

¢ =i A1 ¢
¢ =k Vi o
¢ =k a(9)

3

VZEIC)IICQSZ
HZEIC):]CQSZ
¢ =(a,q) and ¢ =, 6.

3

i

For a transition system T = (P, Act, —, ) and formula ¢ of LT we write
[6]7 for {p € P | p =r ¢}. Assertions A over the language LI,  are of the
form ¢ <, 1 or ¢ =, 4 for o in {7, k} with ¢ and 9 in LI . The satisfaction
relation between transition systems 7' and assertions is defined by

T=¢ <1 & Vp € P:p ey ¢ implies p =y ¢
TE¢=t & VpeP:pkE,pifand onlyif p =, ¢

TE<p < VYce Cap: ¢ =, ¢ implies ¢ ¢ ¢
TE¢=rY < VYec€ Cap: ¢ = ¢ if and only if ¢ ¢ 9.

As usual, the satisfaction relation can be extended to classes of transition
systems 7 by

TEA o VTeT: TEA.

If T is the class of all transition systems then we simply write = A.

Let L, be the sub-language of L » obtained by the restriction to finite
conjunctions and finite disjunctions.

Theorem 10.2.5 For a transition system (P, Act,—,f}) and p, q in P,

(i) p <P qifand only ifVo € LT, pE ¢ = qF ¢;
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(i) p <" q if and only ifVo € LT p E ¢ = qF ¢
Proof. See Theorems 5.6 and 5.8 in [3]. O

Next we present a proof system for assertions over Lo, . (We omit the sort
subscripts.) The following logical azioms give to the language the structure of
a large completely distributive lattice.

&
(K —ref) p < ¢ (S—tmns)d)g:/;<ng
o pPSvkvse L e=v
¢ =1 d<P &P <o

{0 < itier
(A=1T) ¢ < N\ (AN=FE) Aroi <o (ke

{¢i§{b}iel
(V-1 \/ i <1 (V=FE) ¢p <V (kel)

I

(A — dist) N\; Vi ¢ij = er<1>(1) A1 Disii)

where ®(I) denotes the set of all functions f: I — U; J; with f(i) € J; for
all i € I. The dual of the (A — dist)-axiom is derivable from these logical
axioms [164]. The following modal azioms relate constructors with the logical
structure.

o<1
(a— <)
a(¢) < a(v)
(a—A) (i) a(Ardi) = Ara(i) (I #0)
(i) a(@) A B() = F (a#b)
(a—=V) a(V;éi) = Va(e)
o<
(O-<) ———
O¢ < O

(O—A)OAr o= A 0¢; (I #0)
(O-vV)O(pVy) <Op VY

257



Marcello M. Bonsangue

(<>_ S)M
Op < OY
(O —A) OpAOY < O(pAY)

(O =V) OV =V O

We write Lo = A if the assertion A of Lo« is derivable from the above
axioms and rules.

Theorem 10.2.6 (Soundness) If Lo o F A then = A.
Proof. See Theorem 4.2 in [3]. O

Next we turn to the finitary logic £, in order to prove the reverse of the
above result for the class of all transition systems.

Define the syntactic equivalence ~ on formulae of Lf, , by

@1 ~ ¢y if and only if LT , F ¢1 =7 ¢o.

Clearly, ~ is an equivalence relation. Let [¢] be the equivalence class of ¢ under
~, and denote the set of ~ equivalence classes by LA, ,. There are natural
operations making LA7 , a distributive lattice. To show this, we define an
order < on LA , by

[¢1] < [¢o] if and only if LT, F ¢1 <y ¢o.

It can be checked that < is a well-defined order relation. Notice that the poset
LA, , has greatest and least elements given by the equivalence classes of all
theorems in LA7 , and of all non-derivable formulae in LA] ,, respectively.
The next step is to define join and meet in LA] :

(1] V [¢2] =aer [1 V ¢o] and [¢1] A [¢o] =aer [61 A 2]

The above operations are well-defined. Moreover, by the logical axioms, it
follows that the join and the meet of the poset LA], , are given by the above
V and A, and that the poset LA, , is in fact a distributive lattice. We call the
lattice LA , the Lindenbaum algebra of L, .
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Since LA, , is a distributive lattice, it can be represented by a spectral space.
The following fundamental result shows that the finitary logic £ , does indeed
correspond exactly to the SFP-domain D defined in the previous section and
taken with the Scott topology.

Theorem 10.2.7 Let KO(D) be the distributive lattice of Scott compact open
sets of D ordered by subset inclusion. The function v:LAf , — KO(D) defined,
for ¢ in LT by

ww?

([¢]) = [¢lp

15 a well-defined order isomorphism.
Proof. See Theorem 4.3 in [3]. O

As already suggested by Lemma 8.2.8, the proof of the spatiality of the dis-
tributive lattice LA7, , is equivalent to completeness of the underlying logical
system. Indeed, (strong) completeness of L7, is an immediate consequence of
the soundness Theorem 8.2.7 and of the above duality result.

Theorem 10.2.8 (Completeness) Let T be any class of transition systems
containing D. For ¢1 and ¢y in L], ,, T = ¢1 < ¢z if and only if LT, , F ¢1 <
b2

Proof. For ¢; and ¢ in L], , we have,

D ):7'( ¢1 SW ¢2 g I[qsl]l; g |I¢2]lg
& 7([¢1]) € ([¢2])  [definition of 4]
< [¢1] < [¢2] [v is an order isomorphism]|

- EZZ,w F é1 < ¢o. [definition of EAZ,W]

We conclude this section by showing that the SFP-domain D can be used
as semantic domain for all transition systems. Let T = (P, Act, —>,{}) be a
transition system and let p € P. The set

TS(p) = {lo] € LAL, | p Fx 0}
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is a prime filter of the distributive lattice LA, ,. Hence, by Theorem 10.2.7,
it corresponds uniquely to an element in D. Thus, the assignment p — T'S(p)
defines a function T'S[-]: P — D which is unique among all functions f: P — D
such that

p = ¢ if and only if f(p) Fx ¢,

for all p € P and ¢ € L], , [3, Theorem 5.21]. By the characterization Theo-
rem 10.2.5, it follows that p and TS[p] are equivalent in the finitary preorder
<F. Hence the function TS[-] : P — D can be regarded as a syntax-free se-
mantics which is universal because it is defined for every transition system.

10.3 Compactly branching transition systems

Theorem 10.2.8 gives a completeness result for £, ,. In this section we derive
a completeness result for £, «,, the sub-language of L, o, which allows infinite
disjunctions but has only finite conjunctions. It is possible to express useful
properties in this language that cannot be expressed in £, ,. Consider prop-
erties of a transition system (P, Act,—, 1) like ‘the process p converges’,
‘every a-path starting from p is finite’, or ‘along every a-path starting from p
eventually ¢ holds’. The finitary language L7, , is too weak to formalize these
properties, which however can be expressed in the infinitary language £,

by

- p ):71' Ij\/aeAct a(tt)a

- D }:71' VnEw ¢n> where ¢0 N ﬁ and
¢n—|—1 = D(a(¢n) \ VAct\{a} b(tt))a
o = [f and

- P }:71' VnEw ¢n> where
¢n+1 =¢A (Oa(tt) \Y% D(a(¢n) v VAct\{a} b(tt)))

What we need is a language which allows more general formulae. An example
is L, 0, the sub-language of L, , which allows infinite disjunctions but has
only finite conjunctions. Adding expressive power to the finitary logic should
not change our main motivation for its introduction: it should characterize
the finitary observable part of partial bisimulation. We introduce the following
scheme over L, ., which restricts the class of transition systems and allows
to write any formula in £, . as disjunctions (possibly infinite) of finitary
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formulae in £, ,:

(BN) OV, ¢; < Vierinry BV @ (¢i € Luw)

where Fin(I) is the set of all finite subsets of I. The intuition behind the
above axiom scheme is that of bounded nondeterminism. Indeed (BN) is
equivalent to requiring that the O operator is Scott continuous. Semanti-
cally, it corresponds to a statement of compactness (and hence of bounded
non-determinism [160,179]): Let T = (P, Act, —>, {}) be a transition system
and let O(T) denote the set of all [¢]7. for ¢ in L] . Clearly, O(T) forms
a topology on P. Transition systems together with a topology are introduced
in the context of modal logic in [65], where, in a restricted form, the direction
from left to right of the next lemma is proved (the proof of the other direction
can been found in [45]).

Lemma 10.3.1 A transition system T = (P, Act,—, ) satisfies (BN) if
and only if for all p € P such that p || the set

Br(p)={q € P|3a € Act: p — ¢}

is compact in the topology O(T).

Proof. Assume 7T satisfies (BN), take a p € P with p | and Br(p) C

UI|[¢Z]I7;“ Then b ):71' O VI ¢7, Hence, by (BN)) b |:7T VJEFin(I) g VJ ¢]a that iS,
Br(p) C U,[¢;]7 for a finite subset J of I. Hence Br(p) is compact in O(T).

Conversely, assume that if p || then the set Br(p) is compact in the topology
O(T), and let p = OV ¢;. Since p converges, Br(p) C U;[¢:]7- But Br(p)
is compact, hence Br(p) C U;[¢;]7 for some finite subset J of I. It follows
that p satisfies (BN). O

A transition system is called compactly branching if it satisfies all instances of
(BN).Every weakly finitely branching transition system is compactly branch-
ing [3] (a transition system (P, Act, —», 1) is said to be weakly finitely branch-
ing if for all p € P,

p |} implies {q € P | Ja € Act: p > q}
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is finite). Using the duality Theorem 10.2.7 and the definition of the Plotkin
powerdomain, it is immediate to see that the transition system induced by the
SEP-domain D is compactly branching even if it is not weakly finite branching.

Lemma 10.3.2 For every formula ¢ in L7, ., there exist formulae ¢; € L,
with © € I such that L7, ., + (BN) - ¢ =V, ¢;.

Proof. Adapt Lemma 5.17 of [3]. O

The above lemma together with the soundness Theorem 8.2.7, the definition of
the satisfaction relation, and the characterization Theorem 10.2.5, imply that
for compactly branching transition systems (P, Act, —, 1) and processes p, ¢
in P,

pSFqifandonlyiquSEEZ’oo:p Eo = qEo.

The next step is to prove the completeness of the logic L7, ,, for the class of
compactly branching transition systems. We proceed as for the finite case:
define the syntactic equivalence ~ on formulae of Lf . by

¢1 ~ ¢ if and only if L 4+ (BN) F ¢1 =x .

Let EAZ@O be the Lindenbaum algebra of £" _ with as objects equivalence

w,00
classes of formulae in L], ., under ~, ordered by

[¢1] < [#2] if and only if L,  + (BN) F ¢1 <; ¢o.
The poset LA, , is a frame with meets and joins defined as expected.

Lemma 10.3.3 The frame LA, ., is free over the distributive lattice LA, .

w,00

Proof. For every frame F' and function f: LA}, , — F preserving finite meets
and finite joins, define h : LA}  — F by h([¢]) = V;f([#i]) where, using

Lemma 10.3.2, [¢] = V,[¢i] with ¢; in L] ,. By definition, h preserves joins
and h([¢]) = f([¢]) for all ¢ in L, ,. Moreover, h preserves finite meets:

h([¢] A [9]) = h([\I/ ¢il ATV ) [Lemma 10.3.2]

J
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=h(\/ [: A ¢]) [distributivity]

= I\/ixfj([qzsi A @5])  [h preserves joins and commutativity]
I\X/J ) Af([¢5]))  [f preserves meets]
I\X/ ) Ah((¢5]))  [commutativity]

= \;J’L(@]) AV B([g5])  [distributivity]

= hl([¢]) A h([;'])-

Hence h is the unique frame morphism such that ho. = f, where t: LA} , —
LA, ., is the obvious inclusion function. 0O

We can now draw an interesting consequence of the finitary axiom (BN).

Lemma 10.3.4 The assignment [¢] — [@]}, defines a unique order isomor-

phism v : LA, ., — O(D) such that v*([¢]) = v([8]) for all ¢ in LT,

Proof. Because D is an SFP-domain, when taken with its Scott topology it
forms a spectral space. Hence the lattice of Scott open sets O(D) is the free
frame over the distributive lattice of Scott compact open sets £O(D), which,
by Lemma 10.2.7, is order isomorphic to the Lindenbaum algebra LA, ,. But
LA, ., is the free frame over the distributive lattice LA7, , (Lemma 10.3.3),
hence O(D) is order isomorphic to LA, ... The isomorphism is given by the
unique extension y* of the map vy : LA} , — KO(D) given in Lemma 10.3.3.
Using Lemma 10.3.2 and the soundness Theorem 10.2.6, it can be character-

ized by

7+([¢])=LIJW([¢Z-]) UMD |[\/¢ =[]

for all ¢ in Lf, . O

Soundness of the logical system associated to Lf ., including the scheme (BN)
follows from Theorem 10.2.6 and the definition of compactly branching transi-
tion systems. In a way similar to the completeness Theorem 10.2.8, complete-
ness follows from the duality Lemma 10.3.4.
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Theorem 10.3.5 (Completeness) Let CB be any class of compactly branching
transition systems containing D. For ¢1 and ¢y in LT, ., CB = ¢1 < ¢y if and
only if L7, oo+ (BN) F 1 < ¢y, O

10.4 Finitary transition systems

The language L, « is more expressive than the finitary language L, .. Next
we consider the even more expressive language Lo . For example, given a
transition system (P, Act, —», 1}) we can specify in L7, ~ properties like ‘there
exists an infinite a-path starting from the process p’, and ‘at any point of any
path starting from p an a-transition is always possible’, respectively by

¢0 = {t and
- p ):71’ /\nEw ¢n7 where

Ony1 = <>a(¢ﬂ)§

¢0 = {t and

- P ):71’ /\nEw ¢n7 where
¢n+1 = <>a’(¢n) A AAct(Db(¢n) \ VAct\{b} c(tt))'

This kind of properties cannot be represented by open sets, but they can
be expressed by sets which are saturated with respect to the topology O(T)
associated to the transition system 7. By using results on observation frames,
we can prove a completeness result following the same pattern as for the
completeness result of £, .

We begin with the introduction of two finitary axiom schemes over L .
These schemes will restrict the class of transition systems under consideration,
and will allow us to write a formula in £, « as a conjunction of disjunctions
of finitary formulae in £, ,:

(BN) OV, ¢; < Vieriny BV s @ (¢i € Low)
(FA) Aseringy O Ny &5 SO N @i (¢i € Louw),

where Fin(I) is the set of all finite subsets of I. The axiom scheme (FA) is
the dual of (BN). While the axiom (BN) is related to the width of a compu-
tation, the axiom (FA) is related to the length of it. The latter is analogous
to the requirement that we cannot distinguish a set from its closure by means
of compact open sets [66] (thinking of each ¢; as a compact open set, or,
equivalently, as a finite observable property). It can be understood as a notion
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of finite approximation. For example, every weakly finite branching transition
system with no infinite transition sequences satisfies both (BN) and (FA).
An example of this kind of transition system is given by the set of finite syn-
chronization trees. In general, a transition system which satisfies all instances
of (BN) and (FA) is called finitary. The main example of finitary transition
systems (which has infinite transition sequences) is given by the transition
system induced by the SFP-domain D (Theorem 5.15 in [3]).

There are two reasons for considering finitary transitions systems. Seman-
tically, finitary transitions systems are exactly those transition systems for
which <F and <P coincide (see Lemma 10.4.2). Logically, the axioms (BN)
and (FA) allow us to rewrite a formula in L7, . as a conjunction of disjunctions
of formulae in £, . This fact will be essential in the proof of our completeness
resuts.

Lemma 10.4.1 For each ¢ in L7, ,, there exist formulae ¢; € L], , i € I,
such that LT, .+ (BN) + (FA) = ¢ =1 \; ¢i.

Proof. See Lemma 5.17 of [3] and Lemma 10.3.2. O

An immediate consequence of the above lemma is the following characteri-

zation property. For a finitary transition system (P, Act,—,f}) and p, ¢ in
P,

p<Tqifandonlyif Vo e LT, ip=¢ = ¢ =¢.

By Theorem 10.2.5 it follows that for finitary transition systems, <* and <%
coincide, while, by the duality Theorem 10.2.7, it follows that the order of
D, which is equivalent to the specialization order of O(D), coincides with the
finitary preorder <. Therefore, in D, d; < d if and only if di <P d, that
is, D is internally fully abstract with respect to partial bisimulation. Finitary
transition systems can be characterized in terms of partial bisimulation as
follows.

Lemma 10.4.2 For any transition system T = (P, Act,—>, 1) the following
conditions are equivalent:

(i) T is finitary,
(ii) for allp € P, p <P TS[p] and TS[p] < p,
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(iii) the finitary preorder <* coincides with bisimulation preorder <P in the
transition system obtained as the disjoint union of T and D.

Proof. See Lemma 5.22 of [3]. O

In the last condition of the above lemma we need to consider the disjoint
union of 7" and D because T alone may not have enough processes to prove
the equivalence between <¥ and <.

To prove the completeness of the logic L7, , for the class of finitary transition
systems, define the syntactic equivalence ~ on formulae of L7, ., by

¢1 ~ ¢ if and only if LT  + (BN) + (FA) & ¢1 =, ¢o.

Also, define the Lindenbaum algebra LA7, ., to be the set of equivalence
classes of formulae in L],  under ~, ordered by

[¢1] < [¢o] if and only if LT,  + (BN) + (FA) F ¢1 <x ¢o.

The logical axioms say that the poset LAT . is a completely distributive lat-
tice. By Lemma 10.4.1 and with a proof similar to the proof of Lemma 10.3.3,
it is not hard to see that LA7, . enjoys universal properties.

Lemma 10.4.3 The completely distributive lattice LAT, ., is free over the
frame LA7, .. O

By Theorem 9.3.1 it follows that the inclusion function

L E.AZ’OO s EAQO,OO

is the free observation frame over LA7 .
Lemma 10.4.4 The assignment [¢] — [¢]}, defines the unique order isomor-

phism v* : LAT, , — Q(D) such that v*([¢]) = v([¢]) for all € LT, ,.

Proof. Because D is an SFP-domain, if it is equipped with the Scott topology
then it forms a sober space. Hence, by Theorem 9.3.6, the lattice of saturated
sets Q(D) is the free completely distributive lattice over the frame of Scott
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open sets O(D), which, by Lemma 10.3.4, is order isomorphic to the Linden-
baum algebra LA] .. But LAT . is the free completely distributive lattice
over the frame LA7, ., (Lemma 10.4.3), and hence Q(D) is order isomorphic to
EA” . The isomorphism is given by the unique extension v* of the function

LAZOO — O(D) which can be characterized (using Lemma 10.3.2, the

soundness Theorem 10.2.6, and the duality Theorem 10.3.4) by

])IOW([ ﬂ|[¢ I» = /\w]lp [4]5;

for all ¢ in LT, . O

As before, soundness of the logical system associated with £ . including both
the finitary schemes (BN) and (FA) follows from Theorem 10.2.6 and from
the definition of finitary transition systems. In a similar way to the proof of
the completeness Theorem 10.2.8, completeness follows from the above duality
result.

Theorem 10.4.5 (Completeness) Let FT be any class of finitary transition
systems containing D. For ¢\ and ¢o in LT, o, FT &= ¢1 < ¢ if and only if
LT oo+ (BN)+ (FA) b 61 < gy O

10.5 Concluding notes

In this chapter we extended Abramsky’s finitary domain logic for transition
systems to an infinitary domain logic, the latter being a syntactical represen-
tation of the lattice of saturated sets of a particular SFP-domain. This logic is
more expressive than the finitary one even for the class of finitary transition
systems, and it can be used as a specification formalism. Our main motivation
for the introduction of an infinitary domain logic as specification formalism is
not to improve over the known specification tools but rather to analyse them
by means of general and reusable mathematical notions of topology and do-
main theory (examples in this direction include a domain logic for Gamma [75]
which was originally formulated as a transition assertion logic [64], and a do-
main logic for a shared-variable parallel language [199] which was originally
formulated by Brookes [49]). This is part of Abramsky’s general programme
of connecting domain theory and operational notions of observability with
denotational semantics and program logics.
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While logics of compact opens are finite, logics for the whole lattice of sat-
urated sets are too big to be represented by finite syntax. The same holds
for the lattice of open sets. For semantics pourpose, a better approach would
be to extend Abramsky’s finitary language with both a greatest fixed point
operator and a least fixed point operator to describe some of the saturated
sets.

The present chapter does not deal with a formal comparison between Abram-
sky’s logic and Hennessy-Milner logic for transition systems. Such a com-
parison can be found in [3], where L « is proved equivalent to the infini-
tary Hennessy-Milner logic in the sense that a process of a transition system
satisfies a formula of Abramsky’s logic if and only if it satisfies the equiv-
alent formula in the Hennessy-Milner logic. As a consequence, the complete
distributive lattice induced by the (ordinary) interpretation of the infinitary
Hennessy-Milner logic coincides with the one induced by the infinitary Abram-
sky’s logic. Thus the infinitary Hennessy-Milner logic extended with the axiom
schemas (BN) and (FA) is isomorphic to the completely distributive lattice of
saturated sets of the SFP-domain D.

The techniques we used in this chapter are general and can be applied to every
logic based on a topological interpretation. Below we explain how to get an
infinitary extension of a finitary logic step by step.

Let £ be a language closed with respect to the binary operations A and V,
and such that both ¢ and ff are in £. Assume that £ comes equipped with a
preorder < and a set of logical axioms which gives to (£, <) the structure of a
distributive lattice such that A defines the binary meet, V defines the binary
join, tt is the top element and ff is the bottom element. It follows that the
Lindenbaum algebra LA of L is a distributive lattice and hence is isomorphic
in DLat to the set of compact opens KO(X) for a spectral space X. This
isomorphism defines a canonical interpretation function

[1.: £ = KO(X)

mapping every element p € £ to the compact open that is isomorphic to the
equivalence class corresponding to p in the Lindenbaum algebra of L.

The goal is to extend £ to a language £ closed with respect to the infinitary
operations A and V in a way that a ‘canonical’ interpretation function [-],x
can be defined from L¥ to the lattice Q(X) of saturated sets of X such that
[-]1,= restricted to £ coincides with [-].
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To this end axioms and rules must be defined on £%: logical axioms to give
(L, <) the structure of a completely distributive lattice, and structural ax-
ioms to relate A and \/ with the other constructors of £. This last step is the
‘creative part’ of the enterprise. The criterion is that the resulting Linden-
baum algebra £LA” of the extended language £F must be the free completely
distributive lattice over the distributive lattice LA. If this is the case then we
can use

(i) the characterization of spectral spaces in terms of the free frames of opens,
and

(ii) the characterization of sober spaces in terms of the free completely dis-
tributive lattice of saturated sets

to obtain the canonical isomorphism

[1ee: £7 = Q(X)

such that [p],.» = [p], for every p € L.

It is a topic for future work to provide infinitary domain logics for the specific
languages of Abramsky for properties, typed terms, and morphisms. They are
interpreted, respectively, as compact opens of SFP-domains, elements of SFP-
domains, and morphisms between SFP-domains freely generated by means of
a language of type expressions.
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Selected notation

(S €)Stat
(G €)GStat
(d €)Decl

L = Decl x Stat

P(X)
Pﬁn (X)

Set of individual variables.
Set of expressions.

Set, of Boolean expressions.
Set of procedure variables.
Set of values.

Set of states.

Valuation of expressions.

Valuation of Boolean expressions.

Collection of statements.
Collection of guarded statements.
Collection of declarations.

Programming language.

Collection of all subsets of X.
Collection of all finite subsets of X.

Compact powerdomain of a metric space X.

Closed powerdomain of a metric space X.
Lower powerspace of a topological space X.

Upper powerspace of a topological space X.

Compact upper powerspace of a topological space X.
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Fr(X)
Fr{G | R)

CDL(X)
CDL(G | R)

F

f@:Fr(X)— CDL(Y)

Pt(«)
Pt,(F)
Q(X)
O(X)

Marcello M. Bonsangue

Convex powerspace of a topological space X.

Compact convex powerspace of a topological space X.

Hoare powerdomain of an algebraic cpo X.
Smyth powerdomain of an algebraic cpo X.

Plotkin powerdomain of an algebraic cpo X.

Topology on a set X.

Scott topology on a dcpo X.

Alexandrov topology on a poset X.
Compact open subsets of (X, O(X)).
Saturated subsets of (X, O(X)).
Compact saturated subsets of (X, O(X)).
Closed subsets of (X, O(X)).

Sub-basic open in the lower topology.
Basic open in the upper topology.

Free frame over a set X.

Frame presented by a set of generators G and a set of
relations R.

Free completely distributive lattice over a set X.

Completely distributive lattice presented by a set of
generators G' and a set of relations R.

Free completely distributive lattice over a frame F'.

Free observation frame over an onto map f: X — Y.

To space induced by an observation frame .
Sober space induced by a frame F'.
Observation frame induced by a space X.

Frame induced by a space X.
State transformers for specification from X to Y.

Hoare state transformers from X to Y.

Smyth state transformers from X to Y.
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Finitary Smyth state transformers from X to Y.
Egli-Milner state transformers from X to Y.
Finitary Egli-Milner state transformers from X to Y.

Metric state transformers with resumptions.

Predicate transformers from predicates on Y to pred-
icates on X.

Monotonic predicate transformers from predicates on
Y to predicates on X.

Total correctness predicate transformers from predi-
cates on Y to predicates on X.

Partial correctness predicate transformers from pred-
icates on Y to predicates on X.

Metric predicate transformers from predicates on Y
to predicates on X.

Metric predicate transformers with resumptions.
Preorder.

Specialization preorder on topological space.

Partial bisimulation (for transition systems).
Observable equivalence (for transition systems).
Finitary preorder (for transition systems).

P is a finite subset of the set ().

Enhancement for total correctness of a predicate P.
Enhancement for partial correctness of a predicate P.
Linear enhancement of a predicate P.

e-ball centered in z.

Compact (finite) elements of a dcpo X.

Ideal completion of a poset X.

Set, of natural numbers.
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Cardinality of the set of natural number.
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Abstract

Topological dualities in semantics

The formal semantics of a programming language consists of assigning to
every program of the language an element of a mathematical structure. In
this monograph we study the relationship between two different approaches to
define the semantics of a program, namely the denotational and the axiomatic
one.

The denotational semantics characterizes programs as elements of some math-
ematical domain in a compositional way: the semantics of a language construct
is defined in terms of its components. Due to the possibility of self-application
given by some programming languages, the semantic domain must sometimes
be defined in a recursive way.

The axiomatic semantics characterizes programs in a logical framework in-
tended for reasoning about programs properties: computations are expressed
by relating programs to assertions about their behaviour.

We study different transformations which ensure the correctness of one se-
mantics in terms of the other. These transformations form dualities rather
than equivalences. This is due to the fact that denotationally programs are
identified with functions which transform states on the input space to (sets of)
states of the output space, whereas axiomatically programs can be expressed
as functions which transform predicates on the output space to predicates on
the input space.

The dualities between the denotational and the axiomatic views of a program
are topological because they are set in a topological framework: topological
spaces are data-types and continuous functions between topological spaces are
computations. These interpretations form the basis for a systematic develop-
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ment of a propositional program logic from a denotational semantics.

We begin with considering predicates as subsets of an abstract set of states,
and we study several semantic model of sequential languages. In particular
we consider the weakest precondition and the weakest liberal precondition se-
mantics. We relate them to three denotational models based on state transfor-
mation. The relationships between these axiomatic and denotational models
generalize the duality of Plotkin between Dijkstra’s predicate transformers
and the Smyth powerdomain.

Then we extend sequential languages with specification constructs. We use the
language of Back’s refinement calculus which supports two kinds of unbounded
non-determinism. Traditionally, the semantics of the refinement calculus is
based on monotonic predicate transformers. Beside it, we give a denotational
semantics based on state transformations, and an operational semantics based
on a hyper transition system. We relate the three models as follows: the op-
erational semantics coincides with the denotational semantics which, in turn,
is dual to the predicate transformer semantics.

In order to study the semantics of concurrent languages, we refine the notion
of predicates by considering affirmative predicates. They are open subsets of
an abstract set of states equipped with a topology. This permits us to define
dualities between the upper, lower and Vietoris powerspace constructions, and
topological predicate transformers.

One of the above dualities is applied to prove the correctness of a new com-
positional predicate transformer semantics for a concurrent language. The
semantics domain is a metric space which is shown to be isometric to the
resumption domain of De Bakker and Zucker. Partial and total correctness,
and also temporal properties are studied for this metric predicate transformer
semantics.

Finally, we make an abstraction step by regarding predicates as elements of
an abstract algebra. We consider a topological space as a function from the
abstract set of affirmative predicates (with algebraic operations representing
arbitrary unions and finite intersections) to the abstract set of specifications
(with algebraic operations representing arbitrary unions and arbitrary inter-
sections). We call this function an observation frame. We first show that topo-
logical spaces can be reconstructed from observation frames, and then we prove
that observation frames are algebraic structures in a precise categorical sense.

The above theory is applied to extend the finitary domain logic of Abramsky
to an infinitary one preserving completeness. As an example we extend Abram-
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sky’s finitary domain logic for transition systems to an infinitary logic with
arbitrary conjunctions and arbitrary disjunctions. Our extension is conserva-
tive in the sense that the domain represented in logical form by the infinitary
logic coincides with the domain represented in logical form by Abramsky’s
finitary logic.
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