Best Practices: Software Engineering, Machine Learning, and AutoML

Koen van der Blom

Universiteit Leiden
The Netherlands
Koen van der Blom

• Background
 • The Hague University of Applied Sciences
 • Bachelor Informatica
 • Leiden University
 • MSc Comp. Sci. → PhD → Postdoc

• Research
 • Meta-algorithmics, automated ML+AI
 • Multi-objective optimisation
 • Evolutionary computation and swarm intelligence
 • Software engineering for ML
Machine learning

• Many techniques

• You learned
 • How they work
 • How you can use them

• Industry ‘real-world’
 • ML as part of a larger system
Image search

(imaginary system)
Image search

(Imaginary system)

Koen van der Blom

Best Practices: SE, ML, AutoML
Image search

Input

Hash input

Check DB

ML model

Web crawler

Output

(imaginary system)
Image search

- Hash input
- Check DB
- Output
- Input
- ML model
- Web crawler

Interface design (visual + technical)

(imaginary system)
Image search

- Find (source of) original or similar image

- Input image
 - Did someone look for it before?
 - Check input URL/image;
 - Hash function;
 - Basic/cheap features
 - Yes: Look up in database, done!
 - No: Run through ML model

- Interface: Also part of the system!
 - Receive user input
 - Display results
Engineering software with ML

• Software engineering (SE)
 + Machine learning

• Best practices: Guidelines, can have exceptions!
Engineering software with ML

• Software engineering (SE)
 + Machine learning

• Best practices: Guidelines, can have exceptions!

• Improve
 • Agility
 • Software quality
 • Team effectiveness
 • Traceability
Effects of best practices

• Agility: Ability to easily adapt or add functionality
 • Can we quickly add new functionality?
 • Is it easy to make a change, e.g., based on user feedback?
Effects of best practices

- Agility: Ability to easily adapt or add functionality
 - Can we quickly add new functionality?
 - Is it easy to make a change, e.g., based on user feedback?

- Software quality: High technical and functional quality
 - Does the design make sense for what we are trying to achieve?
Effects of best practices

- Agility: Ability to easily adapt or add functionality
 - Can we quickly add new functionality?
 - Is it easy to make a change, e.g., based on user feedback?

- Software quality: High technical and functional quality
 - Does the design make sense for what we are trying to achieve?

- Team effectiveness: Efficient collaboration between professionals with different skills
 - Are we getting the most out of the team we have?
Effects of best practices

• Agility: Ability to easily adapt or add functionality
 • Can we quickly add new functionality?
 • Is it easy to make a change, e.g., based on user feedback?

• Software quality: High technical and functional quality
 • Does the design make sense for what we are trying to achieve?

• Team effectiveness: Efficient collaboration between professionals with different skills
 • Are we getting the most out of the team we have?

• Traceability: Trace work items in the development lifecycle
 • Why did we develop this code?
 • Does it do what we intended?
Best practices for SE

• What do you already know?
Best practices for SE

• What do you already know?

• Things that may be familiar
 • Collaborative code management (e.g., git)
 • Testing (unit tests, regression tests)
 • Documentation (comments, diagrams)
 • Development methodology (e.g., agile/scrum)
More best practices for SE

• Automate deployment
 • and rollback in case of errors
More best practices for SE

- Automate deployment
 - and rollback in case of errors

- Shared backlog

Image by Jeff.lasovski – License: https://creativecommons.org/licenses/by-sa/3.0/deed.en
More best practices for SE

• Automate deployment
 • and rollback in case of errors

• Shared backlog

• Continuous integration
 • Automatic build/compilation, static analysis, testing
More best practices for SE

• Automate deployment
 • and rollback in case of errors

• Shared backlog

• Continuous integration
 • Automatic build/compilation, static analysis, testing

• Peer review
More best practices for SE

• Automate deployment
 • and rollback in case of errors

• Shared backlog

• Continuous integration
 • Automatic build/compilation, static analysis, testing

• Peer review

• Versioning
Software with ML components

• SE with ML is different from just SE
• Do engineering practices still apply?
• Do we have to change practices?
• Do we need new practices?
Software with ML components

• SE with ML is different from just SE
• Do engineering practices still apply?
• Do we have to change practices?
• Do we need new practices?
• Yes ...all of those!
Practices that still apply

• Still working with code
 • Automated regression testing → Does it still work?
 • Continuous integration → Automatically build/compile
 • Static analysis → Check code quality

• Still a team effort
 • Collaborative development platform → Integrate changes
 • Use a shared backlog → Task status, priority
 • Communicate → Still working towards the same goal?
Practices that still apply

• Limited attention for these practices in ML

<table>
<thead>
<tr>
<th>Title</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run Automated Regression Tests</td>
<td>27</td>
</tr>
<tr>
<td>Use Continuous Integration</td>
<td>16</td>
</tr>
<tr>
<td>Use Static Analysis to Check Code Quality</td>
<td>24</td>
</tr>
<tr>
<td>Use A Collaborative Development Platform</td>
<td>8</td>
</tr>
<tr>
<td>Work Against a Shared Backlog</td>
<td>9</td>
</tr>
<tr>
<td>Communicate, Align, and Collaborate With Multidisciplinary Team Members</td>
<td>10</td>
</tr>
</tbody>
</table>

Out of 29

From: Serban et al. 2020

• Adopt and you are ahead of the competition!
What is different with ML?
What is different with ML?

• Use data

• Create ML models

• Optimise ML system for accuracy
 • Choose best features
 • Optimise parameter settings
 • Etc.

• Run on new data, from real people...
Practices that change

• Testing \rightarrow Feature extraction code
Practices that change

- Testing → Feature extraction code

- Documentation → What does each feature (property) mean, why does it make sense to use?
Practices that change

- Testing → Feature extraction code
- Documentation → What does each feature (property) mean, why does it make sense to use?
- Peer review → Training scripts
Practices that change

• Testing \rightarrow Feature extraction code

• Documentation \rightarrow What does each feature (property) mean, why does it make sense to use?

• Peer review \rightarrow Training scripts

• Versioning \rightarrow Datasets, models, etc.
Practices that change

• Testing → Feature extraction code

• Documentation → What does each feature (property) mean, why does it make sense to use?

• Peer review → Training scripts

• Versioning → Datasets, models, etc.

• Automate → Model deployment, roll backs
Practices that change

- Testing \rightarrow Feature extraction code
- Documentation \rightarrow What does each feature (property) mean, why does it make sense to use?
- Peer review \rightarrow Training scripts
- Versioning \rightarrow Datasets, models, etc.
- Automate \rightarrow Model deployment, roll backs
- Logging \rightarrow Every prediction a model makes, including version numbers and input data
New practices

• Check the data is complete, balanced, well distributed
New practices

• Check the data is complete, balanced, well distributed

• Create reusable data cleaning and merging scripts
New practices

• Check the data is complete, balanced, well distributed

• Create reusable data cleaning and merging scripts

• Make sure data labelling is done as controlled process
New practices

• Check the data is complete, balanced, well distributed

• Create reusable data cleaning and merging scripts

• Make sure data labelling is done as controlled process

• Share data sets → ensure everyone works on the same
New practices

• Share clear training objectives in the team
New practices

• Share clear training objectives in the team

• Use training metrics that are easy to measure and understand
New practices

• Share clear training objectives in the team

• Use training metrics that are easy to measure and understand

• Remove or archive unused features
New practices

• Share clear training objectives in the team

• Use training metrics that are easy to measure and understand

• Remove or archive unused features

• Enable parallel training experiments
New practices

- Share clear training objectives in the team
- Use training metrics that are easy to measure and understand
- Remove or archive unused features
- Enable parallel training experiments
- Share experimental results → Avoid repetition
New practices

• Share clear training objectives in the team

• Use training metrics that are easy to measure and understand

• Remove or archive unused features

• Enable parallel training experiments

• Share experimental results → Avoid repetition

• Monitor deployed models
Automated machine learning

• Feature generation
• Feature selection

• Model selection
• Algorithm selection

• Hyperparameter optimisation

• Algorithm configuration
• Neural architecture search
Automated machine learning

- Feature generation
- Feature selection
- Model selection
- Algorithm selection
- Algorithm configuration
- Neural architecture search
- Hyperparameter optimisation

but all automated!
Automated machine learning

- Feature generation
- Feature selection
- Model selection
- Algorithm selection but all automated!
- Hyperparameter optimisation
- Algorithm configuration
- Neural architecture search

...and more
Automated selection

- Which model/algorithm to choose?

- Best is not always the same
 - Even with relatively small changes!

- Manually run things, see what works where
Automated selection

• Which model/algorithm to choose?
 • Best is not always the same
 • Even with relatively small changes!
 • Manually run things, see what works where

• Or: Automated ML system
 • E.g., Automate choice of model to deploy
 • Predict which model to use for which input
Automated tuning / configuration

• Which settings/parameters to use?

• Which algorithm/model architecture works best?

• Difficult to know what works well
 • Try many things → takes a lot of human time
 • Find improvements → but is it really the best?
Automated tuning / configuration

• Which settings/parameters to use?

• Which algorithm/model architecture works best?

• Difficult to know what works well
 • Try many things → takes a lot of human time
 • Find improvements → but is it really the best?

• Or: Automated ML system

• E.g. Neural architecture search
 • Optimised (deep) neural network for our use case
All is well then, ...or is it?

• Can we trust the system?

• Uses data, but which data, and how?

• Are the results biased?

• Do the users know it is an ML system, can they raise concerns when things go wrong?

• Can we explain why the ML system does what it does?
Trustworthy ML

• Test for social bias in training data
Trustworthy ML

• Test for social bias in training data

• Stop discriminatory attributes from being used as features
Trustworthy ML

• Test for social bias in training data

• Stop discriminatory attributes from being used as features

• Watch out for subgroup bias
Trustworthy ML

- Test for social bias in training data
- Stop discriminatory attributes from being used as features
- Watch out for subgroup bias
- Use privacy preserving ML techniques
 - E.g., federated learning
Trustworthy ML

• Assure application security
 • Data
 • Manipulation of system behaviour
Trustworthy ML

• Assure application security
 • Data
 • Manipulation of system behaviour

• Perform risk assessments
Trustworthy ML

• Assure application security
 • Data
 • Manipulation of system behaviour

• Perform risk assessments

• Provide audit trails
Trustworthy ML

• Assure application security
 • Data
 • Manipulation of system behaviour

• Perform risk assessments

• Provide audit trails

• Have your application audited
Trustworthy ML

- Establish responsible AI values
 - What does it mean to be responsible?
Trustworthy ML

• Establish responsible AI values
 • What does it mean to be responsible?

• Use interpretable models whenever possible
Trustworthy ML

• Establish responsible AI values
 • What does it mean to be responsible?

• Use interpretable models whenever possible

• Use team process for decision making
 • Higher accuracy ‘blackbox’ model or slightly less accurate interpretable model?
 • E.g., When do we accept a blackbox model?
Trustworthy ML

- Inform users about ML usage
Trustworthy ML

• Inform users about ML usage

• Provide safe channels to raise concerns
Trustworthy ML

• Inform users about ML usage

• Provide safe channels to raise concerns

• Explain results and decisions to users
Many practices, where to start?

• One step at a time
Many practices, where to start?

• One step at a time

• Aim: Rank by difficulty (work in progress)

Use Versioning for Data, Model, Configurations and Training Scripts	Training	basic
Share Status and Outcomes of Experiments Within the Team	Training	basic
Run Automated Regression Tests	Coding	advanced
Use Continuous Integration	Coding	medium
Use Static Analysis to Check Code Quality	Coding	advanced
Summary

• SE for ML is still SE
 • Don’t abandon best practices
 • Adapt and extend them

• AutoML to maximise performance

• Build a system we can trust

• Learn more: https://se-ml.github.io