
Enriched and Homotopical Coalgebra
Topology, Algebra, and Categories in Logic 2024, Barcelona

Henning Basold Leiden Institute of Advanced Computer Science
3 July 2024

Henning Basold 1 / 34



Outline

Introduction and Motivation

Enriched Kleisli Categories

Enriched and Monoidal Coalgebra

Homotopical Coalgebra

Wrapping Up

Henning Basold 2 / 34



Introduction and Motivation

Henning Basold 3 / 34



Motivation
Enrichment in Coalgebra and Modal Logic
▶ Semantics of effectful computations and free algebras (Kleisli)
▶ Modal logic that respects some structure1 (order, topology)

Homotopy theory and algebraic topology for behaviour
▶ Concurrent computing — detecting deadlocks2

▶ Distributed computing — computability results3

▶ Hybrid computing — detecting and handling Zeno behaviour4

▶ Homotopy-invariant modal logic for higher dimensional automata5

1Yde Venema, Jim de Groot, and Nick Bezhanishvili (Dec. 8, 2022). “Coalgebraic Geometric
Logic: Basic Theory”. In: Logical Methods in Computer Science Volume 18, Issue 4;
Adriana Balan, Alexander Kurz, and Jiří Velebil (Sept. 22, 2015). “Positive Fragments of
Coalgebraic Logics”. In: Logical Methods in Computer Science Volume 11, Issue 3.

2Lisbeth Fajstrup et al. (2016). Directed Algebraic Topology and Concurrency. Springer.
3Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum (2013). Distributed Computing Through

Combinatorial Topology. 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
4Aaron D. Ames and Shankar Sastry (June 2005). “Characterization of Zeno Behavior in

Hybrid Systems Using Homological Methods”. In: Proceedings of the 2005, American Control
Conference, 2005. ACC 2005.

5Cristian Prisacariu (2014). Higher Dimensional Modal Logic. arXiv: 1405.4100. url:
http://arxiv.org/abs/1405.4100. preprint.
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Goal

▶ Kleisli category of a monad gives effecful semantics or free algebras
▶ Often want extra structure on Kleisli morphisms coming from monad, like

order, CPO, topology, metric etc.
▶ Some specific results in literature
▶ Here: general enrichment from structure on functor
▶ Example: powerset gives order-enrichment on morphisms X → P(Y )

Example (Powerset monad)

Set Set

Pos

P

P

UD
⊣ P = U ◦ P, Pos nicely enriched over Set
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Nice Enrichment

Definition
▶ (V,×, ∗) a closed symmetric monoidal category
▶ (M,⊙, 1) closed symmetric V-monoidal V-category, MM self-enriched

M is closed over V, if there is a V-adjunction L : V M⊣

: U with L and
U strong monoidal and UMM(m,n) ∼= M(m,n) in V.

Example
▶ (Set,×, ∗) sets with Cartesian product
▶ (Pos,×, ∗) posets with Cartesian product and Set-enriched
▶ Pos is Pos-enriched with point-wise order on monotone maps
▶ D : Set Pos⊣

: U — discrete order-forgetful adjunction
▶ Forgetting the order yields: UPos(P,Q) = Pos(P,Q)
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Tensor and Cotensor from Adjunction

Lemma
If (M,⊙, 1) closed over (V,×, ∗) with L : V M⊣

: U , then M is
▶ tensored over V: v ⊗m = Lv ⊙m

▶ cotensored over V: {v,m} = MM(Lv,m)

Example (Powerset monad)
▶ X ⊗ (Q,≤) = (X ×Q,⊑discr × ≤)

▶ {X, (Q,≤)} = ([X,Q],≤pw) (point-wise order on maps)
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Getting Enrichment for Kleisli

Definition
▶ (M,⊙, 1) be closed over (V,×, ∗) with L : V M⊣

: U

▶ A monad T presented by Kleisli triple (T, η, e) on V is Kleisli M-enriching,
if there is a V-functor R : V → M with UR = T and for all v, w ∈ V a
morphism ẽv,w : {v,Rw} → MM(Rv,Rw) in M0 such that some
diagrams commute.

Intuition
The morphism ẽ gives an enriched version of Kleisli extension

Example (Powerset Monad)
▶ P : Set → Pos with PX = (P(X),⊆)

▶ ẽX,Y : {X, (P(Y ),⊆)} → [(P(X),⊆), (P(Y ),⊆)]

ẽX,Y (f)(U) =
∪
x∈U

f(x)
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ẽX,Y (f)(U) =
∪
x∈U

f(x)

Henning Basold 9 / 34



Enriching Kleisli Categories

Theorem
For any Kleisli M-enriching monad T, there is an M-category Kl(T) with
U∗(Kl(T)) ∼= Kl(T) in V-Cat, where U∗ : M-Cat → V-Cat is change of
enrichment along U : M → V.

Example (Powerset Monad)
▶ Kl(P) is Pos-enriched
▶ Forgetting the order yields Kl(P)

▶ Works also for lattice/CPO-enrichment

Example (Finite Probability Distributions)
▶ D : Set → Set factors through Set → Top
▶ Discrete-forgetful adjunction Set ↔ Top
▶ Yields Top-enrichment of Kl(D)
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Formal Coalgebra in 2-Categories

▶ Work in 2-category C: Cat, V-Cat, Fib, qCat2 (homotopy 2-category of
quasi-categories)6, hK (homotopy 2-category of ∞-cosmos K)7

▶ Define coalgebra objects (special 2-limits, inserters8) — abstraction of
category of coalgebras

▶ Define 2-category C⟲ of endomorphisms, distributive laws and distributive
law morphisms with forgetful 2-functor U : C⟲ → C

A

A

f

A B

A B

f g

k

k

δ A B

k

k′

α

Theorem
If the 2-category C has a choice of coalgebra objects for all endomorphisms,
then there is a product-preserving 2-functor CoAlg : C⟲ → C with a 2-natural
transformation p : CoAlg → U .

6Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24.
Cambridge University Press. url: https://math.jhu.edu/~eriehl/cathtpy/.

7Emily Riehl and Dominic Verity (2022). Elements of ∞-Category Theory. Cambridge
University Press (CUP).

8Claudio Hermida and Bart Jacobs (1997). “Structural Induction and Coinduction in a
Fibrational Setting”. In: Information and Computation 145.
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Very useful consequences

Many known results are instances of 2-functoriality
▶ monoidal structure on coalgebras: present lax monoidal functor as

distributive law
▶ transport of adjunctions
▶ determinisation: distributive laws of monads
▶ adequacy of coalgebraic modal logic: semantics via distributive law
▶ enriched coalgebraic modal logic via enriched fibrations

Weakening product structure:

Theorem
If K is a (symmetric) monoidal 2-category, then K⟲ is (symmetric) monoidal,
U is strict monoidal, CoAlg is a lax monoidal functor and p : CoAlg → U a
monoidal natural transformation.
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Colimits

For an appropriate 2-categorical definition of colimit we get a known result in
general:

Definition
Let C be a Cartesian closed 2-category. A colimit of a morphism d : D → AJ

parameterised in D and of shape J in C is a absolute left lifting (c, η) of d
through diagonal ∆: A → AJ .

Theorem
If C is Cartesian closed, then p : CoAlg → U creates colimits.

Example (Instances)
▶ Cat — colimits in categories
▶ V-Cat — conical colimits in categories enriched over V Cartesian closed
▶ qCat2 — homotopy colimits in quasi-categories
▶ hK — homotopy colimits in higher categories modelled by categories

enriched over ∞-cosmos K
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Homotopical Coalgebra
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Behaviour via Coalgebras

▶ Behaviour from repeated observation of a space X via map c : X → FX

▶ Functor F : C → C on a category C determines the type of observations

Example (Hybrid Systems as Coalgebras)
▶ Hybrid system as coalgebra of trajectories in a space9

▶ CG category of compactly generated spaces10 (“convenient”)
▶ Define a functor H : CG → CG by

HX = {(ϱ, d) ∈ XR≥0 × [0,∞] | ϱ ◦ min(−, d) = ϱ}

▶ A coalgebra c : X → HX continuously assigns to x ∈ X a pair (ϱ, d) of
trajectory ϱ : R≥0 → X that is constant after duration d.

▶ Can be refined to ensure that c(x) starts at x

9Renato Neves et al. (Aug. 1, 2016). “Continuity as a Computational Effect”. In: Journal of
Logical and Algebraic Methods in Programming. Articles Dedicated to Prof. J. N. Oliveira on the
Occasion of His 60th Birthday 85 (5, Part 2).

10J. Peter May (Sept. 1999). A Concise Course in Algebraic Topology. Chicago Lectures in
Mathematics. University of Chicago Press. url:
https://www.math.uchicago.edu/~may/CONCISE/.
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General Idea of Homotopical Coalgebra

Homomorphism up to homotopy

X FX

Y FY

c

d

f Ff∼

X FX F (FX) · · ·

Y FY F (FY ) · · ·

c Fc F (Fc)

F (Fd)Fdd

f Ff F (Ff)∼ ∼ ∼

▶ Diagrams commute up to coherent homotopy
▶ Homomorphism f preserves and reflects behaviour up to coherent

homotopy
▶ Inspired by coalgebra11 and higher algebra12

▶ Realise homotopy coherence in (∞, 1)-categories
▶ Homotopy (co)limits, obstruction theory via (co)homology,

homotopy-invariant modal logic, …

11Jan Rutten (2000). “Universal Coalgebra: A Theory of Systems”. In: Theor. Comput. Sci.
249.1.

12Jacob Lurie (Sept. 2017). Higher Algebra. url:
https://www.math.ias.edu/~lurie/papers/HA.pdf.
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Homotopy Coherence via Topological Enrichment

Topological Enrichment over Compactly Generated Spaces CG
C is a CG-enriched category if
▶ it has a hom-space C(X,Y ) ∈ CG for all objects X,Y

▶ composition are continuous maps cX,Y,Z : C(Y, Z)× C(X,Y ) → C(X,Z)

▶ there is an identity idX : ∗ → C(X,X) for all objects X

▶ an associativity and two unit diagrams commute
Enrichment (plus other things) enables homotopy theory13

▶ Define a homotopy h : f ⇒ g between f, g ∈ C(X,Y ) to be a continuous
map h : [0, 1] → C(X,Y ) with h(0) = f and h(1) = g

▶ Write f ∼ g if there is some homotopy f ⇒ g

▶ Homotopy coherent nerve yields (∞, 1)-category

13Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24.
Cambridge University Press. url: https://math.jhu.edu/~eriehl/cathtpy/; Michael Shulman
(June 30, 2009). Homotopy Limits and Colimits and Enriched Homotopy Theory. arXiv:
math/0610194. preprint.
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Behaviour up to Homotopy

Example
▶ Continuous maps form a space CG(X,Y ) and composition is continuous
▶ This makes CG a CG-enriched category
▶ Call f : X → Y a homotopical coalgebra morphism from c : X → HX to

d : Y → HY if it comes with a homotopy h : Hf ◦ c ⇒ d ◦ f
▶ The functor H is CG-enriched, that is,

HX,Y : CG(X,Y ) → CG(HX,HY ) is continuous
▶ Hence, homotopy h : f → g can be mapped to a homotopy

Hh : Hf → Hg by Hh = HX,Y ◦ h
▶ Obtain a sequence of homotopies

X HX H(HX) H3X · · ·

Y HY H(HY ) H3Y · · ·

c Hc

d Hd

f Hf H(Hf)

H(Hc)

H(Hd)

h Hh H(Hh) H3f

Henning Basold 19 / 34



Obstructions and Modal Logic

Example (Detecting Zeno Behaviour)
▶ Physically non-realisable behaviour
▶ For instance, infinitely fast or accelerating switching
▶ Detect as homotopical obstructions to coalgebra mapping problem
▶ Much easier to allow coalgebra homomorphism up to homotopy!

Example (Homotopy-Invariant Logic)
▶ Fibration p : cPred → CG of closed predicates
▶ CG-enriched in a suitable sense14

▶ Cartesian lifting of homotopy homomorphism yields homotopies between
predicate transformers

▶ Axioms must account for these

14Christina Vasilakopoulou (July 6, 2018). On Enriched Fibrations. arXiv: 1801.01386. preprint.
Henning Basold 20 / 34
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Wrapping Up
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Outlook

1. Improve colimit results: non-conical colimits and non-Cartesian enrichment
2. Coalgebras on simplicial sets and topological spaces for concurrency and

epistemic logic
3. Reconciliation with directed approaches15

4. Integrate with homotopical/model categories (enriched homotopy theory)
5. Enrichment is good for computation, but theory is simpler over

quasi-categories
6. Homotopy-invariant coalgebraic modal logic
7. Obstruction theory via (co)homology

15Jérémy Dubut, Eric Goubault, and Jean Goubault-Larrecq (2016). “The Directed Homotopy
Hypothesis”. In: 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Ed. by
Jean-Marc Talbot and Laurent Regnier. Vol. 62. LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.
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Thank you for your attention!

Thank you for your attention!
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Zeno Behaviour Example
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Zeno Behaviour

Sisyphus pumps water
▶ Two water tanks connected by a pump
▶ Pumps water until tank is empty and then switches direction
▶ Two states for the pumping directions
▶ Guards enable transitions
▶ Two sets of differential equations for linear flow

s1

ẋ1 = 1
ẋ2 = −1

s2

ẋ1 = −1
ẋ2 = 1

x2 = 0

x1 = 0

Not physically realisable
Infinite switching in finite time when both tanks are empty
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Modelling the Water Tanks

Domains and guards

Ω1 = {(x1, x2) ∈ R2 | xi ≥ 0}

Ω2 = {(x1, x2) ∈ R2 | xi ≥ 0}
G1 = {(x1, x2) ∈ Ω1 | x2 = 0}
G2 = {(x1, x2) ∈ Ω2 | x1 = 0}

s1

ẋ1 = 1
ẋ2 = −1

s2

ẋ1 = −1
ẋ2 = 1

x2 = 0

x1 = 0

Hybrid computation as coalgebra on colimit space

D =

G1 Ω1

{(0, 0)}

G2 Ω2

S1 = colimD

c1 : S1 → HS1

x1

x2x2

Ω1Ω2 G1

G2G2

ϱ

(0, 0) (0, r)

Henning Basold 26 / 34



Modelling the Water Tanks

Domains and guards

Ω1 = {(x1, x2) ∈ R2 | xi ≥ 0}

Ω2 = {(x1, x2) ∈ R2 | xi ≥ 0}
G1 = {(x1, x2) ∈ Ω1 | x2 = 0}
G2 = {(x1, x2) ∈ Ω2 | x1 = 0}

s1

ẋ1 = 1
ẋ2 = −1

s2

ẋ1 = −1
ẋ2 = 1

x2 = 0

x1 = 0

Hybrid computation as coalgebra on colimit space

D =

G1 Ω1
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S1 = colimD
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Realisable Sisyphus

Switching

▶ Switching takes time
▶ But it is irrelevant how much
▶ Trajectories in homotopy colimit

hcolimD of D!

S2 = hcolimD

c2 : S2 → HS2

Ωk = {(x1, x2) ∈ R2 | xi ≥ 0}

G1 = {(x1, 0) ∈ R2 | x1 ≥ 1}

G2 = {(0, x2) ∈ R2 | x2 ≥ 1}

x1

x2

x1

x2

Ω1

Ω2

G1 × [0, 1]

G2 × [0, 1]

u γ

Postulate
Any physically realisable model must have a coalgebra map up to homotopy
into c2.
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Homotopical Obstruction to Realisability

Water tank pump not realisable
▶ Let f : S1 → S2 be a map with a homotopy h : c2 ◦ f ⇒ Hf ◦ c1

(endpoint-preserving)

▶ This allows us to show that any loop in S2 can be contracted to a
constant path

▶ But there is a hole in S2!
▶ Thus such h cannot exist and c1 is not realisable

Dual use
The other way around: c2 forces system to be realisable16

16Tyler Westenbroek et al. (Jan. 1, 2021). “Smooth Approximations for Hybrid Optimal Control
Problems with Application to Robotic Walking”. In: IFAC-PapersOnLine. 7th IFAC Conference on
Analysis and Design of Hybrid Systems ADHS 2021 54.5.
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Homotopy-Invariant Modal Logic
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Modal Logic on HDA

Show modalities and homotopy axiom17

φ ::= p | ⊥ | φ → φ | ♢↑φ | ♢↓φ

▶ ♢↑φ holds if some action can be started and φ holds during execution
▶ ♢↓φ holds if some action can be ended and φ holds afterwards

Interpretation over an HDA with cubes X

J♢↑φKn = {x ∈ Xn | ∃x′ ∈ Xn+1. x is a boundary of x′ and x′ ∈ JφKn+1}J♢↓φKn+1 = {x ∈ Xn+1 | ∃x′ ∈ Xn. x
′ is a boundary of x and x′ ∈ JφKn}

x ⊨ φ ⇐⇒ ∃n. x ∈ JφKn

17Cristian Prisacariu (2010). “Modal Logic over Higher Dimensional Automata”. In: Proc. of
CONCUR 2010.
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Homotopy-Invariance for HDA Logic

· · ·

·
x0

·
x1

·

{q}

{p} {r,p}

Example

x0 ⊨ ♢↑p x1 ⊨ ♢↑♢↑♢↓q
x1 ⊨ ♢↑♢↑r ∧ p x1 ⊨ ♢↑♢↓♢↑q

Interchange Axioms18

♢↑♢↑♢↓φ → ♢↑♢↓♢↑φ (A10)
♢↑♢↓♢↓φ → ♢↓♢↑♢↓φ (A10’)

18Cristian Prisacariu (2014). Higher Dimensional Modal Logic. arXiv: 1405.4100. url:
http://arxiv.org/abs/1405.4100. preprint.
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Coalgebraic Modal Logic

One view based on dual adjunctions, so-called logical connections19

C Dop
F Lop

P

Q

⊣ and ϱ : PF → LopP and α : LΦ → Φ

Components
▶ C category for “states” in coalgebras
▶ F behaviour functor to get coalgebras X → FX

▶ D typically category of algebras for logical operators
▶ L specifies modal operators
▶ initial algebra α for syntax
▶ distributive law ϱ : LP → PF to give semantics of formulas in a coalgebra
▶ P ⊣ Q is often concrete duality by mapping into dualising object

19Dusko Pavlovic, Michael W. Mislove, and James Worrell (2006). “Testing Semantics:
Connecting Processes and Process Logics”. In: Proceedings of Algebraic Methodology and
Software Technology, 11th International Conference, AMAST 2006. Ed. by Michael Johnson and
Varmo Vene. Vol. 4019. Lecture Notes in Computer Science. Springer; Toby Wilkinson (2013).
“Enriched Coalgebraic Modal Logic”. PhD thesis. url: http://eprints.soton.ac.uk/354112/.
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Modal Logic for General Coinductive Predicates

Previous picture is restricted to logic for behavioural equivalence/bisimilarity!

E

Dop

B

F

Lop

F

p

P

P

Q

Q

⊣
⊣

Components20

▶ p : E → B fibration
▶ coalgebras for F are proofs of coinductive predicates
▶ final coalgebras in fibres are typically called coinductive predicates
▶ soundness (adequacy) and completeness (expressiveness) results provable

in this setting

20Clemens Kupke and Jurriaan Rot (Dec. 15, 2021). “Expressive Logics for Coinductive
Predicates”. In: Logical Methods in Computer Science Volume 17, Issue 4.
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Higher Coalgebraic Modal Logic

▶ Theorem from earlier gives adequacy in categories
▶ Reason is that 2-categorically defined Cartesian fibrations are the right

thing
▶ In quasi-categories this fails
▶ Needs some work directly with quasi-categories21

▶ Develop coalgebraic modal logic further in higher categories

21Emily Riehl and Dominic Verity (2022). Elements of ∞-Category Theory. Cambridge
University Press (CUP).
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