Enriched and Homotopical Coalgebra

Topology, Algebra, and Categories in Logic 2024, Barcelona

Henning Basold

Leiden Institute of Advanced Computer Science 3 July 2024

Universiteit Leiden The Netherlands

Outline

Introduction and Motivation

Enriched Kleisli Categories

Enriched and Monoidal Coalgebra

Homotopical Coalgebra

Wrapping Up

Introduction and Motivation

Motivation

Enrichment in Coalgebra and Modal Logic

- Semantics of effectful computations and free algebras (Kleisli)
- Modal logic that respects some structure¹ (order, topology)

Homotopy theory and algebraic topology for behaviour

- Concurrent computing detecting deadlocks²
- Distributed computing computability results³
- Hybrid computing detecting and handling Zeno behaviour⁴
- Homotopy-invariant modal logic for higher dimensional automata⁵

¹Yde Venema, Jim de Groot, and Nick Bezhanishvili (Dec. 8, 2022). "Coalgebraic Geometric Logic: Basic Theory". In: *Logical Methods in Computer Science* Volume 18, Issue 4; Adriana Balan, Alexander Kurz, and Jiří Velebil (Sept. 22, 2015). "Positive Fragments of Coalgebraic Logics". In: *Logical Methods in Computer Science* Volume 11, Issue 3.

²Lisbeth Fajstrup et al. (2016). *Directed Algebraic Topology and Concurrency*. Springer.

³Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum (2013). *Distributed Computing Through Combinatorial Topology*. 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

⁴Aaron D. Ames and Shankar Sastry (June 2005). "Characterization of Zeno Behavior in Hybrid Systems Using Homological Methods". In: *Proceedings of the 2005, American Control Conference, 2005.* ACC 2005.

⁵Cristian Prisacariu (2014). *Higher Dimensional Modal Logic*. arXiv: 1405.4100. URL: http://arxiv.org/abs/1405.4100. preprint.

Enriched Kleisli Categories

Goal

- Kleisli category of a monad gives effectul semantics or free algebras
- Often want extra structure on Kleisli morphisms coming from monad, like order, CPO, topology, metric etc.
- Some specific results in literature
- Here: general enrichment from structure on functor
- Example: powerset gives order-enrichment on morphisms $X \to \mathcal{P}(Y)$

Goal

- Kleisli category of a monad gives effectul semantics or free algebras
- Often want extra structure on Kleisli morphisms coming from monad, like order, CPO, topology, metric etc.
- Some specific results in literature
- Here: general enrichment from structure on functor
- Example: powerset gives order-enrichment on morphisms $X \to \mathcal{P}(Y)$

Example (Powerset monad)

$$\begin{array}{ccc} \mathbf{Set} & \xrightarrow{\mathcal{P}} & \mathbf{Set} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Nice Enrichment

Definition

 $\blacktriangleright~(\mathcal{V},\times,\ast)$ a closed symmetric monoidal category

▶ $(\mathcal{M}, \odot, 1)$ closed symmetric \mathcal{V} -monoidal \mathcal{V} -category, $\underline{\mathcal{M}}_{\mathcal{M}}$ self-enriched

 \mathcal{M} is closed over \mathcal{V} , if there is a \mathcal{V} -adjunction $L: \mathcal{V} \xrightarrow{\perp} \mathcal{M}: U$ with L and U strong monoidal and $U \underline{\mathcal{M}}_{\mathcal{M}}(m,n) \cong \underline{\mathcal{M}}(m,n)$ in \mathcal{V} .

Nice Enrichment

Definition

• $(\mathcal{V}, \times, *)$ a closed symmetric monoidal category

• $(\mathcal{M}, \odot, 1)$ closed symmetric \mathcal{V} -monoidal \mathcal{V} -category, $\underline{\mathcal{M}}_{\mathcal{M}}$ self-enriched \mathcal{M} is closed over \mathcal{V} , if there is a \mathcal{V} -adjunction $L: \mathcal{V} \xrightarrow{\perp} \mathcal{M} : U$ with L and U strong monoidal and $U\underline{\mathcal{M}}_{\mathcal{M}}(m, n) \cong \underline{\mathcal{M}}(m, n)$ in \mathcal{V} .

Example

- $(\mathbf{Set}, \times, *)$ sets with Cartesian product
- ▶ (Pos, ×, *) posets with Cartesian product and Set-enriched
- Pos is Pos-enriched with point-wise order on monotone maps
- ▶ $D: \mathbf{Set} \xrightarrow{\bot} \mathbf{Pos} : U$ discrete order-forgetful adjunction
- Forgetting the order yields: $U\underline{\mathbf{Pos}}(P,Q) = \mathbf{Pos}(P,Q)$

Tensor and Cotensor from Adjunction

Lemma

If $(\mathcal{M}, \odot, 1)$ closed over $(\mathcal{V}, \times, *)$ with $L : \mathcal{V} \xrightarrow{\perp} \mathcal{M} : U$, then \mathcal{M} is

- tensored over \mathcal{V} : $v \otimes m = Lv \odot m$
- cotensored over \mathcal{V} : $\{v, m\} = \underline{\mathcal{M}}_{\mathcal{M}}(Lv, m)$

Example (Powerset monad)

$$\blacktriangleright X \otimes (Q, \leq) = (X \times Q, \sqsubseteq_{\mathsf{discr}} \times \leq)$$

▶ ${X, (Q, \leq)} = ([X, Q], \leq_{pw})$ (point-wise order on maps)

Getting Enrichment for Kleisli

Definition

- $\blacktriangleright \ (\mathcal{M},\odot,1) \text{ be closed over } (\mathcal{V},\times,*) \text{ with } L:\mathcal{V} \xrightarrow{\perp} \mathcal{M}:U$
- A monad \mathbb{T} presented by Kleisli triple (T, η, e) on \mathcal{V} is Kleisli \mathcal{M} -enriching, if there is a \mathcal{V} -functor $R: \mathcal{V} \to \mathcal{M}$ with UR = T and for all $v, w \in \mathcal{V}$ a morphism $\tilde{e}_{v,w}: \{v, Rw\} \to \underline{\mathcal{M}}_{\mathcal{M}}(Rv, Rw)$ in \mathcal{M}_0 such that some diagrams commute.

Getting Enrichment for Kleisli

Definition

- $(\mathcal{M}, \odot, 1)$ be closed over $(\mathcal{V}, \times, *)$ with $L: \mathcal{V} \xrightarrow{\perp} \mathcal{M}: U$
- A monad \mathbb{T} presented by Kleisli triple (T, η, e) on \mathcal{V} is Kleisli \mathcal{M} -enriching, if there is a \mathcal{V} -functor $R: \mathcal{V} \to \mathcal{M}$ with UR = T and for all $v, w \in \mathcal{V}$ a morphism $\tilde{e}_{v,w}: \{v, Rw\} \to \underline{\mathcal{M}}_{\mathcal{M}}(Rv, Rw)$ in \mathcal{M}_0 such that some diagrams commute.

Intuition

The morphism \tilde{e} gives an enriched version of Kleisli extension

Getting Enrichment for Kleisli

Definition

- $(\mathcal{M}, \odot, 1)$ be closed over $(\mathcal{V}, \times, *)$ with $L: \mathcal{V} \xrightarrow{\perp} \mathcal{M}: U$
- A monad \mathbb{T} presented by Kleisli triple (T, η, e) on \mathcal{V} is Kleisli \mathcal{M} -enriching, if there is a \mathcal{V} -functor $R: \mathcal{V} \to \mathcal{M}$ with UR = T and for all $v, w \in \mathcal{V}$ a morphism $\tilde{e}_{v,w}: \{v, Rw\} \to \underline{\mathcal{M}}_{\mathcal{M}}(Rv, Rw)$ in \mathcal{M}_0 such that some diagrams commute.

Intuition

The morphism \tilde{e} gives an enriched version of Kleisli extension

Example (Powerset Monad)

▶
$$P:$$
Set \to Pos with $PX = (\mathcal{P}(X), \subseteq)$

•
$$\tilde{e}_{X,Y}$$
: $\{X, (\mathcal{P}(Y), \subseteq)\} \to [(\mathcal{P}(X), \subseteq), (\mathcal{P}(Y), \subseteq)]$

$$\tilde{e}_{X,Y}(f)(U) = \bigcup_{x \in U} f(x)$$

Enriching Kleisli Categories

Theorem

For any Kleisli \mathcal{M} -enriching monad \mathbb{T} , there is an \mathcal{M} -category $\mathbf{Kl}(\mathbb{T})$ with $U_*(\mathbf{Kl}(\mathbb{T})) \cong \mathbf{Kl}(\mathbb{T})$ in \mathcal{V} -Cat, where $U_* : \mathcal{M}$ -Cat $\to \mathcal{V}$ -Cat is change of enrichment along $U : \mathcal{M} \to \mathcal{V}$.

Enriching Kleisli Categories

Theorem

For any Kleisli \mathcal{M} -enriching monad \mathbb{T} , there is an \mathcal{M} -category $\mathbf{Kl}(\mathbb{T})$ with $U_*(\mathbf{Kl}(\mathbb{T})) \cong \mathbf{Kl}(\mathbb{T})$ in \mathcal{V} -Cat, where $U_* \colon \mathcal{M}$ -Cat $\to \mathcal{V}$ -Cat is change of enrichment along $U \colon \mathcal{M} \to \mathcal{V}$.

Example (Powerset Monad)

- ▶ Kl(P) is Pos-enriched
- ► Forgetting the order yields **Kl**(*P*)
- Works also for lattice/CPO-enrichment

Enriching Kleisli Categories

Theorem

For any Kleisli \mathcal{M} -enriching monad \mathbb{T} , there is an \mathcal{M} -category $\mathbf{Kl}(\mathbb{T})$ with $U_*(\mathbf{Kl}(\mathbb{T})) \cong \mathbf{Kl}(\mathbb{T})$ in \mathcal{V} -Cat, where $U_* \colon \mathcal{M}$ -Cat $\to \mathcal{V}$ -Cat is change of enrichment along $U \colon \mathcal{M} \to \mathcal{V}$.

Example (Powerset Monad)

- ▶ Kl(P) is Pos-enriched
- ► Forgetting the order yields **Kl**(*P*)
- Works also for lattice/CPO-enrichment

Example (Finite Probability Distributions)

- $\blacktriangleright \ \mathcal{D} \colon \mathbf{Set} \to \mathbf{Set} \text{ factors through } \mathbf{Set} \to \mathbf{Top}$
- $\blacktriangleright \ \ \mathsf{Discrete-forgetful} \ \ \mathsf{adjunction} \ \ \mathbf{Set} \leftrightarrow \mathbf{Top}$
- Yields Top-enrichment of $Kl(\mathcal{D})$

Enriched and Monoidal Coalgebra

Work in 2-category C: Cat, V-Cat, Fib, qCat₂ (homotopy 2-category of quasi-categories)⁶, hK (homotopy 2-category of ∞-cosmos K)⁷

⁶Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24. Cambridge University Press. URL: https://math.jhu.edu/~eriehl/cathtpy/.

⁷Emily Riehl and Dominic Verity (2022). *Elements of* ∞ -*Category Theory*. Cambridge University Press (CUP).

⁸Claudio Hermida and Bart Jacobs (1997). "Structural Induction and Coinduction in a Fibrational Setting". In: *Information and Computation* 145.

- Work in 2-category C: Cat, V-Cat, Fib, qCat₂ (homotopy 2-category of quasi-categories)⁶, hK (homotopy 2-category of ∞-cosmos K)⁷
- Define coalgebra objects (special 2-limits, inserters⁸) abstraction of category of coalgebras

⁶Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24. Cambridge University Press. URL: https://math.jhu.edu/~eriehl/cathtpy/.

⁷Emily Riehl and Dominic Verity (2022). *Elements of* ∞ -*Category Theory*. Cambridge University Press (CUP).

⁸Claudio Hermida and Bart Jacobs (1997). "Structural Induction and Coinduction in a Fibrational Setting". In: *Information and Computation* 145.

- Work in 2-category C: Cat, V-Cat, Fib, qCat₂ (homotopy 2-category of quasi-categories)⁶, hK (homotopy 2-category of ∞-cosmos K)⁷
- Define coalgebra objects (special 2-limits, inserters⁸) abstraction of category of coalgebras
- ▶ Define 2-category C^{\bigcirc} of endomorphisms, distributive laws and distributive law morphisms with forgetful 2-functor $U: C^{\bigcirc} \rightarrow C$

$$\begin{array}{cccc} A & A \xrightarrow{k} B \\ f \downarrow & f \downarrow & \swarrow^{\delta} \downarrow^{g} \\ A & A \xrightarrow{k} B \end{array} \qquad A \xrightarrow{k'} B$$

⁶Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24. Cambridge University Press. URL: https://math.jhu.edu/~eriehl/cathtpy/.

⁷Emily Riehl and Dominic Verity (2022). *Elements of* ∞ -*Category Theory*. Cambridge University Press (CUP).

⁸Claudio Hermida and Bart Jacobs (1997). "Structural Induction and Coinduction in a Fibrational Setting". In: *Information and Computation* 145.

- Work in 2-category C: Cat, V-Cat, Fib, qCat₂ (homotopy 2-category of quasi-categories)⁶, hK (homotopy 2-category of ∞-cosmos K)⁷
- Define coalgebra objects (special 2-limits, inserters⁸) abstraction of category of coalgebras
- ▶ Define 2-category C^{\bigcirc} of endomorphisms, distributive laws and distributive law morphisms with forgetful 2-functor $U: C^{\bigcirc} \rightarrow C$

Theorem

If the 2-category C has a choice of coalgebra objects for all endomorphisms, then there is a product-preserving 2-functor CoAlg: $C^{\bigcirc} \to C$ with a 2-natural transformation $p: CoAlg \to U$.

⁶Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24. Cambridge University Press. URL: https://math.jhu.edu/~eriehl/cathtpy/.

⁷Emily Riehl and Dominic Verity (2022). *Elements of* ∞ -*Category Theory*. Cambridge University Press (CUP).

⁸Claudio Hermida and Bart Jacobs (1997). "Structural Induction and Coinduction in a Fibrational Setting". In: *Information and Computation* 145.

Very useful consequences

Many known results are instances of 2-functoriality

- monoidal structure on coalgebras: present lax monoidal functor as distributive law
- transport of adjunctions
- determinisation: distributive laws of monads
- adequacy of coalgebraic modal logic: semantics via distributive law
- enriched coalgebraic modal logic via enriched fibrations

Very useful consequences

Many known results are instances of 2-functoriality

- monoidal structure on coalgebras: present lax monoidal functor as distributive law
- transport of adjunctions
- determinisation: distributive laws of monads
- adequacy of coalgebraic modal logic: semantics via distributive law
- enriched coalgebraic modal logic via enriched fibrations

Weakening product structure:

Theorem

If \mathcal{K} is a (symmetric) monoidal 2-category, then $\mathcal{K}^{\circlearrowright}$ is (symmetric) monoidal, U is strict monoidal, CoAlg is a lax monoidal functor and $p: CoAlg \to U$ a monoidal natural transformation.

Colimits

For an appropriate 2-categorical definition of colimit we get a known result in general:

Definition

Let \mathcal{C} be a Cartesian closed 2-category. A colimit of a morphism $d: D \to A^J$ parameterised in D and of shape J in \mathcal{C} is a absolute left lifting (c, η) of d through diagonal $\Delta: A \to A^J$.

Theorem

If C is Cartesian closed, then $p \colon CoAlg \to U$ creates colimits.

Colimits

For an appropriate 2-categorical definition of colimit we get a known result in general:

Definition

Let \mathcal{C} be a Cartesian closed 2-category. A colimit of a morphism $d: D \to A^J$ parameterised in D and of shape J in \mathcal{C} is a absolute left lifting (c, η) of d through diagonal $\Delta: A \to A^J$.

Theorem

If C is Cartesian closed, then $p \colon CoAlg \to U$ creates colimits.

Example (Instances)

- Cat colimits in categories
- ▶ \mathcal{V} -Cat conical colimits in categories enriched over \mathcal{V} Cartesian closed
- ▶ qCat₂ homotopy colimits in quasi-categories
- ▶ $\mathfrak{h}\mathcal{K}$ homotopy colimits in higher categories modelled by categories enriched over ∞-cosmos \mathcal{K}

Homotopical Coalgebra

Behaviour via Coalgebras

- ▶ Behaviour from repeated observation of a space X via map $c: X \to FX$
- ▶ Functor $F: C \to C$ on a category C determines the type of observations

Example (Hybrid Systems as Coalgebras)

- Hybrid system as coalgebra of trajectories in a space⁹
- CG category of compactly generated spaces¹⁰ ("convenient")
- Define a functor $H \colon \mathbf{CG} \to \mathbf{CG}$ by

$$HX = \{(\varrho, d) \in X^{\mathbb{R} \ge 0} \times [0, \infty] \mid \varrho \circ \min(-, d) = \varrho\}$$

- A coalgebra $c: X \to HX$ continuously assigns to $x \in X$ a pair (ϱ, d) of trajectory $\varrho: \mathbb{R}_{>0} \to X$ that is constant after duration d.
- Can be refined to ensure that c(x) starts at x

¹⁰J. Peter May (Sept. 1999). A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press. URL: https://www.math.uchicago.edu/~may/CONCISE/.

⁹Renato Neves et al. (Aug. 1, 2016). "Continuity as a Computational Effect". In: *Journal of Logical and Algebraic Methods in Programming*. Articles Dedicated to Prof. J. N. Oliveira on the Occasion of His 60th Birthday 85 (5, Part 2).

General Idea of Homotopical Coalgebra

- Diagrams commute up to coherent homotopy
- Homomorphism f preserves and reflects behaviour up to coherent homotopy
- Inspired by coalgebra¹¹ and higher algebra¹²
- ▶ Realise homotopy coherence in $(\infty, 1)$ -categories
- Homotopy (co)limits, obstruction theory via (co)homology, homotopy-invariant modal logic, ...

```
<sup>12</sup> Jacob Lurie (Sept. 2017). Higher Algebra. URL:
https://www.math.ias.edu/~lurie/papers/HA.pdf.
```

¹¹Jan Rutten (2000). "Universal Coalgebra: A Theory of Systems". In: *Theor. Comput. Sci.* 249.1.

General Idea of Homotopical Coalgebra

- Diagrams commute up to coherent homotopy
- Homomorphism f preserves and reflects behaviour up to coherent homotopy
- Inspired by coalgebra¹¹ and higher algebra¹²
- Realise homotopy coherence in $(\infty, 1)$ -categories
- Homotopy (co)limits, obstruction theory via (co)homology, homotopy-invariant modal logic, ...

```
<sup>12</sup> Jacob Lurie (Sept. 2017). Higher Algebra. URL:
https://www.math.ias.edu/~lurie/papers/HA.pdf.
```

¹¹Jan Rutten (2000). "Universal Coalgebra: A Theory of Systems". In: *Theor. Comput. Sci.* 249.1.

Homotopy Coherence via Topological Enrichment

Topological Enrichment over Compactly Generated Spaces CG

 $\underline{\mathcal{C}}$ is a CG-enriched category if

- ▶ it has a hom-space $\underline{C}(X, Y) \in \mathbf{CG}$ for all objects X, Y
- composition are continuous maps $c_{X,Y,Z}: \underline{C}(Y,Z) \times \underline{C}(X,Y) \to \underline{C}(X,Z)$
- there is an identity $id_X : * \to \underline{\mathcal{C}}(X, X)$ for all objects X
- an associativity and two unit diagrams commute

Enrichment (plus other things) enables homotopy theory¹³

- ▶ Define a homotopy $h: f \Rightarrow g$ between $f, g \in \underline{C}(X, Y)$ to be a continuous map $h: [0, 1] \rightarrow \underline{C}(X, Y)$ with h(0) = f and h(1) = g
- \blacktriangleright Write $f \sim g$ if there is some homotopy $f \Rightarrow g$
- \blacktriangleright Homotopy coherent nerve yields $(\infty,1)\text{-category}$

¹³Emily Riehl (2014). Categorical Homotopy Theory. New Mathematical Monographs 24. Cambridge University Press. URL: https://math.jhu.edu/~eriehl/cathtpy/; Michael Shulman (June 30, 2009). Homotopy Limits and Colimits and Enriched Homotopy Theory. arXiv: math/0610194. preprint.

Behaviour up to Homotopy

Example

- Continuous maps form a space $\underline{CG}(X, Y)$ and composition is continuous
- This makes <u>CG</u> a CG-enriched category
- Call $f: X \to Y$ a homotopical coalgebra morphism from $c: X \to HX$ to $d: Y \to HY$ if it comes with a homotopy $h: Hf \circ c \Rightarrow d \circ f$
- ▶ The functor H is CG-enriched, that is, $H_{X,Y}$: CG $(X,Y) \rightarrow$ CG(HX,HY) is continuous
- ▶ Hence, homotopy $h: f \to g$ can be mapped to a homotopy $Hh: Hf \to Hg$ by $Hh = H_{X,Y} \circ h$
- Obtain a sequence of homotopies

Obstructions and Modal Logic

Example (Detecting Zeno Behaviour)

- Physically non-realisable behaviour
- ▶ For instance, infinitely fast or accelerating switching
- Detect as homotopical obstructions to coalgebra mapping problem
- Much easier to allow coalgebra homomorphism up to homotopy!

¹⁴Christina Vasilakopoulou (July 6, 2018). On Enriched Fibrations. arXiv: 1801.01386. preprint.

Obstructions and Modal Logic

Example (Detecting Zeno Behaviour)

- Physically non-realisable behaviour
- For instance, infinitely fast or accelerating switching
- Detect as homotopical obstructions to coalgebra mapping problem
- Much easier to allow coalgebra homomorphism up to homotopy!

Example (Homotopy-Invariant Logic)

- ▶ Fibration $p: \mathbf{cPred} \to \mathbf{CG}$ of closed predicates
- ▶ CG-enriched in a suitable sense¹⁴
- Cartesian lifting of homotopy homomorphism yields homotopies between predicate transformers
- Axioms must account for these

Henning Basold

¹⁴Christina Vasilakopoulou (July 6, 2018). On Enriched Fibrations. arXiv: 1801.01386. preprint.

Wrapping Up

Outlook

- 1. Improve colimit results: non-conical colimits and non-Cartesian enrichment
- 2. Coalgebras on simplicial sets and topological spaces for concurrency and epistemic logic
- 3. Reconciliation with directed approaches¹⁵
- 4. Integrate with homotopical/model categories (enriched homotopy theory)
- 5. Enrichment is good for computation, but theory is simpler over quasi-categories
- 6. Homotopy-invariant coalgebraic modal logic
- 7. Obstruction theory via (co)homology

¹⁵ Jérémy Dubut, Eric Goubault, and Jean Goubault-Larrecq (2016). "The Directed Homotopy Hypothesis". In: 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Ed. by Jean-Marc Talbot and Laurent Regnier. Vol. 62. LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Zeno Behaviour Example

Zeno Behaviour

Sisyphus pumps water

- Two water tanks connected by a pump
- Pumps water until tank is empty and then switches direction
- Two states for the pumping directions
- Guards enable transitions
- Two sets of differential equations for linear flow

Zeno Behaviour

Sisyphus pumps water

- Two water tanks connected by a pump
- Pumps water until tank is empty and then switches direction
- Two states for the pumping directions
- Guards enable transitions
- Two sets of differential equations for linear flow

Not physically realisable

Infinite switching in finite time when both tanks are empty

Modelling the Water Tanks

Domains and guards

$$\Omega_{1} = \{ (x_{1}, x_{2}) \in \mathbb{R}^{2} \mid x_{i} \ge 0 \}$$

$$\Omega_{2} = \{ (x_{1}, x_{2}) \in \mathbb{R}^{2} \mid x_{i} \ge 0 \}$$

$$G_{1} = \{ (x_{1}, x_{2}) \in \Omega_{1} \mid x_{2} = 0 \}$$

$$G_{2} = \{ (x_{1}, x_{2}) \in \Omega_{2} \mid x_{1} = 0 \}$$

Modelling the Water Tanks

Domains and guards

$$\Omega_1 = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_i \ge 0 \}$$

$$\Omega_2 = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_i \ge 0 \}$$

$$G_1 = \{ (x_1, x_2) \in \Omega_1 \mid x_2 = 0 \}$$

$$G_2 = \{ (x_1, x_2) \in \Omega_2 \mid x_1 = 0 \}$$

Modelling the Water Tanks

Domains and guards

$$\Omega_{1} = \{ (x_{1}, x_{2}) \in \mathbb{R}^{2} \mid x_{i} \ge 0 \}$$

$$\Omega_{2} = \{ (x_{1}, x_{2}) \in \mathbb{R}^{2} \mid x_{i} \ge 0 \}$$

$$G_{1} = \{ (x_{1}, x_{2}) \in \Omega_{1} \mid x_{2} = 0 \}$$

$$G_{2} = \{ (x_{1}, x_{2}) \in \Omega_{2} \mid x_{1} = 0 \}$$

Hybrid computation as coalgebra on colimit space

Switching

- Switching takes time
- But it is irrelevant how much
- Trajectories in homotopy colimit hcolim D of D!

 $S_2 = \operatorname{hcolim} D$ $c_2 \colon S_2 \to HS_2$

Switching

- Switching takes time
- But it is irrelevant how much
- Trajectories in homotopy colimit hcolim D of D!

 $S_2 = \operatorname{hcolim} D$ $c_2 \colon S_2 \to HS_2$

$$\Omega_k = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_i \ge 0 \}$$

$$G_1 = \{ (x_1, 0) \in \mathbb{R}^2 \mid x_1 \ge 1 \}$$

$$G_2 = \{ (0, x_2) \in \mathbb{R}^2 \mid x_2 \ge 1 \}$$

Switching

- Switching takes time
- But it is irrelevant how much
- Trajectories in homotopy colimit hcolim D of D!

 $S_2 = \operatorname{hcolim} D$ $c_2 \colon S_2 \to HS_2$

$$\Omega_k = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_i \ge 0 \}$$

$$G_1 = \{ (x_1, 0) \in \mathbb{R}^2 \mid x_1 \ge 1 \}$$

$$G_2 = \{ (0, x_2) \in \mathbb{R}^2 \mid x_2 \ge 1 \}$$

Switching

- Switching takes time
- But it is irrelevant how much
- Trajectories in homotopy colimit hcolim D of D!

 $S_2 = \operatorname{hcolim} D$ $c_2 \colon S_2 \to HS_2$

$$\Omega_k = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_i \ge 0 \}$$

$$G_1 = \{ (x_1, 0) \in \mathbb{R}^2 \mid x_1 \ge 1 \}$$

$$G_2 = \{ (0, x_2) \in \mathbb{R}^2 \mid x_2 \ge 1 \}$$

Postulate

Any physically realisable model must have a coalgebra map up to homotopy into c_2 .

Water tank pump not realisable

• Let $f: S_1 \to S_2$ be a map with a homotopy $h: c_2 \circ f \Rightarrow Hf \circ c_1$ (endpoint-preserving)

¹⁶Tyler Westenbroek et al. (Jan. 1, 2021). "Smooth Approximations for Hybrid Optimal Control Problems with Application to Robotic Walking". In: *IFAC-PapersOnLine*. 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021 54.5.

Water tank pump not realisable

- Let $f: S_1 \to S_2$ be a map with a homotopy $h: c_2 \circ f \Rightarrow Hf \circ c_1$ (endpoint-preserving)
- \blacktriangleright This allows us to show that any loop in S_2 can be contracted to a constant path

¹⁶Tyler Westenbroek et al. (Jan. 1, 2021). "Smooth Approximations for Hybrid Optimal Control Problems with Application to Robotic Walking". In: *IFAC-PapersOnLine*. 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021 54.5.

Water tank pump not realisable

- Let $f: S_1 \to S_2$ be a map with a homotopy $h: c_2 \circ f \Rightarrow Hf \circ c_1$ (endpoint-preserving)
- \blacktriangleright This allows us to show that any loop in S_2 can be contracted to a constant path
- ▶ But there is a hole in S₂!

¹⁶Tyler Westenbroek et al. (Jan. 1, 2021). "Smooth Approximations for Hybrid Optimal Control Problems with Application to Robotic Walking". In: *IFAC-PapersOnLine*. 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021 54.5.

Water tank pump not realisable

- Let f: S₁ → S₂ be a map with a homotopy h: c₂ ∘ f ⇒ Hf ∘ c₁ (endpoint-preserving)
- ▶ This allows us to show that any loop in S₂ can be contracted to a constant path
- ▶ But there is a hole in S₂!
- Thus such h cannot exist and c₁ is not realisable

¹⁶Tyler Westenbroek et al. (Jan. 1, 2021). "Smooth Approximations for Hybrid Optimal Control Problems with Application to Robotic Walking". In: *IFAC-PapersOnLine*. 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021 54.5.

Water tank pump not realisable

- Let f: S₁ → S₂ be a map with a homotopy h: c₂ ∘ f ⇒ Hf ∘ c₁ (endpoint-preserving)
- \blacktriangleright This allows us to show that any loop in S_2 can be contracted to a constant path
- ▶ But there is a hole in S₂!
- Thus such h cannot exist and c₁ is not realisable

Dual use

The other way around: c_2 forces system to be realisable¹⁶

¹⁶Tyler Westenbroek et al. (Jan. 1, 2021). "Smooth Approximations for Hybrid Optimal Control Problems with Application to Robotic Walking". In: *IFAC-PapersOnLine*. 7th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2021 54.5.

Homotopy-Invariant Modal Logic

Modal Logic on HDA

Show modalities and homotopy axiom¹⁷

$$\varphi ::= p \mid \bot \mid \varphi \to \varphi \mid \Diamond^{\uparrow} \varphi \mid \Diamond^{\downarrow} \varphi$$

 $\blacktriangleright~\Diamond^{\uparrow}\varphi$ holds if some action can be started and φ holds during execution

 $\blacktriangleright \ \Diamond^{\!\downarrow} \varphi$ holds if some action can be ended and φ holds afterwards

Interpretation over an HDA with cubes X

$$\begin{split} \llbracket \Diamond^{\uparrow} \varphi \rrbracket_n &= \{ x \in X_n \mid \exists x' \in X_{n+1}. x \text{ is a boundary of } x' \text{ and } x' \in \llbracket \varphi \rrbracket_{n+1} \} \\ \llbracket \Diamond^{\downarrow} \varphi \rrbracket_{n+1} &= \{ x \in X_{n+1} \mid \exists x' \in X_n. x' \text{ is a boundary of } x \text{ and } x' \in \llbracket \varphi \rrbracket_n \} \\ x \vDash \varphi &\iff \exists n. x \in \llbracket \varphi \rrbracket_n \end{split}$$

¹⁷Cristian Prisacariu (2010). "Modal Logic over Higher Dimensional Automata". In: *Proc. of CONCUR 2010.*

Homotopy-Invariance for HDA Logic

Interchange Axioms¹⁸

$$\Diamond^{\uparrow} \Diamond^{\uparrow} \Diamond^{\downarrow} \varphi \to \Diamond^{\uparrow} \Diamond^{\downarrow} \Diamond^{\uparrow} \varphi \tag{A10}$$

$$\Diamond^{\uparrow} \Diamond^{\downarrow} \Diamond^{\downarrow} \varphi \to \Diamond^{\downarrow} \Diamond^{\uparrow} \Diamond^{\downarrow} \varphi \tag{A10'}$$

¹⁸Cristian Prisacariu (2014). Higher Dimensional Modal Logic. arXiv: 1405.4100. URL: http://arxiv.org/abs/1405.4100. preprint.

Henning Basold

Coalgebraic Modal Logic

One view based on dual adjunctions, so-called logical connections¹⁹

$$F \stackrel{\frown}{\smile} \mathcal{C} \xrightarrow{P \longrightarrow}_{Q} \mathcal{D}^{\mathrm{op}} \xrightarrow{}_{L^{\mathrm{op}}} \text{ and } \varrho \colon PF \to L^{\mathrm{op}}P \text{ and } \alpha \colon L\Phi \to \Phi$$

Components

- C category for "states" in coalgebras
- F behaviour functor to get coalgebras $X \to FX$
- D typically category of algebras for logical operators
- L specifies modal operators
- initial algebra α for syntax
- distributive law $\varrho \colon LP \to PF$ to give semantics of formulas in a coalgebra
- ▶ $P \dashv Q$ is often concrete duality by mapping into dualising object

¹⁹Dusko Pavlovic, Michael W. Mislove, and James Worrell (2006). "Testing Semantics: Connecting Processes and Process Logics". In: *Proceedings of Algebraic Methodology and Software Technology, 11th International Conference, AMAST 2006.* Ed. by Michael Johnson and Varmo Vene. Vol. 4019. Lecture Notes in Computer Science. Springer; Toby Wilkinson (2013). "Enriched Coalgebraic Modal Logic". PhD thesis. URL: http://eprints.soton.ac.uk/354112/.

Modal Logic for General Coinductive Predicates

Previous picture is restricted to logic for behavioural equivalence/bisimilarity!

Components²⁰

- ▶ $p: \mathcal{E} \to \mathcal{B}$ fibration
- coalgebras for \overline{F} are proofs of coinductive predicates
- final coalgebras in fibres are typically called coinductive predicates
- soundness (adequacy) and completeness (expressiveness) results provable in this setting

²⁰Clemens Kupke and Jurriaan Rot (Dec. 15, 2021). "Expressive Logics for Coinductive Predicates". In: *Logical Methods in Computer Science* Volume 17, Issue 4.

Higher Coalgebraic Modal Logic

- Theorem from earlier gives adequacy in categories
- Reason is that 2-categorically defined Cartesian fibrations are the right thing
- In quasi-categories this fails
- Needs some work directly with quasi-categories²¹
- Develop coalgebraic modal logic further in higher categories

²¹Emily Riehl and Dominic Verity (2022). *Elements of* ∞ -*Category Theory*. Cambridge University Press (CUP).