Free Algebraic Theories as Higher Inductive Types

Henning Basold, Niels van der Weide and Niccolò Veltri

LIACS – Leiden University Radboud University Nijmegen IT University of Copenhagen

TYPES 2019, Oslo, Norway

2019 June 10

Free Algebraic Theories as HIts

Introduction

Free Algebraic Theories as HIts

Interest

- Universal (higher) algebra in constructive type theory There are two more talks on this!
 - Andreas Lynge and Bas Spitters: Universal Algebra in HoTT
 - Stefano Piceghello: Coherence for symmetric monoidal groupoids in HoTT/UF
- Extension of type systems:
 - Well-behaved class of HITs
 - Coinductive types over HIT-generated functors

Interest

- Universal (higher) algebra in constructive type theory There are two more talks on this!
 - Andreas Lynge and Bas Spitters: Universal Algebra in HoTT
 - Stefano Piceghello: Coherence for symmetric monoidal groupoids in HoTT/UF
- Extension of type systems:
 - Well-behaved class of HITs
 - Coinductive types over HIT-generated functors

Extending Type Systems With HITs

• We use set-truncated HITs (QITs) to generate free algebras

- Free monoids, groups, ...
- Finite sets as free join-semilattices
- Generally adjunctions between **Set** and Alg(*T*) for some algebraic theory *T*
- Instead we could introduce QITs as free algebras
- This covers most (all?) interesting examples of QITs
- How to go higher? Free (∞, 1)-algebras!
- For a first step, go to Stefano's talk

More Coinductive Types

- QITs from algebraic theories give many functors: accessible functor
- Interesting for the theory of coalgebras
- Represent finite powerset \mathcal{P}_f as HIT and introduce

$$\operatorname{Tr}_{f}: \operatorname{Set} \to \operatorname{Set}$$

step: $\operatorname{Tr}_{f} A \to \mathcal{P}_{f}(A \times \operatorname{Tr}_{f} A)$
$$\frac{c: X \to \mathcal{P}_{f}(A \times X)}{\operatorname{corec} c: X \to \operatorname{Tr}_{f} A}$$

Semantics of finitely branching labelled transition systems

Algebraic Theories and Their Algebras

Free Algebraic Theories as HIts

Signatures and Terms

Signature with symbols of arbitrary arity

record Signature : \mathcal{U}_1 where sym : \mathcal{U}_0 ar : sym $\rightarrow \mathcal{U}_0$

- Given a signature Σ , we write $|\Sigma|$ for sym Σ
- Polynomial functor associated to signature

 $\llbracket _ \rrbracket : (\Sigma : \text{Signature}) \to \mathcal{U}_0 \to \mathcal{U}_0$ $\llbracket \Sigma \rrbracket X = \sqcup |\Sigma| \lambda s \to \text{ar } \Sigma s \to X$

• Terms over a signature (free monad)

data Term (Σ : Signature) (V: \mathcal{U}_0) : \mathcal{U}_0 where leaf : $V \rightarrow$ Term ΣV node : $[\![\Sigma]\!]$ (Term ΣV) \rightarrow Term ΣV

Algebraic Theories

• Algebraic theories are given by a signature and equations

```
record AlgTheory : \mathcal{U}_1 where
sig : Signature
eqs : \forall \{X : \mathcal{U}_0\} \rightarrow \text{Rel} (\text{Term sig } X)
```

Algebras for a Theory

· Pre-algebras do not have to respect the equations

record PreAlgebra : \mathcal{U}_1 where carrier : \mathcal{U}_0 algebra : $\llbracket \Sigma \rrbracket$ carrier \rightarrow carrier algebra^{*} : Term Σ carrier \rightarrow carrier algebra^{*} = Term-rec ($\lambda \ x \rightarrow x$) algebra

Algebras also respect the equations

record Algebra : \mathcal{U}_1 where pre-algebra : PreAlgebra open PreAlgebra pre-algebra public carrier-set : is-set carrier resp-eq : $\forall \{t \ u : \text{Term } \Sigma \text{ carrier}\} \rightarrow$ eqs $t \ u \rightarrow \text{algebra}^* t == \text{algebra}^* u$

Basics for Induction

• We denote a (pre-)algebra by

$$\mathcal{A} = (A,a)$$

• Given a signature Σ , we lift $[\Sigma]$ to predicates:

$$\langle\!\langle \Sigma \rangle\!\rangle : (A: \mathcal{U}_0) (P: A \to \mathcal{U}_0) \to \llbracket \Sigma \rrbracket A \to \mathcal{U}_0$$

• We also lift terms to predicates:

TermP $\Sigma : \{X : \mathcal{U}_0\} (P : X \to \mathcal{U}_0) \to \text{Term } \Sigma X \to \mathcal{U}_0$

Induction for Pre-Algebras

record PreInductive (\mathcal{A} : PreAlgebra) : \mathcal{U}_1 where predicate : $A \rightarrow \mathcal{U}_0$ ind : $[\![\Sigma]\!] A \rightarrow \langle\!\langle \Sigma \rangle\!\rangle$ A predicate $x \rightarrow$ predicate (a x)

predicate* : Term $\Sigma A \rightarrow \mathcal{U}_1$ predicate* = predicate \circ algebra*

ind^{*} : $\forall \{t : \text{Term } \Sigma A\} \rightarrow \text{TermP } \Sigma \text{ predicate } t \rightarrow \text{ predicate}^* t$ ind^{*} = TermP-rec ...

Induction for Algebras

record InductiveProp (\mathcal{A} : Algebra) : \mathcal{U}_1 where pre-inductive : PreInductive (pre-algebra \mathcal{A}) open PreInductive pre-inductive public ind-resp-eq : $\forall \{t \ u\} \ (r : \text{eqs } t \ u)$ $\rightarrow (pt : \text{TermP } \Sigma \text{ predicate } t) (pu : \text{TermP } \Sigma \text{ predicate } u)$ $\rightarrow \text{ind}^* pt == \text{ind}^* pu \ [\text{ predicate } \downarrow \text{ resp-eq } r \]$

The Free Algebra

Free algebra FreeAlgebra T for a theory T

- has exactly the constructors of the signature Σ
- fulfils exactly the equations of the theory
- is a set
- for each inductive property $P: (FreeAlgebra T) \rightarrow \mathcal{U}_0$, has

elim : $(x : FreeAlgebra T) \rightarrow P x$

• elim fulfils the expected reduction rules

Allows us to prove that FreeAlgebra T is initial algebra.

The Free Algebra

Free algebra FreeAlgebra T for a theory T

- has exactly the constructors of the signature Σ
- fulfils exactly the equations of the theory
- is a set
- for each inductive property $P:(\text{FreeAlgebra } T) \rightarrow \mathcal{U}_0$, has

elim : $(x : FreeAlgebra T) \rightarrow P x$

elim fulfils the expected reduction rules

Allows us to prove that FreeAlgebra T is initial algebra.

Adding Generators

To get an adjunction

we need to embed generators

• Add inclusion of generators X in (pre-)algebras

 $inj: X \rightarrow A$

Add base case to (pre-)inductive properties

Ok Papa, this is all very cool ...

...but I knew that already!

Free Algebraic Theories as HIts

So, What's Next?

Free Algebraic Theories as HIts

Universal Algebra

- Note that our HITs work even for non-finitary theories
- We would like to generate quotient algebras as HITs
- This requires generating the free theory + quotient over the given algebra
- Hope: No need for axiom of choice
- Constructive Birkhoff variety theorem!
- NB: Niels and Herman showed that the adjunction can be constructed from quotients for finitary theories (MFPS'19)

Universal Algebra

- Note that our HITs work even for non-finitary theories
- We would like to generate quotient algebras as HITs
- This requires generating the free theory + quotient over the given algebra
- Hope: No need for axiom of choice
- Constructive Birkhoff variety theorem!
- NB: Niels and Herman showed that the adjunction can be constructed from quotients for finitary theories (MFPS'19)

Universal Coalgebra

- Many functors of interest are finitary or accessible
- Allow coinductive types over the associated HITs
- This gives theory of finitely-branching LTS etc.

Thank you!

Free Algebraic Theories as HIts