# Using Coalgebras to Find the Productive Among the Lazy

Henning Basold Radboud University, Nijmegen and CWI, Amsterdam

Joint work with Helle Hvid Hansen

Scottish Theorem Proving Seminar 07 October 2015

# Outline



2 Calculus for Mixed Inductive-Coinductive Definitions

- Operation of the second sec
- Proof Principles in Action



2 Calculus for Mixed Inductive-Coinductive Definitions

3 Productivity and its Proof Principles

Proof Principles in Action

# Introduction

# Problem

- Ensure that proofs are well-defined
- ▶ For inductive proofs: termination
- For coinductive proofs: productivity
- How to deal generally with mixture?

# Introduction

## Problem

- Ensure that proofs are well-defined
- For inductive proofs: termination
- For coinductive proofs: productivity
- How to deal generally with mixture?

# Possible solutions

- Usual guardedness condition often gets in the way
- Type-based solutions: sized types, guarded recursive types lead to viral noise in types

# Introduction

## Problem

- Ensure that proofs are well-defined
- ► For inductive proofs: termination
- For coinductive proofs: productivity
- How to deal generally with mixture?

## Possible solutions

- Usual guardedness condition often gets in the way
- Type-based solutions: sized types, guarded recursive types lead to viral noise in types

#### Proposal

Non-intrusive proof technique based on coalgebraic techniques



# 2 Calculus for Mixed Inductive-Coinductive Definitions

# 3 Productivity and its Proof Principles



# Types

# Definition (Types)

 $A, B ::= A + B \mid A \times B \mid A \to B \mid X \in \text{TyVar} \mid \mu X.A \mid \nu X.A$ 

where X occurs never on the left of  $\rightarrow$ , i.e., A is strictly positive.

#### Example

$$\mathbf{1} := \nu X.X$$
$$\mathbb{B} := \mathbf{1} + \mathbf{1}$$
$$\mathbb{B}^{\omega} := \nu X.\mathbb{B} \times X$$

or more complicated mixed fixed points.

# Programs I

Example (For  $\mathbf{1} = \nu X.X$ )

$$\begin{array}{l} \langle \rangle : \mathbf{1} \\ \xi \left\langle \right\rangle = \left\langle \right\rangle \end{array}$$

NB: RHS of equation must be of type X [1/X] = 1.

| Example (For $\mathbb{B}=1+1)$  |                                |
|---------------------------------|--------------------------------|
| $	op, \perp: \mathbb{B}$        | $\neg:\mathbb{B}\to\mathbb{B}$ |
| $ot=\kappa_1\langle angle$      | $ eg(\kappa_1 x) = 	op$        |
| $	op = \kappa_2 \langle  angle$ | $ eg(\kappa_2 x) = \bot$       |

# Programs II



# Programs II



#### Question

Is alt well-defined, i.e. productive, even though not guarded?

# Programs II



#### Question

Is alt well-defined, i.e. productive, even though not guarded?

#### **Reduction Behaviour**

$$hd(tl^n alt) \longrightarrow hd(\sim^n alt) \longrightarrow \neg^n(hd alt)$$



## 2 Calculus for Mixed Inductive-Coinductive Definitions

# 3 Productivity and its Proof Principles

Proof Principles in Action

# When is a program well-defined?

# Slogan

A program P is well-defined iff it is terminating and the outcome of any observation we can make on P is again well-defined.

Formally

- ▶ Define coalgebra δ : Λ → F(Λ) on programs that captures observations we can make on programs
- This gives rise to functor  $S_{\delta}$  :  $\operatorname{Pred}_{\Lambda} \to \operatorname{Pred}_{\Lambda}$ . For example

$$S_{\delta}(P)_{A_1 \times A_2} = \{t : A_1 \times A_2 \mid \forall i \in \{1,2\}. \forall s. \pi_i t \longrightarrow s \Rightarrow s \in P_{A_i}\}$$

► The set **ON** of well-defined programs is the largest set s.t.

# $\mathsf{ON} \sqsubseteq \Psi(\mathsf{ON})$

where  $\Psi(P) = \mathbf{SN} \sqcap S_{\delta}(\mathbf{ON})$ .

# **Proof Principle**

This gives us obvious proof principle:

$$\frac{P \sqsubseteq \mathsf{SN}}{P \sqsubseteq \mathsf{ON}} \stackrel{P \sqsubseteq S_{\delta}(P)}{= \mathsf{ON}}$$

- ▶ Difficult to work with: A predicate P that would prove alt ∈ ON is necessarily infinite.
- Improve by using up-to techniques

# **Proof Principle**

This gives us obvious proof principle:

$$\frac{P \sqsubseteq \mathsf{SN} \qquad P \sqsubseteq S_{\delta}(P)}{P \sqsubseteq \mathsf{ON}}$$

- ▶ Difficult to work with: A predicate P that would prove alt ∈ ON is necessarily infinite.
- Improve by using up-to techniques

## Definition (Pous '07)

 $\mathcal{T} : \operatorname{Pred}_{\Lambda} \to \operatorname{Pred}_{\Lambda}$  is  $\Psi$ -compatible if  $\mathcal{T} \circ \Psi \sqsubseteq \Psi \circ \mathcal{T}$ .

# **Proof Principle**

This gives us obvious proof principle:

$$\frac{P \sqsubseteq \mathsf{SN}}{P \sqsubseteq \mathsf{ON}} \stackrel{P \sqsubseteq S_{\delta}(P)}{= \mathsf{ON}}$$

- ▶ Difficult to work with: A predicate P that would prove alt ∈ ON is necessarily infinite.
- Improve by using up-to techniques

#### Definition (Pous '07)

 $\mathcal{T} : \operatorname{Pred}_{\Lambda} \to \operatorname{Pred}_{\Lambda}$  is  $\Psi$ -compatible if  $\mathcal{T} \circ \Psi \sqsubseteq \Psi \circ \mathcal{T}$ .

# Lemma (Pous '07) If T is $\Psi$ -compatible, then $\frac{P \sqsubseteq SN \quad P \sqsubseteq S_{\delta}(T(P))}{P \sqsubseteq ON}$



2 Calculus for Mixed Inductive-Coinductive Definitions

## 3 Productivity and its Proof Principles



# Prove Productivity of $\operatorname{alt}$

# Goal

Find up-to technique T, such that  $P \sqsubseteq \Psi(T(P))$  with

$$P_{\mathbb{B}^{\omega}} = \{ \text{alt} \}$$
$$P_{A} = \emptyset, \qquad A \neq \mathbb{B}^{\omega}$$

# Prove Productivity of $\operatorname{alt}$

## Goal

Find up-to technique T, such that  $P \sqsubseteq \Psi(T(P))$  with

$$egin{aligned} & P_{\mathbb{B}^{\omega}} = \{ \mathrm{alt} \} \ & P_{A} = \emptyset, \qquad A 
eq \mathbb{B}^{\omega} \end{aligned}$$

1. Define  $T_1(P) = \mathbf{ON} \sqcup P$ .

- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$ .
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.
- $4. T = T_3 \circ T_2 \circ T_1.$

# Prove Productivity of $\operatorname{alt}$

## Goal

Find up-to technique T, such that  $P \sqsubseteq \Psi(T(P))$  with

$$egin{aligned} & P_{\mathbb{B}^{\omega}} = \{ \mathrm{alt} \} \ & P_{A} = \emptyset, \qquad A 
eq \mathbb{B}^{\omega} \end{aligned}$$

1. Define  $T_1(P) = \mathbf{ON} \sqcup P$ .

- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$ .
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.
- $4. T = T_3 \circ T_2 \circ T_1.$

## Lemma (Pous '07)

If F, G are  $\Psi$ -compatible, then so is  $G \circ F$ .

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| Recall: | $\operatorname{alt}:\mathbb{B}^{\omega}$ hd $\operatorname{alt}=\bot$ tl $\operatorname{alt}=$ | $\sim alt$ |
|---------|------------------------------------------------------------------------------------------------|------------|
| ► Put   |                                                                                                |            |
|         | $P_{\mathbb{B}^{\omega}} = \{ \mathrm{alt} \} \qquad P_{\mathcal{A}} = \emptyset$              |            |
|         | $\perp \in \mathbf{ON}_{\mathbb{B}}$ $\operatorname{alt} \in P_{\mathbb{B}^{\omega}}$          |            |
|         | $\perp \in T_1(P)_{\mathbb{B}} \qquad \sim \text{alt} \in T_2(P)_{\mathbb{B}^d}$               | ω          |
|         | $ flat \in T(P)_{\mathbb{B}}  flat \in T(P)_{\mathbb{B}^{\omega}} $                            |            |
|         | $\operatorname{alt}\in\mathcal{S}_{\delta}(\mathcal{T}(\mathcal{P}))_{\mathbb{B}^{\omega}}$    | _          |
|         | $\fbox{P}\sqsubseteq S_{\delta}(T(P)) \qquad P \sqsubseteq$                                    | SN         |

alt  $\in ON$ 

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

#### Proof that $alt \in ON$

| Recall: | $\operatorname{alt}:\mathbb{B}^{\omega}$ hd $\operatorname{alt}=\bot$ tl $\operatorname{alt}=\sim\operatorname{alt}$    |  |
|---------|-------------------------------------------------------------------------------------------------------------------------|--|
| Put     |                                                                                                                         |  |
|         | $\mathcal{P}_{\mathbb{B}^{\omega}} = \{	ext{alt}\} \qquad \mathcal{P}_{\mathcal{A}} = \emptyset$                        |  |
|         | $\bot \in ON_{\mathbb{B}}$ alt $\in P_{\mathbb{B}^{\omega}}$                                                            |  |
|         | $ \perp \in T_1(P)_{\mathbb{B}} \qquad  \sim \operatorname{alt} \in T_2(P)_{\mathbb{B}^{\omega}}$                       |  |
|         | $hd \operatorname{alt} \in \mathcal{T}(P)_{\mathbb{B}}  tl \operatorname{alt} \in \mathcal{T}(P)_{\mathbb{B}^{\omega}}$ |  |
|         | $\operatorname{alt}\in\mathcal{S}_{\delta}(\mathcal{T}(\mathcal{P}))_{\mathbb{B}^{\omega}}$                             |  |
|         | $P \sqsubseteq S_{\delta}(T(P)) \qquad P \sqsubseteq SN$                                                                |  |
|         | $\operatorname{alt} \in \mathbf{ON}$                                                                                    |  |

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| Recall: | $\operatorname{alt}:\mathbb{B}^{\omega}$ hd $\operatorname{alt}$ | $t = \bot$ $tl alt = ~ alt$                                      |
|---------|------------------------------------------------------------------|------------------------------------------------------------------|
| ► Put   |                                                                  |                                                                  |
|         | $P_{\mathbb{B}^\omega}=\{$                                       | ${\rm [alt]} \qquad P_A = \emptyset$                             |
|         | $\bot \in ON_{\mathbb{B}}$                                       | $\operatorname{alt}\in \mathcal{P}_{\mathbb{B}^{\omega}}$        |
|         | $\bot\in T_1(P)_{\mathbb{B}}$                                    | $\sim \mathrm{alt} \in T_2(P)_{\mathbb{B}^\omega}$               |
|         | hd alt $\in T(P)_{\mathbb{B}}$                                   | $tl \operatorname{alt} \in \mathcal{T}(P)_{\mathbb{B}^{\omega}}$ |
|         | $\operatorname{alt} \in S_{\delta}($                             | $T(P))_{\mathbb{B}^{\omega}}$                                    |
|         | $P \sqsubseteq S_{\delta}($                                      | $\overline{T(P))}$ $P \sqsubseteq SN$                            |

alt  $\in ON$ 

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| Recall: | $\operatorname{alt}:\mathbb{B}^{\omega}$ hd $\operatorname{alt}$ | $t = \bot$ $tl alt = ~ alt$                                      |
|---------|------------------------------------------------------------------|------------------------------------------------------------------|
| ► Put   |                                                                  |                                                                  |
|         | $P_{\mathbb{B}^\omega} = \{$                                     | ${\rm alt}$ $P_A = \emptyset$                                    |
|         | $\bot\in ON_{\mathbb{B}}$                                        | $\mathrm{alt}\in \mathcal{P}_{\mathbb{B}^{\omega}}$              |
|         | $\perp \in T_1(P)_{\mathbb{B}}$                                  | $\sim \operatorname{alt} \in T_2(P)_{\mathbb{B}^{\omega}}$       |
|         | $hd alt \in T(P)_{\mathbb{B}}$                                   | $tl \operatorname{alt} \in \mathcal{T}(P)_{\mathbb{B}^{\omega}}$ |

$$\begin{array}{c|c} \operatorname{alt} \in S_{\delta}(T(P))_{\mathbb{B}^{\omega}} \\ \hline P \sqsubseteq S_{\delta}(T(P)) & P \sqsubseteq \mathsf{SN} \\ \hline \operatorname{alt} \in \mathsf{ON} \end{array} \end{array}$$

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| Recall: | $\operatorname{alt}:\mathbb{B}^{\omega}$ hd al | $t = \bot$ $tI alt = ~ alt$                                              |
|---------|------------------------------------------------|--------------------------------------------------------------------------|
| Put     |                                                |                                                                          |
|         | $P_{\mathbb{B}^\omega} = \{$                   | $\{ alt \} \qquad P_A = \emptyset$                                       |
|         | $\bot \in ON_{\mathbb{B}}$                     | $\mathrm{alt}\in \mathcal{P}_{\mathbb{B}^\omega}$                        |
|         | $\bot \in T_1(P)_{\mathbb{B}}$                 | $\sim \operatorname{alt} \in T_2(P)_{\mathbb{B}^{\omega}}$               |
|         | $hd \operatorname{alt} \in T(P)_{\mathbb{B}}$  | $tl\operatorname{alt}\in \mathcal{T}(\mathcal{P})_{\mathbb{B}^{\omega}}$ |
|         | $\operatorname{alt} \in S_{\delta}($           | $(T(P))_{\mathbb{B}^{\omega}}$                                           |
|         | $P \sqsubseteq S_{\delta}($                    | $T(P)$ $P \sqsubseteq SN$                                                |
|         | $alt \in ON$                                   |                                                                          |

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| Recall: | alt : $\mathbb{B}^{\omega}$ hd alt          | $t = \bot$ t alt $t = \sim$ alt                                            |
|---------|---------------------------------------------|----------------------------------------------------------------------------|
| ► Put   |                                             |                                                                            |
|         | $P_{\mathbb{B}^\omega}=\{z\}$               | alt} $P_A = \emptyset$                                                     |
|         | $\bot\in ON_{\mathbb{B}}$                   | $\mathrm{alt}\in \mathcal{P}_{\mathbb{B}^\omega}$                          |
|         | $\bot \in T_1(P)_{\mathbb{B}}$              | $\sim \operatorname{alt} \in T_2(P)_{\mathbb{B}^\omega}$                   |
|         | hd alt $\in T(P)_{\mathbb{B}}$              | $tl \operatorname{alt} \in \mathcal{T}(\mathcal{P})_{\mathbb{B}^{\omega}}$ |
|         | $\operatorname{alt} \in S_{\delta}(\Gamma)$ | $T(P))_{\mathbb{B}^\omega}$                                                |
|         | $P \sqsubseteq S_{\delta}(T)$               | $\overline{T(P))}$ $P \sqsubseteq SN$                                      |
|         | $\operatorname{alt} \in \mathbf{ON}$        |                                                                            |

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| • Recall: $alt : \mathbb{B}^{\omega}$ | hd alt = $\perp$ | tl alt = $\sim$ alt |
|---------------------------------------|------------------|---------------------|
|---------------------------------------|------------------|---------------------|

Put

$$P_{\mathbb{B}^{\omega}} = \{ \operatorname{alt} \} \qquad P_A = \emptyset$$

| $\bot \in ON_{\mathbb{B}}$                    | $\mathrm{alt}\in P_{\mathbb{B}^\omega}$                          |
|-----------------------------------------------|------------------------------------------------------------------|
| $\bot \in T_1(P)_{\mathbb{B}}$                | $\sim \operatorname{alt} \in T_2(P)_{\mathbb{B}^\omega}$         |
| $hd \operatorname{alt} \in T(P)_{\mathbb{B}}$ | $tl \operatorname{alt} \in \mathcal{T}(P)_{\mathbb{B}^{\omega}}$ |
| $\mathrm{alt}\in S_{\delta}(7)$               | $\Gamma(P))_{\mathbb{B}^{\omega}}$                               |
| $P \sqsubseteq S_{\delta}(7)$                 | $(P)$ $P \sqsubseteq SN$                                         |
| $\operatorname{alt}\in \mathbf{ON}$           |                                                                  |

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| Recall: | $\operatorname{alt}:\mathbb{B}^{\omega}$ hd $\operatorname{alt}=\bot$ tl $\operatorname{alt}=\sim\operatorname{alt}$             |
|---------|----------------------------------------------------------------------------------------------------------------------------------|
| ► Put   |                                                                                                                                  |
|         | $\mathcal{P}_{\mathbb{B}^\omega} = \{	ext{alt}\} \qquad \mathcal{P}_\mathcal{A} = \emptyset$                                     |
|         | $\bot\in \mathbf{ON}_{\mathbb{B}}$ $	ext{alt}\in \mathcal{P}_{\mathbb{B}^{\omega}}$                                              |
|         | $\bot \in \mathcal{T}_1(\mathcal{P})_{\mathbb{B}}$ $\frown \sim \mathrm{alt} \in \mathcal{T}_2(\mathcal{P})_{\mathbb{B}^\omega}$ |
|         | $\boxed{hdalt\in T(P)_{\mathbb{B}}} \qquad \boxed{tlalt\in T(P)_{\mathbb{B}^{\omega}}}$                                          |
|         | $\operatorname{alt}\in\mathcal{S}_{\delta}(\mathcal{T}(\mathcal{P}))_{\mathbb{B}^{\omega}}$                                      |
|         | $P \sqsubseteq S_{\delta}(T(P)) \qquad P \sqsubseteq SN$                                                                         |
|         | $\operatorname{alt}\inON$                                                                                                        |

- 1. Define  $T_1(P) = \mathbf{ON} \sqcup P$
- 2. Define  $T_2$  s.t.  $(\sim s) \in T_2(P)_{\mathbb{B}^{\omega}}$  for all  $s \in P_{\mathbb{B}^{\omega}}$
- 3. Define  $T_3$  s.t.  $(hd f) \in T_3(P)_{\mathbb{B}^{\omega}}$ , if  $e \in P_{\mathbb{B}^{\omega}}$  for hd f = e in the program, and same for tl f.

| • Recall: $alt : \mathbb{B}^{\omega}$ | hd alt = $\perp$ | $tI \; \mathrm{alt} =  \sim \mathrm{alt}$ |
|---------------------------------------|------------------|-------------------------------------------|
|---------------------------------------|------------------|-------------------------------------------|

Put

| $P_{\mathbb{B}^{\omega}} = \cdot$ | $\{alt\}$ | $P_A = \emptyset$ |
|-----------------------------------|-----------|-------------------|
|-----------------------------------|-----------|-------------------|

| $\bot\inON_{\mathbb{B}}$                                                                    | $\mathrm{alt}\in \mathcal{P}_{\mathbb{B}^\omega}$        |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $\bot \in T_1(P)_{\mathbb{B}}$                                                              | $\sim \operatorname{alt} \in T_2(P)_{\mathbb{B}^\omega}$ |
| $hd \operatorname{alt} \in T(P)_{\mathbb{B}}$                                               | $tl \operatorname{alt} \in T(P)_{\mathbb{B}^{\omega}}$   |
| $\operatorname{alt}\in\mathcal{S}_{\delta}(\mathcal{T}(\mathcal{P}))_{\mathbb{B}^{\omega}}$ |                                                          |
| $P \sqsubseteq S_{\delta}(7)$                                                               | $\overline{(P))} \qquad P \sqsubseteq SN$                |
| $\operatorname{alt} \in \mathbf{ON}$                                                        |                                                          |

Thank you very much for your attention!