
Using Coalgebras to
Find the Productive Among the Lazy

Henning Basold
Radboud University, Nijmegen and CWI, Amsterdam

Joint work with Helle Hvid Hansen

Scottish Theorem Proving Seminar
07 October 2015

Henning Finding the Productive Among the Lazy 07.10.15 1

Outline

1 Introduction

2 Calculus for Mixed Inductive-Coinductive Definitions

3 Productivity and its Proof Principles

4 Proof Principles in Action

Henning Finding the Productive Among the Lazy 07.10.15 2

1 Introduction

2 Calculus for Mixed Inductive-Coinductive Definitions

3 Productivity and its Proof Principles

4 Proof Principles in Action

Henning Finding the Productive Among the Lazy 07.10.15 3

Introduction

Problem
I Ensure that proofs are well-defined

I For inductive proofs: termination

I For coinductive proofs: productivity

I How to deal generally with mixture?

Possible solutions
I Usual guardedness condition – often gets in the way

I Type-based solutions: sized types, guarded recursive types – lead to
viral noise in types

Proposal

Non-intrusive proof technique based on coalgebraic techniques

Henning Finding the Productive Among the Lazy 07.10.15 4

Introduction

Problem
I Ensure that proofs are well-defined

I For inductive proofs: termination

I For coinductive proofs: productivity

I How to deal generally with mixture?

Possible solutions
I Usual guardedness condition – often gets in the way

I Type-based solutions: sized types, guarded recursive types – lead to
viral noise in types

Proposal

Non-intrusive proof technique based on coalgebraic techniques

Henning Finding the Productive Among the Lazy 07.10.15 4

Introduction

Problem
I Ensure that proofs are well-defined

I For inductive proofs: termination

I For coinductive proofs: productivity

I How to deal generally with mixture?

Possible solutions
I Usual guardedness condition – often gets in the way

I Type-based solutions: sized types, guarded recursive types – lead to
viral noise in types

Proposal

Non-intrusive proof technique based on coalgebraic techniques

Henning Finding the Productive Among the Lazy 07.10.15 4

1 Introduction

2 Calculus for Mixed Inductive-Coinductive Definitions

3 Productivity and its Proof Principles

4 Proof Principles in Action

Henning Finding the Productive Among the Lazy 07.10.15 5

Types

Definition (Types)

A,B ::= A + B | A× B | A→ B | X ∈ TyVar | µX .A | νX .A

where X occurs never on the left of →, i.e., A is strictly positive.

Example

1 := νX .X

B := 1 + 1

Bω := νX .B× X

or more complicated mixed fixed points.

Henning Finding the Productive Among the Lazy 07.10.15 6

Programs I

Example (For 1 = νX .X)

〈〉 : 1

ξ 〈〉 = 〈〉

NB: RHS of equation must be of type X [1/X] = 1.

Example (For B = 1 + 1)

>,⊥ : B
⊥ = κ1〈〉

> = κ2〈〉

¬ : B→ B
¬(κ1 x) = >
¬(κ2 x) = ⊥

Henning Finding the Productive Among the Lazy 07.10.15 7

Programs II

Example (For Bω = νX .B× X)

I s : Bω ` hd s : B with hd s := π1(ξ s︸︷︷︸
(B×X)[Bω/X]=B×Bω

)

I s : Bω ` tl s : Bω with tl s := π2(ξ s)

I

∼: Bω → Bω

hd(∼ s) = ¬(hd s)

tl(∼ s) =∼ (tl s)

alt : Bω

hd alt = ⊥
tl alt = ∼ alt

Question

Is alt well-defined, i.e. productive, even though not guarded?

Reduction Behaviour

hd(tln alt) hd(∼n alt) ¬n(hd alt)

Henning Finding the Productive Among the Lazy 07.10.15 8

Programs II

Example (For Bω = νX .B× X)

I s : Bω ` hd s : B with hd s := π1(ξ s︸︷︷︸
(B×X)[Bω/X]=B×Bω

)

I s : Bω ` tl s : Bω with tl s := π2(ξ s)

I

∼: Bω → Bω

hd(∼ s) = ¬(hd s)

tl(∼ s) =∼ (tl s)

alt : Bω

hd alt = ⊥
tl alt = ∼ alt

Question

Is alt well-defined, i.e. productive, even though not guarded?

Reduction Behaviour

hd(tln alt) hd(∼n alt) ¬n(hd alt)

Henning Finding the Productive Among the Lazy 07.10.15 8

Programs II

Example (For Bω = νX .B× X)

I s : Bω ` hd s : B with hd s := π1(ξ s︸︷︷︸
(B×X)[Bω/X]=B×Bω

)

I s : Bω ` tl s : Bω with tl s := π2(ξ s)

I

∼: Bω → Bω

hd(∼ s) = ¬(hd s)

tl(∼ s) =∼ (tl s)

alt : Bω

hd alt = ⊥
tl alt = ∼ alt

Question

Is alt well-defined, i.e. productive, even though not guarded?

Reduction Behaviour

hd(tln alt) hd(∼n alt) ¬n(hd alt)

Henning Finding the Productive Among the Lazy 07.10.15 8

1 Introduction

2 Calculus for Mixed Inductive-Coinductive Definitions

3 Productivity and its Proof Principles

4 Proof Principles in Action

Henning Finding the Productive Among the Lazy 07.10.15 9

When is a program well-defined?

Slogan

A program P is well-defined iff it is terminating and the outcome of any
observation we can make on P is again well-defined.

Formally

I Define coalgebra δ : Λ→ F (Λ) on programs that captures
observations we can make on programs

I This gives rise to functor Sδ : PredΛ → PredΛ. For example

Sδ(P)A1×A2 = {t : A1 × A2 | ∀i ∈ {1, 2}. ∀s. πi t s ⇒ s ∈ PAi
}

I The set ON of well-defined programs is the largest set s.t.

ON v Ψ(ON)

where Ψ(P) = SN u Sδ(ON).

Henning Finding the Productive Among the Lazy 07.10.15 10

Proof Principle

I This gives us obvious proof principle:

P v SN P v Sδ(P)

P v ON

I Difficult to work with: A predicate P that would prove alt ∈ ON is
necessarily infinite.

I Improve by using up-to techniques

Definition (Pous ’07)

T : PredΛ → PredΛ is Ψ-compatible if T ◦Ψ v Ψ ◦ T .

Lemma (Pous ’07)

If T is Ψ-compatible, then

P v SN P v Sδ(T (P))

P v ON

Henning Finding the Productive Among the Lazy 07.10.15 11

Proof Principle

I This gives us obvious proof principle:

P v SN P v Sδ(P)

P v ON

I Difficult to work with: A predicate P that would prove alt ∈ ON is
necessarily infinite.

I Improve by using up-to techniques

Definition (Pous ’07)

T : PredΛ → PredΛ is Ψ-compatible if T ◦Ψ v Ψ ◦ T .

Lemma (Pous ’07)

If T is Ψ-compatible, then

P v SN P v Sδ(T (P))

P v ON

Henning Finding the Productive Among the Lazy 07.10.15 11

Proof Principle

I This gives us obvious proof principle:

P v SN P v Sδ(P)

P v ON

I Difficult to work with: A predicate P that would prove alt ∈ ON is
necessarily infinite.

I Improve by using up-to techniques

Definition (Pous ’07)

T : PredΛ → PredΛ is Ψ-compatible if T ◦Ψ v Ψ ◦ T .

Lemma (Pous ’07)

If T is Ψ-compatible, then

P v SN P v Sδ(T (P))

P v ON

Henning Finding the Productive Among the Lazy 07.10.15 11

1 Introduction

2 Calculus for Mixed Inductive-Coinductive Definitions

3 Productivity and its Proof Principles

4 Proof Principles in Action

Henning Finding the Productive Among the Lazy 07.10.15 12

Prove Productivity of alt

Goal

Find up-to technique T , such that P v Ψ(T (P)) with

PBω = {alt}
PA = ∅, A 6= Bω

1. Define T1(P) = ON t P.

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω .

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

4. T = T3 ◦ T2 ◦ T1.

Lemma (Pous ’07)

If F ,G are Ψ-compatible, then so is G ◦ F .

Henning Finding the Productive Among the Lazy 07.10.15 13

Prove Productivity of alt

Goal

Find up-to technique T , such that P v Ψ(T (P)) with

PBω = {alt}
PA = ∅, A 6= Bω

1. Define T1(P) = ON t P.

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω .

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

4. T = T3 ◦ T2 ◦ T1.

Lemma (Pous ’07)

If F ,G are Ψ-compatible, then so is G ◦ F .

Henning Finding the Productive Among the Lazy 07.10.15 13

Prove Productivity of alt

Goal

Find up-to technique T , such that P v Ψ(T (P)) with

PBω = {alt}
PA = ∅, A 6= Bω

1. Define T1(P) = ON t P.

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω .

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

4. T = T3 ◦ T2 ◦ T1.

Lemma (Pous ’07)

If F ,G are Ψ-compatible, then so is G ◦ F .

Henning Finding the Productive Among the Lazy 07.10.15 13

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON

Henning Finding the Productive Among the Lazy 07.10.15 14

Thank you very much for your attention!

Henning Finding the Productive Among the Lazy 07.10.15 15

	Introduction
	Calculus for Mixed Inductive-Coinductive Definitions
	Productivity and its Proof Principles
	Proof Principles in Action

