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Introduction

Problem
I Ensure that proofs are well-defined

I For inductive proofs: termination

I For coinductive proofs: productivity

I How to deal generally with mixture?

Possible solutions
I Usual guardedness condition – often gets in the way

I Type-based solutions: sized types, guarded recursive types – lead to
viral noise in types

Proposal

Non-intrusive proof technique based on coalgebraic techniques
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Types

Definition (Types)

A,B ::= A + B | A× B | A→ B | X ∈ TyVar | µX .A | νX .A

where X occurs never on the left of →, i.e., A is strictly positive.

Example

1 := νX .X

B := 1 + 1

Bω := νX .B× X

or more complicated mixed fixed points.

Henning Finding the Productive Among the Lazy 07.10.15 6



Programs I

Example (For 1 = νX .X )

〈〉 : 1

ξ 〈〉 = 〈〉

NB: RHS of equation must be of type X [1/X ] = 1.

Example (For B = 1 + 1)

>,⊥ : B
⊥ = κ1〈〉

> = κ2〈〉

¬ : B→ B
¬(κ1 x) = >
¬(κ2 x) = ⊥
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Programs II

Example (For Bω = νX .B× X )

I s : Bω ` hd s : B with hd s := π1( ξ s︸︷︷︸
(B×X )[Bω/X ]=B×Bω

)

I s : Bω ` tl s : Bω with tl s := π2(ξ s)

I

∼: Bω → Bω

hd(∼ s) = ¬(hd s)

tl(∼ s) =∼ (tl s)

alt : Bω

hd alt = ⊥
tl alt = ∼ alt

Question

Is alt well-defined, i.e. productive, even though not guarded?

Reduction Behaviour

hd(tln alt) hd(∼n alt) ¬n(hd alt)
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When is a program well-defined?

Slogan

A program P is well-defined iff it is terminating and the outcome of any
observation we can make on P is again well-defined.

Formally

I Define coalgebra δ : Λ→ F (Λ) on programs that captures
observations we can make on programs

I This gives rise to functor Sδ : PredΛ → PredΛ. For example

Sδ(P)A1×A2 = {t : A1 × A2 | ∀i ∈ {1, 2}. ∀s. πi t s ⇒ s ∈ PAi
}

I The set ON of well-defined programs is the largest set s.t.

ON v Ψ(ON)

where Ψ(P) = SN u Sδ(ON).
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Proof Principle

I This gives us obvious proof principle:

P v SN P v Sδ(P)

P v ON

I Difficult to work with: A predicate P that would prove alt ∈ ON is
necessarily infinite.

I Improve by using up-to techniques

Definition (Pous ’07)

T : PredΛ → PredΛ is Ψ-compatible if T ◦Ψ v Ψ ◦ T .

Lemma (Pous ’07)

If T is Ψ-compatible, then

P v SN P v Sδ(T (P))

P v ON
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Prove Productivity of alt

Goal

Find up-to technique T , such that P v Ψ(T (P)) with

PBω = {alt}
PA = ∅, A 6= Bω

1. Define T1(P) = ON t P.

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω .

3. Define T3 s.t. (hd f ) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

4. T = T3 ◦ T2 ◦ T1.

Lemma (Pous ’07)

If F ,G are Ψ-compatible, then so is G ◦ F .
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1. Define T1(P) = ON t P

2. Define T2 s.t. (∼ s) ∈ T2(P)Bω for all s ∈ PBω

3. Define T3 s.t. (hd f ) ∈ T3(P)Bω , if e ∈ PBω for hd f = e in the
program, and same for tl f .

Proof that alt ∈ ON
I Recall: alt : Bω hd alt = ⊥ tl alt =∼ alt

I Put
PBω = {alt} PA = ∅

⊥ ∈ ONB
⊥ ∈ T1(P)B

hd alt ∈ T (P)B

alt ∈ PBω

∼ alt ∈ T2(P)Bω

tl alt ∈ T (P)Bω

alt ∈Sδ(T (P))Bω

P vSδ(T (P)) P v SN

alt ∈ ON
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Thank you very much for your attention!
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