Foundations for Proof Search in
Coinductive Horn Clause Theories

Henning Basold

CNRS, ENS Lyon

Joint work with Ekaterina Komendantskaya and Yue Li
from Heriot-Watt University

Chocola Seminar
20 September 2018

What The Heck Are
Coinductive Horn Clause Theories?

® Horn clauses that describe observations

e Canonical Herbrand model is a greatest fixed point
® Why would we want that?
® Coinductive programming (web-server, control systems, ...)

® Coinductive data types (streams, delayed computations, ...)
® Mutual type class instances in Haskell

® Coinductive predicates (bisimilarity, modal logic, ...)

[]

Let your imagination run free!

What The Heck Are
Coinductive Horn Clause Theories?

® Horn clauses that describe observations

e Canonical Herbrand model is a greatest fixed point
® Why would we want that?
® Coinductive programming (web-server, control systems, ...)

® Coinductive data types (streams, delayed computations, ...)
® Mutual type class instances in Haskell

® Coinductive predicates (bisimilarity, modal logic, ...)

[]

Let your imagination run free!

Let us look at three examples.

Example 1 — Coinductive Data Types

Example (Data types of natural numbers and streams)

Knato : V. nat 0
Knat1 : VZ.nat x — mnat (s z)

Kstream : VZ.nat x A stream y — stream (scons T y)

Example 1 — Coinductive Data Types

Example (Data types of natural numbers and streams)

Knat0 : V. nat 0
Knatl : V&.nat x — mnat (s z)

Kstream : VZ.nat A stream y — stream (scons z y)

Our goal

Prove
Jx. stream x

with z a term that represents stream of zeros:

scons 0 (scons 0 ...)

Example 2 — Coinductive Programs

Example (Enumerating natural numbers)

Kfrom : V2 y. from (s z) y — from x (scons x y)

Example 2 — Coinductive Programs

Example (Enumerating natural numbers)

Kfrom : V2 y. from (s z) y — from x (scons x y)

Our goal

Prove
dz. from 0 =

with = a term that represents

scons 0 (scons (s 0) (scons (s (s 0))...))

Example 3 — Type Class Inference

Example (As Haskell declaration)
data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

instance(Eq a, Eq (EvenList a)) => Eq (OddList a) where ...
instance(Eq a, Eq (OddList a)) => Eq (EvenList a) where ...

Example 3 — Type Class Inference

Example (As Haskell declaration)

data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

instance(Eq a, Eq (EvenList a)) => Eq (OddList a) where ...
instance(Eq a, Eq (OddList a)) => Eq (EvenList a) where ...

Example (As Horn clause theory with some base type i)
Ki:eqi
Kodd : Vr.eq z Aeq (even z) — eq (odd x)
Keven : VZ.eq x Aeq (odd x) — eq (even x)

Example 3 — Type Class Inference

Example (As Horn clause theory with some base type i)
Ki:eqi
Kodd : Vx.eq x Aeq (even) — eq (odd z)
Keven : VZ.eq z Aeq (odd z) — eq (even)

Our goal

Prove
eq (odd i)

and provide the proof object for the type checker

Example 3 — Type Class Inference

Example (As Horn clause theory with some base type i)
Ki:eqi
Kodd : Vx.eq x Aeq (even) — eq (odd z)
Keven : VZ.eq z Aeq (odd z) — eq (even x)

Our goal

Prove
eq (odd i)

and provide the proof object for the type checker
= constructive proofs and discovery of proof objects

Inductive Horn Clause Theories

The classical interpretation of logic programs
Horn clauses that describe constructions
Canonical Herbrand model is a least fixed point

Proofs and terms must be finite and non-circular

Inductive Horn Clause Theories

® The classical interpretation of logic programs
® Horn clauses that describe constructions
e Canonical Herbrand model is a least fixed point

® Proofs and terms must be finite and non-circular
Example (Natural numbers revisited)
Knat0 - V. nat 0
Knatl : V&.nat x — nat (s x)

Interpretation ‘ Possible instances for x in nat x

Inductive 0,s0,s(s0), ...
Coinductive 0,50, s(s0),...and s¥ with s* = s s¥

Goal

A theory of search and models for constructive proofs in
coinductive Horn clause theories

Other Approaches

Circular Unifiers (Gupta, Simon, et al., 2006/07) — does not
cover the examples from and eq

CIRC (Rosu and Lucanu, 2009) — only for bisimilarity but not
general Horn clause theories

SMT-based (Reynolds and Kunak, 2015; Blanchette et al.,
2018) — classical and no proof objects

Typically not concerned with algorithmic proof search: lattice
theory, game theory, type theory, cyclic proofs

No constructive approach

Outline

Fixed Point Terms and Circular Unification
Constructive Coinductive Proofs
Coinductive Uniform Proofs

Relative Soundness and Models

The End

Fixed Point Terms and Circular Unification

Why Fixed Point Terms?

Recall the stream of zeros:

scons 0 (scons 0 ---)

As circular unifier

x = scons 0 x

As fixed point term

fix z.scons 0 x

Typed A-Terms With Fixed Points

Types and Signatures
Tso,ri=1€B|o—rT

Signature is a set ¥ of pairs ¢ : 7, where 7 € T.

Terms (Simply typed A-calculus with fixed points)

cC:TEY z:T7el I'EM:0—T1 I'EN:o
I'kte:7 I'tx:7 I'EMN : 71

e:oFM:7 Tx:rEM:71
rEXxx.M:o0—7 I'Hfixe. M : 7

Operational Semantics
(Ax. M\)N — M[N/z] (fixx. M) — Mfix x. /7]

Example

Recall the enumeration of natural numbers
Kfrom : Vx y.from (s x) y — from x (scons z y)
and the term

scons 0 (scons (s 0) (scons (s (s 0))...))

Example

Recall the enumeration of natural numbers
Kfrom : Vx y.from (s x) y — from x (scons z y)
and the term

scons 0 (scons (s 0) (scons (s (s 0))...))

Representation as fixed point term

Define
sg = fix f. Az.scons z (f (s x)),

then sg 10— @

Guarded Terms

e Not all fixed point terms are productive:
M—scM, forcex

® Example: fixz.x

Guarded Terms

Not all fixed point terms are productive:
M—scM, forcex

Example: fix z.z
Guarded terms are syntactically defined productive terms

Can be unfolded to elements in X°°, which are potentially
infinite trees with nodes in

NB: Semantics use that ¥°° is a final coalgebra

Guarded Terms

Not all fixed point terms are productive:
M—scM, forcex

Example: fix z.z
Guarded terms are syntactically defined productive terms

Can be unfolded to elements in X°°, which are potentially
infinite trees with nodes in

NB: Semantics use that ¥°° is a final coalgebra

Circular unifiers give guarded terms

Recursive Proofs

Recursion as first step to proof search
Eliminates the need to find invariants like in lattices:
x<y< f(y)
z<vf
Recursion will be controlled by the so-called later modality

Gives iFOL, — an extension of intuitionistic first-order logic

Formulas and Theories

Predicate Signatures

Set IT of pairsp: 7 — -+ — 7, — 0, where 7, € Tand o & T

Formulas

o, u=pMy--- My, pell
| >
| TloAY | VY|l |Ve:iT.0| Tz T 0

Horn Clause
VZ (AL A---NA,) — B, where Ay, ..., A, and B are atoms

Horn clause theory or logic program

Finite set P of Horn clauses

Proof System

Standard First-Order Intuitionistic Logic plus

Rules for the later modality

LAk
F'IAFE»p

F'IAF»(p—1v)

Next
(Next) = o oe o

(Mon)

LIA»ple
F'NAF

(Lob)

Axioms for coinductive Horn clause theories P

VZ. (A1 AN---NA,) > BeP
F'NAEVZ.(»AiN---AD»A,) = B

Example: Type class inference

Horn clause theory

P={ki c:eqi
Kodd : Vx.eq x Aeq (even x) — eq (odd x)
Keven : VZ.eq x Aeq (odd x) — eq (even x)}

Resulting axioms

' AFeqi
I'| AFVz. »(eqz) Aw(eq (even x)) — eq (odd x)
I'| AFVz. »(eqz) Aw(eq (odd x)) — eq (even x)

Example: Proof for Type Class Instance

Kodd
AFVz. »(eqx) Aw(eq (even z)) — eq (odd)

AFw»(eqi) A»(eq (eveni)) — eq (odd i) [)
»(eq (odd 1)) F eq (odd i)
Feq (odd i)

(Lob)

Example: Proof for Type Class Instance

Ri <>
Aleqi At eq (even i)
Next
Arw(eql) A w(eq(eveni)) &Y

A »(eqi) A»(eq (even i))

& (Next)

Example: Proof for Type Class Instance

Reven

O

A+ »(eq (odd 1)) — eq (even i) »(eq (oddi)) € A
At eq (even i)

Coinductive Uniform Proofs

Foundations for Proof Search in
Coinductive Horn Clause Theories

What and Why Uniform Proofs?

Issues with iFOL,

® Recursion can be started anywhere
® Proof system has cut rule (through implication)

® — Prevents algorithmic proof search

What and Why Uniform Proofs?

Issues with iFOL,

® Recursion can be started anywhere
® Proof system has cut rule (through implication)

® — Prevents algorithmic proof search

Towards proof search

® Fix where recursion can start
® Eliminate cut, while preserving implication
e Qperational semantics for proofs that correspond to resolution

® — Proof search is semi-decidable resolution strategy

Coinductive Uniform Proofs (CUP)

Definite clauses and goal formulas

The operational semantics for proofs use specific formula shapes:
e Definite clauses denoted by D
® Goal formulas denoted by G

Proof steps (judgements)

;P % @ is proven coinductively from P

¥, P;A = {(p) « in proven uniformly from P and coinduction
hypothesis in A, while forcing progress

A =G G is proven uniformly from P

3 A L4 A has to be proven from D

Starting a coinductive uniform proof

I P = (p)
5P % p

co-fix

Starting a coinductive uniform proof

X P = (p)
5P % p

co-fix

Controlling the use of the coinduction hypothesis

S:PUAZ A DepP
Y, P A = (A)
P p1; A = (p2)
¥ P A = (o1 — ¢2)
5 PA=(p1) I, P;A= (p2)
¥ Py A = (p1 A pa)

decide()

—R()

AR()

Standard rules of uniform proofs

A2 A4 DePUA decid Y. Y,
EjA:}A e EA%A

BAZ A S A=G ; _ZPD=G
EAG—>D A - E;A:>D—>G_>R

SIAZ A zefl, 2}
A 282 4

YA = G YA = Gy
YA = G1 ANGo

AR

Example

Kfrom : Vx y. from (s) y — from x (scons z y)

Define
@ = V. from z (sg)
[
—L
¢, %5 P, from (s ¢) (sg ¢)—from c (scons ¢ (sg ¢)) from ¢ (Sfr C) .
- VL (2 times)
¢, Y P, =222 from c (sg c) _
decide()
¢, X; Py = (from ¢ (sg ¢)) YR()
Y; PyVe. from x (s) = (V. from z (s x)) p
co-fix

;P % Vz. from x (sg x)

Example

Kfrom : Vx y. from (s) y — from x (scons z y)

Define
@ = V. from z (sg)
initial
¢, 3 Py fom (0 9) e 0. rom (sc) (sg (s¢)) VI
¢, Py £ from (sc)(sg (sc)) decid
& ¢, X; P, = from (s ¢) (s (s ¢)) ecide
from (s ¢) (sg ¢)—from c (scons ¢ (sg ¢)) —L
c, X Pp - : from ¢ (sg)

)

Example

Kfrom : Vx y. from (s) y — from x (scons z y)
Define
@ = V. from z (sg)

scons ¢ (sg (s ¢)) = sg €

initial
from ¢ (scons ¢ (sg (s ¢)))

&

¢, X P

from ¢ (sg)

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
‘CCUP £1FOL> \
Wx %Ly

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
‘CCUP £1FOL> \
Wx %Ly

e C — Contexts and terms

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
Loyp — Liror,

ﬂ& %L,

e C — Contexts and terms

° [,gUP — Formulas and provability in CUP relative to P

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
Loyp — Livor,

ﬂ& %L,

e C — Contexts and terms
° [,gUP — Formulas and provability in CUP relative to P
° ,Cf;OL» — Formulas and provability in iFOL, relative to P

Semantics and Proof Translation

Pred L Pred
17

P P
‘CCUP £1FOL> \
W& %Lp

e C — Contexts and terms

[,gUP — Formulas and provability in CUP relative to P
° £§0L> — Formulas and provability in iFOL, relative to P
Pred — Set-based predicates

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P
—— Liror,

CUP
W& %Lp

e C — Contexts and terms

[,gUP — Formulas and provability in CUP relative to P
° EIFOL — Formulas and provability in iFOL, relative to P
Pred — Set-based predicates

Pred — Descending chains of predicates (Kripke model)

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
‘CCUP £1FOL> \
W& %L>

¢ [—] — Semantics of types and terms

Semantics and Proof Translation

Pred L Pred

=17

P P
‘CC JUP £1FOL> \
W& %L>

¢ [—] — Semantics of types and terms

e [-]¥ — Semantics of formulas and soundness

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
‘CCUP £1FOL> \
W& %L>

¢ [—] — Semantics of types and terms

e [-]¥ — Semantics of formulas and soundness

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
Loyp — Liror,

ﬂ& %L,

¢ [—] — Semantics of types and terms

e [-]¥ — Semantics of formulas and soundness

e T — Proof translation

Semantics and Proof Translation

Pred L Pred

[-1”

P P
‘CCUP £1FOL> \
W& %Lp

¢ [—] — Semantics of types and terms
e [-]¥ — Semantics of formulas and soundness
e T — Proof translation

e [, — Soundness of Kripke semantics for fixed point model

Semantics and Proof Translation

Pred L Pred

[[_]]P /

P P
Loyp — Liror,

ﬂx %L,

¢ [—] — Semantics of types and terms
e [-]¥ — Semantics of formulas and soundness
e T — Proof translation

e [, — Soundness of Kripke semantics for fixed point model

NB: All these are maps of first-order fibrations

What else is there?

® Heuristics to strengthen goals:
Jt.from 0t to Va.from x (sg)
® | ogic classification
co-hohcgy, ———— co-hohhgy

co-hohc co-hohh

|
/[co-fohcgy /[co-fohhg
T 7

co-fohc co-fohh

What's next?

® Generate proof objects
® |nductive-coinductive Horn clause theories

® Richer types (not just one base type)

Thank you very much for your attention!

	Coinductive Horn Clause Theories
	Fixed Point Terms and Circular Unification
	Constructive Coinductive Proofs
	Coinductive Uniform Proofs
	Relative Soundness and Models
	The End
	Appendix

