Foundations for Proof Search in Coinductive Horn Clause Theories

Henning Basold

CNRS, ENS Lyon

Joint work with Ekaterina Komendantskaya and Yue Li from Heriot-Watt University

> Chocola Seminar 20 September 2018

An Introduction

Coinductive Horn Clause Theories

What The Heck Are Coinductive Horn Clause Theories?

- Horn clauses that describe observations
- Canonical Herbrand model is a greatest fixed point
- Why would we want that?
 - Coinductive programming (web-server, control systems, ...)
 - Coinductive data types (streams, delayed computations, ...)
 - Mutual type class instances in Haskell
 - Coinductive predicates (bisimilarity, modal logic, ...)
 - Let your imagination run free!

Let us look at three examples.

What The Heck Are Coinductive Horn Clause Theories?

- Horn clauses that describe observations
- Canonical Herbrand model is a greatest fixed point
- Why would we want that?
 - Coinductive programming (web-server, control systems, ...)
 - Coinductive data types (streams, delayed computations, ...)
 - Mutual type class instances in Haskell
 - Coinductive predicates (bisimilarity, modal logic, ...)
 - Let your imagination run free!

Let us look at three examples.

Example 1 – Coinductive Data Types

Example (Data types of natural numbers and streams)

```
\kappa_{\text{nat0}}: \forall x.

nat 0
```

 $\kappa_{\text{nat1}} : \forall x. \text{ nat } x \longrightarrow \text{nat } (s \ x)$

 $\kappa_{\text{stream}} : \forall x. \text{ nat } x \land \text{ stream } y \rightarrow \text{stream (scons } x \ y)$

Our goal

Prove

 $\exists x. \text{ stream } x$

with x a term that represents stream of zeros:

scons 0 (scons 0 ...)

Example 1 – Coinductive Data Types

Example (Data types of natural numbers and streams)

```
\kappa_{\text{nat0}} : \forall x. \qquad \text{nat } 0

\kappa_{\text{nat1}} : \forall x. \text{ nat } x \qquad \rightarrow \text{nat } (s \ x)
```

 $\kappa_{\text{stream}} : \forall x.\, \text{nat} \,\, x \,\, \wedge \,\, \text{stream} \,\, y \rightarrow \text{stream} \,\, (\text{scons} \,\, x \,\, y)$

Our goal

Prove

 $\exists x. \text{ stream } x$

with x a term that represents stream of zeros:

scons $0 \text{ (scons } 0 \dots)$

Example 2 – Coinductive Programs

Example (Enumerating natural numbers)

 $\kappa_{\text{from}} : \forall x \ y. \text{ from } (s \ x) \ y \to \text{from } x \ (\text{scons } x \ y)$

Our goal

Prove

 $\exists x. \text{ from } 0 \ x$

with x a term that represents

scons 0 (scons $(s\ 0)$ (scons $(s\ (s\ 0))\dots)$)

Example 2 – Coinductive Programs

Example (Enumerating natural numbers)

```
\kappa_{\text{from}} : \forall x \ y. \text{ from } (s \ x) \ y \to \text{from } x \ (\text{scons } x \ y)
```

Our goal

Prove

 $\exists x. \text{ from } 0 \ x$

with x a term that represents

scons 0 (scons $(s\ 0)$ (scons $(s\ (s\ 0))\ldots)$)

```
Example (As Haskell declaration)
```

```
data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

instance(Eq a, Eq (EvenList a)) => Eq (OddList a) where ...
instance(Eq a, Eq (OddList a)) => Eq (EvenList a) where ...
```

```
Example (As Horn clause theory with some base type {f i})
```

```
\kappa_{\text{odd}} : \forall x. \text{ eq } x \land \text{ eq (even } x) \rightarrow \text{ eq (odd } x)
```

```
Example (As Haskell declaration)
```

```
data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)
```

instance(Eq a, Eq (EvenList a)) => Eq (OddList a) where ... instance(Eq a, Eq (OddList a)) => Eq (EvenList a) where ...

Example (As Horn clause theory with some base type i)

```
\kappa_{\mathbf{i}} : \text{eq } \mathbf{i}

\kappa_{\text{odd}} : \forall x. \text{ eq } x \land \text{ eq (even } x) \to \text{eq (odd } x)

\kappa_{\text{even}} : \forall x. \text{ eq } x \land \text{ eq (odd } x) \to \text{eq (even } x)
```

Example (As Horn clause theory with some base type i)

```
\kappa_{\mathbf{i}}: eq i
```

 $\kappa_{\text{odd}}: \forall x. \text{ eq } x \land \text{ eq (even } x) \rightarrow \text{ eq (odd } x)$

 $\kappa_{\text{even}} : \forall x. \text{ eq } x \land \text{ eq } (\text{odd } x) \rightarrow \text{ eq } (\text{even } x)$

Our goal

Prove

eq (odd i)

and provide the proof object for the type checker

⇒ constructive proofs and discovery of proof objects

Example (As Horn clause theory with some base type i)

$$\kappa_{\mathbf{i}}$$
: eq **i**

$$\kappa_{\text{odd}}: \forall x. \text{ eq } x \land \text{ eq (even } x) \rightarrow \text{ eq (odd } x)$$

$$\kappa_{\text{even}} : \forall x. \text{ eq } x \land \text{ eq } (\text{odd } x) \rightarrow \text{ eq } (\text{even } x)$$

Our goal

Prove

and provide the proof object for the type checker

⇒ constructive proofs and discovery of proof objects

Inductive Horn Clause Theories

- The classical interpretation of logic programs
- Horn clauses that describe constructions
- Canonical Herbrand model is a least fixed point
- Proofs and terms must be finite and non-circular

```
Example (Natural numbers revisited) \kappa_{\mathrm{nat0}}: \forall x. \qquad \mathrm{nat} \ 0 \\ \kappa_{\mathrm{nat1}}: \forall x. \ \mathrm{nat} \ x \to \mathrm{nat} \ (s \ x) Interpretation | Possible instances for x in \mathrm{nat} \ x | Inductive | 0, s 0, s (s 0), . . . . Coinductive | 0, s 0, s (s 0), . . . and s^\omega with s^\omega = s \ s^\omega
```

Inductive Horn Clause Theories

- The classical interpretation of logic programs
- Horn clauses that describe constructions
- Canonical Herbrand model is a least fixed point
- Proofs and terms must be finite and non-circular

Example (Natural numbers revisited)

$$\kappa_{\text{nat0}} : \forall x. \quad \text{nat } 0$$

$$\kappa_{\text{nat1}} : \forall x. \, \text{nat } x \to \text{nat } (s \, x)$$

Interpretation	Possible instances for x in $nat x$
Inductive	$0, s 0, s (s 0), \dots$
Coinductive	$0, s 0, s (s 0), \dots$ and s^{ω} with $s^{\omega} = s s^{\omega}$

Goal

A theory of search and models for constructive proofs in coinductive Horn clause theories

Other Approaches

- Circular Unifiers (Gupta, Simon, et al., 2006/07) does not cover the examples from and eq
- CIRC (Roşu and Lucanu, 2009) only for bisimilarity but not general Horn clause theories
- SMT-based (Reynolds and Kunak, 2015; Blanchette et al., 2018) – classical and no proof objects
- Typically not concerned with algorithmic proof search: lattice theory, game theory, type theory, cyclic proofs
- No constructive approach

Outline

Coinductive Horn Clause Theories

Fixed Point Terms and Circular Unification

Constructive Coinductive Proofs

Coinductive Uniform Proofs

Relative Soundness and Models

The End

Fixed Point Terms and Circular Unification

Why Fixed Point Terms?

Recall the stream of zeros:

scons
$$0$$
 (scons $0 \cdots$)

As circular unifier

x = scons 0 x

As fixed point term

fix x, scons 0 x

Typed λ -Terms With Fixed Points

Types and Signatures

$$\mathbb{T} \ni \sigma, \tau ::= \iota \in \mathbb{B} \mid \sigma \to \tau$$

Signature is a set Σ of pairs $c:\tau$, where $\tau\in\mathbb{T}$.

Terms (Simply typed λ -calculus with fixed points)

$$\begin{array}{ccc} \underline{c:\tau\in\Sigma} & \underline{x:\tau\in\Gamma} & \underline{\Gamma\vdash M:\sigma\to\tau} & \underline{\Gamma\vdash N:\sigma} \\ \overline{\Gamma\vdash c:\tau} & \overline{\Gamma\vdash x:\tau} & \overline{\Gamma\vdash M:\tau} & \underline{\Gamma\vdash M:\tau} \\ \\ \underline{\Gamma,x:\sigma\vdash M:\tau} & \underline{\Gamma,x:\tau\vdash M:\tau} \\ \overline{\Gamma\vdash \lambda x.M:\sigma\to\tau} & \underline{\Gamma,x:\tau\vdash M:\tau} \\ \end{array}$$

Operational Semantics

$$(\lambda x. M)N \longrightarrow M[N/x]$$
 (fix $x. M$) $\longrightarrow M[\text{fix } x. /x]$

Example

Recall the enumeration of natural numbers

$$\kappa_{\text{from}} : \forall x \ y. \ \text{from} \ (s \ x) \ y \to \text{from} \ x \ (\text{scons} \ x \ y)$$

and the term

scons
$$0$$
 (scons $(s\ 0)$ (scons $(s\ (s\ 0))\ldots)$)

Representation as fixed point term

Define

$$s_{\rm fr} = {\rm fix} \ f. \ \lambda x. \ {\rm scons} \ x \ (f \ (s \ x)),$$

then $s_{\rm fr}: \iota \to \iota$.

Example

Recall the enumeration of natural numbers

$$\kappa_{\text{from}} : \forall x \ y. \ \text{from} \ (s \ x) \ y \to \text{from} \ x \ (\text{scons} \ x \ y)$$

and the term

scons
$$0$$
 (scons $(s\ 0)$ (scons $(s\ (s\ 0))\dots)$)

Representation as fixed point term

Define

$$s_{\text{fr}} = \text{fix } f. \lambda x. \text{ scons } x (f (s x)),$$

then $s_{\rm fr}: \iota \to \iota$.

Guarded Terms

Not all fixed point terms are productive:

$$M \longrightarrow c M'$$
, for $c \in \Sigma$

- Example: fix x. x
- Guarded terms are syntactically defined productive terms
- Can be unfolded to elements in Σ^{∞} , which are potentially infinite trees with nodes in Σ
- NB: Semantics use that Σ^{∞} is a final coalgebra
- Circular unifiers give guarded terms

Guarded Terms

Not all fixed point terms are productive:

$$M \longrightarrow c M'$$
, for $c \in \Sigma$

- Example: $\operatorname{fix} x.x$
- Guarded terms are syntactically defined productive terms
- Can be unfolded to elements in Σ^{∞} , which are potentially infinite trees with nodes in Σ
- NB: Semantics use that Σ^{∞} is a final coalgebra
- Circular unifiers give guarded terms

Guarded Terms

Not all fixed point terms are productive:

$$M \longrightarrow c M'$$
, for $c \in \Sigma$

- Example: fix x. x
- Guarded terms are syntactically defined productive terms
- Can be unfolded to elements in Σ^{∞} , which are potentially infinite trees with nodes in Σ
- NB: Semantics use that Σ^{∞} is a final coalgebra
- Circular unifiers give guarded terms



Recursive Proofs

- Recursion as first step to proof search
- Eliminates the need to find invariants like in lattices:

$$\frac{x \le y \le f(y)}{x \le \nu f}$$

- Recursion will be controlled by the so-called later modality
- Gives iFOL_▶ an extension of intuitionistic first-order logic

Formulas and Theories

Predicate Signatures

Set Π of pairs $p: \tau_1 \to \cdots \to \tau_n \to o$, where $\tau_k \in \mathbb{T}$ and $o \notin \mathbb{T}$

Formulas

$$\varphi, \psi ::= p \ M_1 \cdots M_n, \quad p \in \Pi$$

$$| \blacktriangleright \varphi$$

$$| \top | \varphi \land \psi | \varphi \lor \psi | \varphi \to \psi | \forall x : \tau. \varphi | \exists x : \tau. \varphi$$

Horn Clause

 $\forall \vec{x}. (A_1 \land \cdots \land A_n) \rightarrow B$, where A_1, \ldots, A_n and B are atoms

Horn clause theory or logic program

Finite set P of Horn clauses

Proof System

Standard First-Order Intuitionistic Logic plus

Rules for the later modality

$$\frac{\Gamma \mid \Delta \vdash \varphi}{\Gamma \mid \Delta \vdash \blacktriangleright \varphi} \text{ (Next)} \quad \frac{\Gamma \mid \Delta \vdash \blacktriangleright (\varphi \to \psi)}{\Gamma \mid \Delta \vdash \blacktriangleright \varphi \to \blacktriangleright \psi} \text{ (Mon)}$$

$$\frac{\Gamma \mid \Delta, \blacktriangleright \varphi \vdash \varphi}{\Gamma \mid \Delta \vdash \varphi} \text{ (L\"{o}b)}$$

Axioms for coinductive Horn clause theories P

$$\frac{\forall \vec{x}. (A_1 \land \dots \land A_n) \to B \in P}{\Gamma \mid \Delta \vdash \forall \vec{x}. (\blacktriangleright A_1 \land \dots \land \blacktriangleright A_n) \to B}$$

Example: Type class inference

Horn clause theory

$$P = \{ \kappa_{\mathbf{i}} : \text{eq } \mathbf{i} \}$$

$$\kappa_{\text{odd}} : \forall x. \text{ eq } x \land \text{eq (even } x) \rightarrow \text{eq (odd } x)$$

$$\kappa_{\text{even}} : \forall x. \text{ eq } x \land \text{eq (odd } x) \rightarrow \text{eq (even } x) \}$$

Resulting axioms

$$\Gamma \mid \Delta \vdash \operatorname{eq} \mathbf{i}$$

$$\Gamma \mid \Delta \vdash \forall x. \blacktriangleright (\operatorname{eq} x) \land \blacktriangleright (\operatorname{eq} (\operatorname{even} x)) \to \operatorname{eq} (\operatorname{odd} x)$$

$$\Gamma \mid \Delta \vdash \forall x. \blacktriangleright (\operatorname{eq} x) \land \blacktriangleright (\operatorname{eq} (\operatorname{odd} x)) \to \operatorname{eq} (\operatorname{even} x)$$

Example: Proof for Type Class Instance

Example: Proof for Type Class Instance

Example: Proof for Type Class Instance

Coinductive Uniform Proofs

Foundations for Proof Search in Coinductive Horn Clause Theories

What and Why Uniform Proofs?

Issues with iFOL

- Recursion can be started anywhere
- Proof system has cut rule (through implication)
- Prevents algorithmic proof search

Towards proof search

- Fix where recursion can start
- Eliminate cut, while preserving implication
- Operational semantics for proofs that correspond to resolution
- Proof search is semi-decidable resolution strategy

What and Why Uniform Proofs?

Issues with iFOL

- Recursion can be started anywhere
- Proof system has cut rule (through implication)
- Prevents algorithmic proof search

Towards proof search

- Fix where recursion can start
- Eliminate cut, while preserving implication
- Operational semantics for proofs that correspond to resolution
- Proof search is semi-decidable resolution strategy

Coinductive Uniform Proofs (CUP)

Definite clauses and goal formulas

The operational semantics for proofs use specific formula shapes:

- Definite clauses denoted by D
- Goal formulas denoted by G

Proof steps (judgements)

```
\begin{array}{lll} \Sigma; P \looparrowright \varphi & \varphi & \text{is proven coinductively from } P \\ \Sigma; P; \Delta \Longrightarrow \langle \varphi \rangle & \varphi & \text{in proven uniformly from } P & \text{and coinduction hypothesis in } \Delta, & \text{while forcing progress} \\ \Sigma; \Delta \Longrightarrow G & G & \text{is proven uniformly from } P \\ \Sigma; \Delta \Longrightarrow A & A & \text{has to be proven from } D \end{array}
```

Starting a coinductive uniform proof

$$\frac{\Sigma; P; \varphi \Longrightarrow \langle \varphi \rangle}{\Sigma; P \looparrowright \varphi} \text{ co-fix}$$

Controlling the use of the coinduction hypothesis

$$\frac{\Sigma; P \cup \Delta \stackrel{\Longrightarrow}{\Rightarrow} A \qquad D \in P}{\Sigma; P; \Delta \Longrightarrow \langle A \rangle} \operatorname{decide}\langle\rangle$$

$$\frac{\Sigma; P, \varphi_1; \Delta \Longrightarrow \langle \varphi_2 \rangle}{\Sigma; P; \Delta \Longrightarrow \langle \varphi_1 \rightarrow \varphi_2 \rangle} \rightarrow R\langle\rangle$$

$$\frac{\xi; P; \Delta \Longrightarrow \langle \varphi_1 \rangle \qquad \Sigma; P; \Delta \Longrightarrow \langle \varphi_2 \rangle}{\Sigma; P; \Delta \Longrightarrow \langle \varphi_1 \wedge \varphi_2 \rangle} \land R$$

$$\vdots$$

Starting a coinductive uniform proof

$$\frac{\Sigma; P; \varphi \Longrightarrow \langle \varphi \rangle}{\Sigma; P \looparrowright \varphi} \text{ co-fix}$$

Controlling the use of the coinduction hypothesis

$$\frac{\Sigma; P \cup \Delta \overset{D}{\Longrightarrow} A \qquad D \in P}{\Sigma; P; \Delta \Longrightarrow \langle A \rangle} \operatorname{decide}\langle\rangle$$

$$\frac{\Sigma; P, \varphi_1; \Delta \Longrightarrow \langle \varphi_2 \rangle}{\Sigma; P; \Delta \Longrightarrow \langle \varphi_1 \rightarrow \varphi_2 \rangle} \rightarrow R\langle\rangle$$

$$\frac{\Sigma; P; \Delta \Longrightarrow \langle \varphi_1 \rangle \qquad \Sigma; P; \Delta \Longrightarrow \langle \varphi_2 \rangle}{\Sigma; P; \Delta \Longrightarrow \langle \varphi_1 \wedge \varphi_2 \rangle} \land R\langle\rangle$$

Standard rules of uniform proofs

 $\frac{\Sigma; \Delta \xrightarrow{D} A \qquad \Sigma; \Delta \Longrightarrow G}{\Sigma; \Delta \xrightarrow{G \to D} A} \to L \quad \frac{\Sigma; P, D \Longrightarrow G}{\Sigma; \Delta \Longrightarrow D \to G} \to R$

 $\frac{\Sigma; \Delta \xrightarrow{D_x} A \quad x \in \{1, 2\}}{\Sigma; \Delta \xrightarrow{D_1 \land D_2} A} \land L$

 $\frac{\Sigma; \Delta \Longrightarrow G_1 \qquad \Sigma; \Delta \Longrightarrow G_2}{\Sigma; \Delta \Longrightarrow G_1 \land G_2} \land R$

 $\frac{\Sigma; \Delta \overset{D}{\Longrightarrow} A \qquad D \in P \cup \Delta}{\Sigma; \Delta \Longrightarrow A} \text{ decide } \frac{A \equiv A'}{\Sigma; \Delta \overset{A'}{\Longrightarrow} A} \text{ initial}$

Example

$$\kappa_{\text{from}} : \forall x \ y. \text{ from } (s \ x) \ y \to \text{ from } x \ (\text{scons } x \ y)$$

Define

$$\varphi = \forall x. \text{ from } x (s_{\text{fr}} x)$$

$$\begin{array}{c} & & & & & & & & \\ \hline c, \Sigma; P, \varphi \xrightarrow{\text{from } (s \ c) \ (s_{\text{fr}} \ c) \to \text{from } c \ (s_{\text{fr}} \ c))} & \text{from } c \ (s_{\text{fr}} \ c) \\ \hline & & & & & \\ \hline \frac{c, \Sigma; P, \varphi \xrightarrow{\kappa_{\text{from}}} \text{from } c \ (s_{\text{fr}} \ c)}{c, \Sigma; P; \varphi \Longrightarrow \langle \text{from } c \ (s_{\text{fr}} \ c) \rangle} & \text{decide} \langle \rangle \\ \hline \frac{\Sigma; P; \forall x. \text{ from } x \ (s_{\text{fr}} \ x) \Longrightarrow \langle \forall x. \text{ from } x \ (s_{\text{fr}} \ x) \rangle}{\Sigma; P \hookrightarrow \forall x. \text{ from } x \ (s_{\text{fr}} \ x)} & \text{co-fix} \end{array}$$

Example

 $\kappa_{\text{from}}: \forall x \; y. \, \text{from} \; (s \; x) \; y \to \text{from} \; x \; (\text{scons} \; x \; y)$

Define

$$\varphi = \forall x. \text{ from } x (s_{\text{fr}} x)$$

$$\begin{array}{c} c, \Sigma; P, \varphi \xrightarrow{\text{from } (s \ c) \ (s_{\text{fr}} \ (s \ c))} \text{ from } (s \ c) \ (s_{\text{fr}} \ (s \ c))} \\ \hline c, \Sigma; P, \varphi \xrightarrow{\text{from } (s \ c) \ (s_{\text{fr}} \ (s \ c))} \text{ from } (s \ c) \ (s_{\text{fr}} \ (s \ c))} \\ \hline c, \Sigma; P, \varphi \xrightarrow{\text{from } (s \ c) \ (s_{\text{fr}} \ (s \ c))} \text{ decide}} \\ \hline c, \Sigma; P, \varphi \xrightarrow{\text{from } (s \ c) \ (s_{\text{fr}} \ c) \to \text{from } c \ (s_{\text{fr}} \ c))} \text{ from } c \ (s_{\text{fr}} \ c) \\ \hline \end{array} \rightarrow L$$

Example

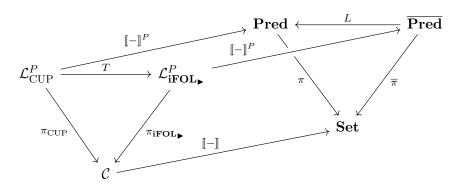
 $\kappa_{\text{from}} : \forall x \ y. \ \text{from} \ (s \ x) \ y \to \text{from} \ x \ (\text{scons} \ x \ y)$

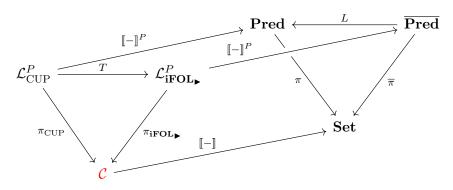
Define

$$\varphi = \forall x. \text{ from } x \ (s_{\text{fr}} \ x)$$

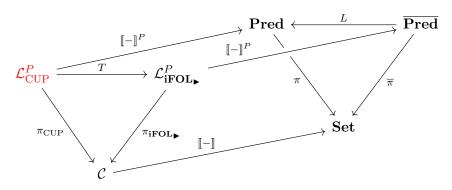
$$\frac{\operatorname{scons} c \left(s_{\operatorname{fr}} \left(s \ c \right) \right) \equiv s_{\operatorname{fr}} \ c}{\underbrace{c, \Sigma; P, \varphi \xrightarrow{\operatorname{from} c \left(\operatorname{scons} c \left(s_{\operatorname{fr}} \left(s \ c \right) \right) \right)}} \operatorname{from} c \left(s_{\operatorname{fr}} \ c \right)}$$
initial



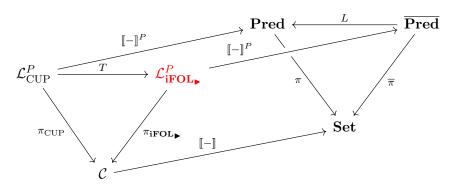




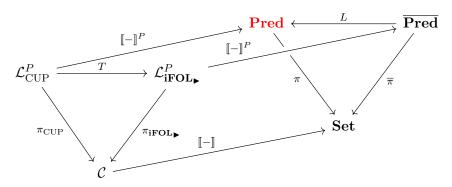
- C Contexts and terms
- $\mathcal{L}_{ ext{CUP}}^{P}$ Formulas and provability in CUP relative to P
- \mathcal{L}_{iFOL}^P Formulas and provability in $iFOL_{\blacktriangleright}$ relative to P
- Pred Set-based predicates
- Pred Descending chains of predicates (Kripke model)



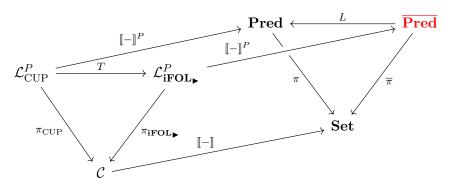
- C Contexts and terms
- $\mathcal{L}_{ ext{CUP}}^{P}$ Formulas and provability in CUP relative to P
- \mathcal{L}_{iFOL}^P Formulas and provability in $iFOL_{\triangleright}$ relative to P
- Pred Set-based predicates
- Pred Descending chains of predicates (Kripke model)



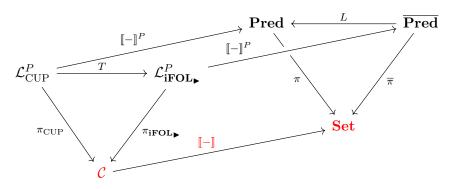
- C Contexts and terms
- $\mathcal{L}_{ ext{CUP}}^{P}$ Formulas and provability in CUP relative to P
- \mathcal{L}_{iFOL}^P Formulas and provability in $iFOL_{\blacktriangleright}$ relative to P
- Pred Set-based predicates
- Pred Descending chains of predicates (Kripke model)



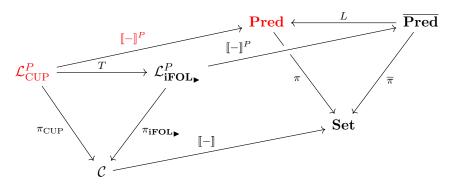
- C Contexts and terms
- $\mathcal{L}_{ ext{CUP}}^{P}$ Formulas and provability in CUP relative to P
- \mathcal{L}_{iFOL}^P Formulas and provability in $iFOL_{\blacktriangleright}$ relative to P
- Pred Set-based predicates
- Pred Descending chains of predicates (Kripke model)



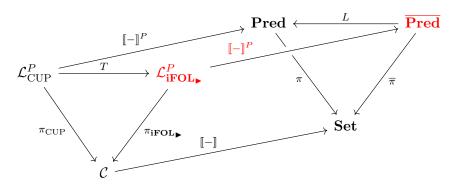
- C Contexts and terms
- $\mathcal{L}_{ ext{CUP}}^{P}$ Formulas and provability in CUP relative to P
- \mathcal{L}_{iFOL}^P Formulas and provability in $iFOL_{\blacktriangleright}$ relative to P
- Pred Set-based predicates
- $\overline{\text{Pred}}$ Descending chains of predicates (Kripke model)



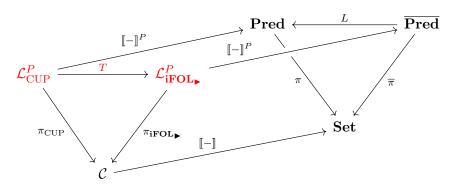
- $\llbracket \rrbracket$ Semantics of types and terms
- $\llbracket \rrbracket^P$ Semantics of formulas and soundness
- T Proof translation
- L Soundness of Kripke semantics for fixed point model
- NB: All these are maps of first-order fibrations



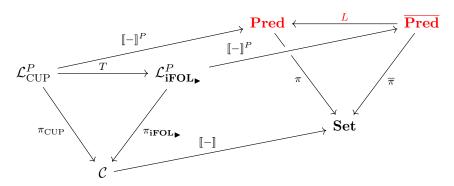
- [-] Semantics of types and terms
- ullet $[-]^P$ Semantics of formulas and soundness
- T Proof translation
- L Soundness of Kripke semantics for fixed point model
- NB: All these are maps of first-order fibrations



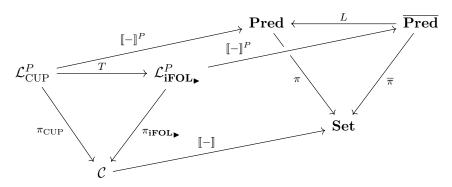
- [-] Semantics of types and terms
- $\llbracket \rrbracket^P$ Semantics of formulas and soundness
- T Proof translation
- L Soundness of Kripke semantics for fixed point model
- NB: All these are maps of first-order fibrations



- [-] Semantics of types and terms
- $\llbracket \rrbracket^P$ Semantics of formulas and soundness
- T Proof translation
- L Soundness of Kripke semantics for fixed point model
- NB: All these are maps of first-order fibrations



- [-] Semantics of types and terms
- $\llbracket \rrbracket^P$ Semantics of formulas and soundness
- T Proof translation
- *L* Soundness of Kripke semantics for fixed point model
- NB: All these are maps of first-order fibrations



- [-] Semantics of types and terms
- $\llbracket \rrbracket^P$ Semantics of formulas and soundness
- T Proof translation
- L Soundness of Kripke semantics for fixed point model
- NB: All these are maps of first-order fibrations

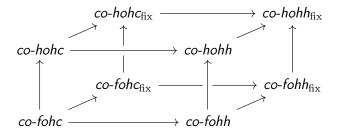
The End

What else is there?

• Heuristics to strengthen goals:

$$\exists t. \text{ from } 0 \ t$$
 to $\forall x. \text{ from } x \ (s_{\text{fr}} \ x)$

Logic classification



What's next?

- Generate proof objects
- Inductive-coinductive Horn clause theories
- Richer types (not just one base type)

Thank you very much for your attention!