Breaking the Loop Recursive Proofs for Coinductive Predicates

Henning Basold

CNRS, ENS Lyon

LIMD Seminar Université Savoie, Bourget du Lac 14 June 2018

Original Motivation

- Syntactic logic for program equivalence in my thesis
- Recursive proof system based on later modality
- Recursion gives rise to proof search
- Many of the constructions are pedestrian
- Need for an abstract framework

Original Motivation

- Syntactic logic for program equivalence in my thesis
- Recursive proof system based on later modality
- Recursion gives rise to proof search
- Many of the constructions are pedestrian
- Need for an abstract framework

Motivation

Stream Differential Equations

Example (Constant Streams)

$$a^{\omega}: \mathbb{R}^{\omega} \qquad a_0^{\omega} = a \qquad (a^{\omega})' = a^{\omega}$$

Example (Point-wise Stream Addition)

Example (Stream of Positive Numbers)

$$s: \mathbb{R}^{\omega}$$
 $s_0 = 1$ $s' = 1^{\omega} \oplus s$

Point-wise Positive Streams

Example (Predicate Transformer)

$$\Phi(P \subseteq \mathbb{R}^{\omega}) = \{ s \in \mathbb{R}^{\omega} \mid s_0 > 0 \land s' \in P \}$$

- Φ monotone
- Greatest fixed point $u\Phi$ exists
- $s \in \nu \Phi$ iff s is point-wise greater than 0

$$(\operatorname{Def. of} s) \xrightarrow[\vdash 1 > 0]{} \frac{(1 + 1 > 0)}{(1 + s_0 > 0)} = (1 + 1) + (1 +$$

Inference Rule

$$\begin{split} \varphi &:= s \in \nu \Phi \\ \frac{\Delta, \blacktriangleright \varphi \vdash \varphi}{\Delta \vdash \varphi} \text{ (Löb)} \end{split}$$

$$(\operatorname{Def. of} s) \xrightarrow[\vdash 1 > 0]{} \frac{(1 + 1 > 0)}{(1 + s_0 > 0)} = (1 + 1) + (1 +$$

Inference Rule

$$\frac{\Delta \vdash \blacktriangleright (s \in \Phi(\nu \Phi))}{\Delta \vdash s \in \nu \Phi}$$
(Step)
$$\Phi(P) = \{s \in \mathbb{R}^{\omega} \mid s_0 > 0 \land s' \in P\}$$

 $\frac{\Delta \vdash \blacktriangleright \varphi \land \blacktriangleright \psi}{\Delta \vdash \blacktriangleright (\varphi \land \psi)} (\blacktriangleright \text{ preserves } \land)$

$$(\operatorname{Def. of} s) \underbrace{\frac{\vdash 1 > 0}{\vdash s_0 > 0}}_{(\operatorname{Next})} \underbrace{\frac{\vdash 1 > 0}{\vdash (s_0 > 0)}}_{\vdash (s_0 > 0)} \underbrace{\frac{ \vdash \varphi \vdash (1^{\omega} \oplus s \in C(\nu\Phi))}{\vdash \varphi \vdash (1^{\omega} \oplus s \in V\Phi)}}_{(\operatorname{Pr})} (\operatorname{Def. } C)$$

$$(C \text{ compat.})$$

$$\underbrace{\frac{ \vdash \varphi \vdash (s_0 > 0)}{\vdash \varphi \vdash (s_0 > 0 \land s' \in \nu\Phi)}}_{\downarrow \varphi \vdash (s_0 > 0 \land s' \in \nu\Phi)} (\operatorname{Def. of} s)$$

$$\underbrace{\frac{ \vdash \varphi \vdash (s_0 > 0 \land s' \in \nu\Phi)}{\vdash s \in \nu\Phi}}_{\vdash s \in \nu\Phi} (\operatorname{L\ddot{o}b})$$

Inference Rule $\frac{\Delta \vdash \varphi}{\Delta \vdash \blacktriangleright \varphi} \text{ (Next)}$

$$(\operatorname{Def. of} s) \frac{\overline{\vdash 1 > 0}}{\vdash s_0 > 0} \qquad \frac{\varphi \vdash \varphi}{\vdash \varphi \vdash (1^{\omega} \oplus s \in \nu\Phi)} (\operatorname{Pr}) (\operatorname{Def. } C) \\ \xrightarrow{\varphi \vdash \varphi \vdash (1^{\omega} \oplus s \in \nu\Phi)} (\varphi \vdash (1^{\omega} \oplus s \in \nu\Phi)) (C \text{ compat.})} \\ \xrightarrow{\varphi \vdash \varphi \vdash (s_0 > 0)} \xrightarrow{\varphi \vdash \varphi \vdash (1^{\omega} \oplus s \in \nu\Phi)} (\varphi \vdash (s_0 = \nu\Phi)) (\varphi \vdash (s' \in \nu\Phi)) (\varphi \vdash (s' \in \nu\Phi))} \\ \xrightarrow{\varphi \vdash s \in \nu\Phi} (\varphi \vdash s \in \nu\Phi) (\varphi \vdash s \in \nu\Phi)} (\varphi \vdash s \in \nu\Phi) (\varphi \vdash s \in \nu\Phi)} (\varphi \vdash s \in \nu\Phi) (\varphi \vdash s \in \mu \Phi) (\varphi \vdash s \in \mu\Phi) (\varphi \vdash s \vdash x \to \mu\Phi) (\varphi \vdash s \vdash x \to \mu\Phi) (\varphi \vdash s \vdash x \to \mu\Phi) (\varphi \vdash x \vdash x \to \mu\Phi) (\varphi \vdash x \to \mu\Phi)$$

Inference Rule $s: \mathbb{R}^{\omega} \qquad s_0 = 1 \qquad s' = 1^{\omega} \oplus s$

$$(\operatorname{Def. of} s) \xrightarrow[\vdash 1 > 0]{} \frac{(1 + 1 > 0)}{(1 + s_0 > 0)} = (1 + 1) \xrightarrow[\vdash \infty]{} \frac{\varphi \vdash (1^{\omega} \oplus s \in V\Phi)}{(1^{\omega} \oplus s \in C(\nu\Phi))} \xrightarrow[\vdash \infty]{} \frac{\varphi \vdash (1^{\omega} \oplus s \in V\Phi)}{(1^{\omega} \oplus s \in \nu\Phi)} \xrightarrow[\vdash \infty]{} (C \text{ compat.}) \xrightarrow[\vdash \infty]{} \frac{\varphi \vdash (1^{\omega} \oplus s \in \nu\Phi)}{(1^{\omega} \oplus s \in \nu\Phi)} \xrightarrow[\vdash \infty]{} (Pr) \xrightarrow[\vdash \infty]{} (C \text{ compat.}) \xrightarrow[\vdash \infty]{} (C \text{ compat.}) \xrightarrow[\vdash \infty]{} \frac{\varphi \vdash (1^{\omega} \oplus s \in \nu\Phi)}{(1^{\omega} \oplus s \in \nu\Phi)} \xrightarrow[\vdash \infty]{} (C \text{ compat.}) \xrightarrow[\vdash \infty$$

Inference Rule

$$\frac{C \text{ compatible } \Delta \vdash t \in C(\nu\Phi)}{\Delta \vdash t \in \nu\Phi} \text{ (C compatible)}$$

$$C(P \subseteq \mathbb{R}^{\omega}) = \{1^{\omega} \oplus s \mid s \in P\}$$

$$\frac{\varphi \in \Delta}{\Delta \vdash \varphi} (\mathsf{Pr})$$

Idea

Extending a Logic

- Given a logic ${\mathcal L}$ with formulas φ and provability $\Gamma \mid \Delta \vdash \varphi$
- Construct a new logic $\overline{\mathcal{L}}$ with the same propositional and first-order connectives, . . .
- ... and a new connective ►, the later modality, that fulfils the axioms for the later modality ...
- ... and enables coinductive predicates and up-to techniques

Rules for the later modality

$$\frac{\Gamma \mid \Delta \vdash \varphi}{\Gamma \mid \Delta \vdash \blacktriangleright \varphi} \text{ (Next) } \frac{\Gamma \mid \Delta \vdash \blacktriangleright (\varphi \rightarrow \psi)}{\Gamma \mid \Delta \vdash \blacktriangleright \varphi \rightarrow \blacktriangleright \psi} \text{ (Mon)}$$

$$\frac{\Gamma \mid \Delta, \blacktriangleright \varphi \vdash \varphi}{\Gamma \mid \Delta \vdash \varphi} \text{ (Löb)}$$

Extending a Logic

- Given a logic ${\mathcal L}$ with formulas φ and provability $\Gamma \mid \Delta \vdash \varphi$
- Construct a new logic $\overline{\mathcal{L}}$ with the same propositional and first-order connectives, . . .
- ... and a new connective ►, the later modality, that fulfils the axioms for the later modality ...
- ... and enables coinductive predicates and up-to techniques

Rules for coinductive predicates and up-to techniques

$$\frac{\Gamma \mid \Delta \vdash \blacktriangleright (s \in \Phi(\nu \Phi))}{\Gamma \mid \Delta \vdash s \in \nu \Phi}$$
(Step)

 $\frac{C \text{ is } \Phi \text{-compatible } \Gamma \mid \Delta \vdash t \in C(\nu \Phi)}{\Gamma \mid \Delta \vdash t \in \nu \Phi} \text{ (Up-to)}$

Setup

Fibrations

- Fibrations provide abstraction of first- (and higher-)order logic
- \mathbf{B} Category of typed contexts and terms
- ${f E}$ Category of formulas with variables typed in ${f B}$
- $p \colon \mathbf{E} \to \mathbf{B}$ functor that assigns to a formula its context

Example

- Set-based predicates: $Pred \rightarrow Set$
- Quantitative predicates: $qPred \rightarrow \mathbf{Set}$
- Syntactic logic over syntactic terms: $\mathcal{L}
 ightarrow \mathcal{C}$
- Set-indexed families (dependent types): $Fam(\mathbf{C}) \rightarrow \mathbf{Set}$

Fibrations

- Fibrations provide abstraction of first- (and higher-)order logic
- \mathbf{B} Category of typed contexts and terms
- ${f E}$ Category of formulas with variables typed in ${f B}$
- $p \colon \mathbf{E} \to \mathbf{B}$ functor that assigns to a formula its context

Example

- Set-based predicates: $\operatorname{Pred} \to \operatorname{\mathbf{Set}}$
- Quantitative predicates: $\operatorname{qPred}\to\operatorname{\mathbf{Set}}$
- Syntactic logic over syntactic terms: $\mathcal{L} \to \mathcal{C}$
- Set-indexed families (dependent types): $Fam(\mathbf{C}) \rightarrow \mathbf{Set}$

Example: Quantitative Predicates

Category of quantitative predicates

 $\mathbf{qPred} = \begin{cases} \mathsf{objects:} & (X,\delta) \text{ with } X \in \mathbf{Set} \text{ and } \delta \colon X \to [0,1] \\ \mathsf{morphisms:} & f \colon (X,\delta) \to (Y,\gamma) \text{ if } f \colon X \to Y \text{ in } \mathbf{Set} \\ & \mathsf{and} \ \delta \leq \gamma \circ f \end{cases}$

Reindexing along $u: X \to Y$ gives fibration $\mathbf{qPred} \to \mathbf{Set}$ $u^*(Y, \gamma) = (X, \lambda x, \gamma(u(x)))$

Products and Exponents

$$\begin{split} (\delta\times\gamma)(x) &= \min\{\delta(x),\gamma(x)\}\\ \Bigl(\gamma^\delta\Bigr)(x) &= \begin{cases} 1, & \delta(x) \leq \gamma(x)\\ \gamma(x), & \text{otherwise} \end{cases} \end{split}$$

Example: Quantitative Predicates

Category of quantitative predicates

 $\mathbf{qPred} = \begin{cases} \mathsf{objects:} & (X,\delta) \text{ with } X \in \mathbf{Set} \text{ and } \delta \colon X \to [0,1] \\ \mathsf{morphisms:} & f \colon (X,\delta) \to (Y,\gamma) \text{ if } f \colon X \to Y \text{ in } \mathbf{Set} \\ & \mathsf{and} \ \delta \leq \gamma \circ f \end{cases}$

Reindexing along $u: X \to Y$ gives fibration $\mathbf{qPred} \to \mathbf{Set}$ $u^*(Y, \gamma) = (X, \lambda x. \gamma(u(x)))$

Products and Exponents

$$\begin{split} (\delta \times \gamma)(x) &= \min\{\delta(x), \gamma(x)\}\\ \Bigl(\gamma^{\delta}\Bigr)(x) &= \begin{cases} 1, & \delta(x) \leq \gamma(x)\\ \gamma(x), & \text{otherwise} \end{cases} \end{split}$$

Example: Quantitative Predicates

Category of quantitative predicates

 $\mathbf{qPred} = \begin{cases} \mathsf{objects:} & (X, \delta) \text{ with } X \in \mathbf{Set} \text{ and } \delta \colon X \to [0, 1] \\ \mathsf{morphisms:} & f \colon (X, \delta) \to (Y, \gamma) \text{ if } f \colon X \to Y \text{ in } \mathbf{Set} \\ & \mathsf{and} \ \delta \leq \gamma \circ f \end{cases}$

Reindexing along $u \colon X \to Y$ gives fibration $\mathbf{qPred} \to \mathbf{Set}$

$$u^*(Y,\gamma) = (X, \lambda x. \gamma(u(x)))$$

Products and Exponents

$$\begin{split} (\delta\times\gamma)(x) &= \min\{\delta(x),\gamma(x)\}\\ \Bigl(\gamma^\delta\Bigr)(x) &= \begin{cases} 1, & \delta(x) \leq \gamma(x)\\ \gamma(x), & \text{otherwise} \end{cases} \end{split}$$

Coinductive Predicates

Predicate lifting G of behaviour functor F

commutes and G preserves Cartesian morphisms.

Predicate transformer for coalgebra $c \colon X \to FX$ $\Phi := \mathbf{E}_X \xrightarrow{G} \mathbf{E}_{FX} \xrightarrow{c^*} \mathbf{E}_X$

Coinductive predicate

Final coalgebra $\xi \colon \nu \Phi \to \Phi(\nu \Phi)$ for Φ

$\omega^{\mathrm{op}}\text{-}\mathsf{Diagrams}$ in Fibrations

Category of Descending Chains

$$\overline{\mathbf{C}} = [\omega^{\mathrm{op}}, \mathbf{C}] =$$
 "category of functors $\omega^{\mathrm{op}} \to \mathbf{C}$ "

Constant-Index Chains

$$\overline{\mathbf{E}}_X := \overline{\mathbf{E}}_{K_X} \cong \overline{\mathbf{E}}_X$$

If $\sigma \in \overline{\mathbf{E}}_X$, then $p(\sigma_n) = \overline{p}(\sigma)_n = (K_X)_n = X$.

The final chain $\overleftarrow{\Phi}\in \overline{\mathbf{E}}_X$

$$\overleftarrow{\Phi} := \mathbf{1} \xleftarrow{!} \Phi(\mathbf{1}) \xleftarrow{\Phi(!)} \Phi^2(\mathbf{1}) \xleftarrow{\Phi^2(!)} \Phi^3(\mathbf{1}) \xleftarrow{\cdots}$$

If Φ preserves ω^{op} -limits, then maps $A \to \nu \Phi$ in \mathbf{E}_X can be given by maps $K_A \to \overleftarrow{\Phi}$ in $\overline{\mathbf{E}}_X$.

$\omega^{\mathrm{op}}\text{-}\mathsf{Diagrams}$ in Fibrations

Category of Descending Chains

$$\overline{\mathbf{C}} = [\omega^{\mathrm{op}}, \mathbf{C}] =$$
 "category of functors $\omega^{\mathrm{op}} \to \mathbf{C}$ "

Constant-Index Chains

$$\overline{\mathbf{E}}_X := \overline{\mathbf{E}}_{K_X} \cong \overline{\mathbf{E}}_X$$

If $\sigma \in \overline{\mathbf{E}}_X$, then $p(\sigma_n) = \overline{p}(\sigma)_n = (K_X)_n = X$.

The final chain $\overleftarrow{\Phi} \in \overline{\mathbf{E}}_X$

$$\overleftarrow{\Phi}:= \mathbf{1} \xleftarrow{!} \Phi(\mathbf{1}) \xleftarrow{\Phi(!)} \Phi^2(\mathbf{1}) \xleftarrow{\Phi^2(!)} \Phi^3(\mathbf{1}) \xleftarrow{\cdots}$$

If Φ preserves ω^{op} -limits, then maps $A \to \nu \Phi$ in \mathbf{E}_X can be given by maps $K_A \to \overleftarrow{\Phi}$ in $\overline{\mathbf{E}}_X$.

Greater-Than-0 Example

Example (Predicate lifting and coinductive predicate)

 $F: \mathbf{Set} \to \mathbf{Set} \quad G: \operatorname{Pred} \to \operatorname{Pred}$ $F = \mathbb{R} \times \operatorname{Id} \qquad G(X, P) = (FX, \{(a, x) \mid a > 0 \land x \in P\})$

Predicate transformer

 $\Phi = \langle \mathrm{hd}, \mathrm{tl} \rangle^* \circ G$

Coinductive predicate

 $\nu\Phi\subseteq\Phi(\nu\Phi)$

Example (Notation)

Given a descending chain $\sigma \in \overline{\operatorname{Pred}}_X$, we define $\vdash \sigma := \overline{\mathbf{1}}_X \sqsubseteq \sigma$ (\iff there exists $\overline{\mathbf{1}}_X \to \sigma$) $x \in \sigma := \sigma^{K_{\{x\}}}$

 $\vdash s \in \overleftarrow{\Phi} \iff \forall n \in \mathbb{N}. \, s \in \overleftarrow{\Phi}_n \stackrel{Thm}{\iff} s \in \nu \Phi \iff s \text{ greater t. 0}$

Greater-Than-0 Example

Example (Predicate lifting and coinductive predicate)

 $\begin{array}{ll} F \colon \mathbf{Set} \to \mathbf{Set} & G \colon \mathrm{Pred} \to \mathrm{Pred} \\ F = \mathbb{R} \times \mathrm{Id} & G(X, P) = (FX, \{(a, x) \mid a > 0 \land x \in P\}) \end{array}$

Predicate transformer

 $\Phi = \langle \mathrm{hd}, \mathrm{tl} \rangle^* \circ G$

Coinductive predicate

 $\nu\Phi\subseteq\Phi(\nu\Phi)$

Example (Notation)

Given a descending chain $\sigma \in \overline{\operatorname{Pred}}_X$, we define $\vdash \sigma := \overline{\mathbf{1}}_X \sqsubseteq \sigma$ (\iff there exists $\overline{\mathbf{1}}_X \to \sigma$) $x \in \sigma := \sigma^{K_{\{x\}}}$

 $\vdash s \ensuremath{\overline{\in}} \ensuremath{\overleftarrow{\Phi}} \ensuremath{\longleftrightarrow} \ensuremath{\vartheta} n \ensuremath{\in} \mathbb{N}. s \ensuremath{\in} \ensuremath{\overleftarrow{\Phi}} \ensuremath{n} \ensuremath{\overleftarrow{\Phi}} \ensuremath{a} \ensuremath{\varepsilon} \ensuremath{\omega} \ensuremath{\omega} \ensuremath{\omega} \ensuremath{s} \ensuremath{s} \ensuremath{\varepsilon} \ensuremath{\omega} \ensuremath{a} \ensurem$

Later Modality

Theorem

For each $c \in \overline{\mathbf{B}}$, there is a fibred functor $\mathbf{P}^c \colon \overline{\mathbf{E}}_c \to \overline{\mathbf{E}}_c$.

- ▶^c preserves fibred finite products
- \triangleright^c preserves all fibred limits if p is a bifibration
- there is a natural transformation next^c: Id ⇒ ▶^c

$$\frac{f: \tau \to \sigma}{\blacktriangleright f: \blacktriangleright \tau \to \blacktriangleright \sigma}$$
(Mon)
$$\frac{f: \tau \to \sigma}{\operatorname{next}^c \circ f: \tau \to \blacktriangleright^c \sigma}$$
(Next)

Later Modality

Theorem

For each $c \in \overline{\mathbf{B}}$, there is a fibred functor $\mathbf{P}^c \colon \overline{\mathbf{E}}_c \to \overline{\mathbf{E}}_c$.

- ►^c preserves fibred finite products
- \triangleright^{c} preserves all fibred limits if p is a bifibration
- there is a natural transformation $next^c$: $Id \Rightarrow \triangleright^c$

$$\frac{f \colon \tau \to \sigma}{\blacktriangleright f \colon \blacktriangleright \tau \to \blacktriangleright \sigma} \text{ (Mon) } \frac{f \colon \tau \to \sigma}{\operatorname{next}^c \circ f \colon \tau \to \blacktriangleright^c \sigma} \text{ (Next)}$$

The Löb Rule

Theorem

If $p: \mathbf{E} \to \mathbf{B}$ has fibred finite limits and exponents, then also $\overline{p}: \overline{\mathbf{E}} \to \overline{\mathbf{B}}$ does. Notation: for $\sigma, \tau \in \overline{\mathbf{E}}_c$ have $\sigma^{\tau} \in \overline{\mathbf{E}}_c$.

Theorem

For every $\sigma \in \overline{\mathbf{E}}_c$ there is a unique map in $\overline{\mathbf{E}}_c$, dinatural in σ ,

$$\operatorname{l\"ob}_{\sigma}^{c} \colon \sigma^{\blacktriangleright^{c} \sigma} \to \sigma.$$

$$\frac{f \colon \tau \times \blacktriangleright^c \sigma \to \sigma}{ \text{löb}_{\sigma}^c \circ \lambda f \colon \tau \to \sigma} (\textbf{Löb})$$

The Löb Rule

Theorem

If $p: \mathbf{E} \to \mathbf{B}$ has fibred finite limits and exponents, then also $\overline{p}: \overline{\mathbf{E}} \to \overline{\mathbf{B}}$ does. Notation: for $\sigma, \tau \in \overline{\mathbf{E}}_c$ have $\sigma^{\tau} \in \overline{\mathbf{E}}_c$.

Theorem

For every $\sigma \in \overline{\mathbf{E}}_c$ there is a unique map in $\overline{\mathbf{E}}_c$, dinatural in σ ,

$$\operatorname{l\"ob}_{\sigma}^{c} \colon \sigma^{\blacktriangleright^{c} \sigma} \to \sigma.$$

$$\frac{f \colon \tau \times \blacktriangleright^c \sigma \to \sigma}{ \text{löb}_{\sigma}^c \circ \lambda f \colon \tau \to \sigma} \text{ (Löb)}$$

Steps on the Final Chain

Theorem

$$\overleftarrow{\Phi} = \blacktriangleright (\overline{\Phi} \overleftarrow{\Phi}), \text{ where } \blacktriangleright := \blacktriangleright^{K_X}.$$

$$\frac{f\colon\tau\to\mathbf{P}\left(\overline{\Phi}\overleftarrow{\Phi}\right)}{f\colon\tau\to\overleftarrow{\Phi}}$$
 (Step)

Steps on the Final Chain

Theorem

$$\overleftarrow{\Phi} = \blacktriangleright (\overrightarrow{\Phi} \overleftarrow{\Phi}), \text{ where } \blacktriangleright := \blacktriangleright^{K_X}.$$

$$\frac{f\colon\tau\to\blacktriangleright\left(\overline{\Phi}\overleftarrow{\Phi}\right)}{f\colon\tau\to\overleftarrow{\Phi}}$$
 (Step)

Up-To Techniques

Theorem

For $T : \mathbf{E}_X \to \mathbf{E}_X$ and $\rho : T\Phi \Rightarrow \Phi T$, there is $\overleftarrow{\rho} : \overline{T}\overleftarrow{\Phi} \to \overleftarrow{\Phi}$.

$$\frac{f: \tau \to \overline{T} \overleftarrow{\Phi} \qquad \rho: T\Phi \Rightarrow \Phi T \ (T \text{ compatible})}{\overleftarrow{\rho} \circ f: \tau \to \overleftarrow{\Phi}} \ (\text{Up-to})$$

Up-To Techniques

Theorem

For $T: \mathbf{E}_X \to \mathbf{E}_X$ and $\rho: T\Phi \Rightarrow \Phi T$, there is $\overleftarrow{\rho}: \overline{T}\overleftarrow{\Phi} \to \overleftarrow{\Phi}$.

Associated proof rule

$$\frac{f: \tau \to \overline{T} \overleftarrow{\Phi} \qquad \rho: T\Phi \Rightarrow \Phi T \text{ (}T \text{ compatible)}}{\overleftarrow{\rho} \circ f: \tau \to \overleftarrow{\Phi}} \text{ (Up-to)}$$

Quantifiers (Products & Coproducts)

Theorem

If for $u: I \to J$ in **B** the coproduct $\coprod_u: \mathbf{E}_I \to \mathbf{E}_J$ along u exists, then the coproduct $\coprod_{\overline{u}}: \overline{\mathbf{E}}_I \to \overline{\mathbf{E}}_J$ along $\overline{u}: K_I \to K_J$ is given by $\fbox{\Pi}_u$. Similarly, the product $\prod_{\overline{u}}$ along \overline{u} is given by $\fbox{\Pi}_u$.

Associated proof rule

Let $\pi: I \times J \to I$, and write $W = \overline{\pi}^*$ for weakening $W: \overline{\mathbf{E}}_I \to \overline{\mathbf{E}}_{I \times J}$ and $\forall_J = \prod_{\overline{\pi}}: \overline{\mathbf{E}}_{I \times J} \to \overline{\mathbf{E}}_I$. Then

$$f: W\tau \longrightarrow \sigma$$

$$\check{f}: \quad \tau \longrightarrow \forall_J \sigma$$

Quantifiers (Products & Coproducts)

Theorem

If for $u: I \to J$ in **B** the coproduct $\coprod_u: \mathbf{E}_I \to \mathbf{E}_J$ along u exists, then the coproduct $\coprod_{\overline{u}}: \overline{\mathbf{E}}_I \to \overline{\mathbf{E}}_J$ along $\overline{u}: K_I \to K_J$ is given by $\fbox{\Pi}_u$. Similarly, the product $\prod_{\overline{u}}$ along \overline{u} is given by $\fbox{\Pi}_u$.

Associated proof rule

Let $\pi: I \times J \to I$, and write $W = \overline{\pi}^*$ for weakening $W: \overline{\mathbf{E}}_I \to \overline{\mathbf{E}}_{I \times J}$ and $\forall_J = \prod_{\overline{\pi}}: \overline{\mathbf{E}}_{I \times J} \to \overline{\mathbf{E}}_I$. Then

$$f: W\tau \longrightarrow \sigma$$

$$\check{f}: \qquad \tau \longrightarrow \forall_J \sigma$$

Conclusion

Related Systems

- Parameterised coinduction only for lattices; works on fixed points
- CIRC cyclic proof system for coinductive predicates; hard to understand and hand-crafted
- Cyclic proof systems purely syntactic (??), hence have to be hand-crafted; rely on global correctness conditions
- (Bisimulation) Games also rely on global parity conditions; proof steps in presented system can be seen as challenge-response pairs
- Step-indexed relations instance of this and the framework by Birkedal et al.

Extensions and Future Directions

- Preprint: ArXiv 1802.07143
- Publication with more examples etc. under review
- Extend to larger ordinals; the CCC result is already general, the results about the final chain need work:

$$(\blacktriangleright \sigma)_{\alpha} = \lim_{\beta < \alpha} \sigma_{\beta}$$

- Properly apply to motivating, syntactic example; possibly by automatically extracting a syntactic logic
- Can we construct other recursive proof systems in fibrations? (Later with clocks, cyclic proof systems, ...)

Thank you very much for your attention!

Diagrams are Fibred CCCs

Intuition from Kripke models

 $W,w\vDash\varphi\rightarrow\psi\quad\iff\quad\forall w\le v.\,W,v\vDash\varphi\text{ implies }W,v\vDash\psi$

Implication for sequences of formulas

Let $\{\varphi_n\}_{n\in\omega^{\mathrm{op}}}$ and $\{\psi_n\}_{n\in\omega^{\mathrm{op}}}$ be sequences of formulas. Define

$$(\psi \Rightarrow \varphi)_n := \bigwedge_{m \le n} \psi_m \to \varphi_n,$$

General Exponentials

The exponential object of $\sigma, \tau \in \overline{\mathbf{E}}_c$ is given by the end

$$(\tau^{\sigma})(n) = \int_{m \le n} \left(c(m \le n)^* \tau(m) \right)^{c(m \le n)^* \sigma(m)}$$

Diagrams are Fibred CCCs

Intuition from Kripke models

 $W,w\vDash\varphi\rightarrow\psi\quad\iff\quad\forall w\le v.\,W,v\vDash\varphi\text{ implies }W,v\vDash\psi$

Implication for sequences of formulas

Let $\{\varphi_n\}_{n\in\omega^{\rm op}}$ and $\{\psi_n\}_{n\in\omega^{\rm op}}$ be sequences of formulas. Define

$$(\psi \Rightarrow \varphi)_n := \bigwedge_{m \le n} \psi_m \to \varphi_n,$$

General Exponentials

The exponential object of $\sigma, \tau \in \overline{\mathbf{E}}_c$ is given by the end

$$(\tau^{\sigma})(n) = \int_{m \le n} \left(c(m \le n)^* \tau(m) \right)^{c(m \le n)^* \sigma(m)}$$

Diagrams are Fibred CCCs

Intuition from Kripke models

 $W,w\vDash\varphi\rightarrow\psi\quad\iff\quad\forall w\le v.\,W,v\vDash\varphi\text{ implies }W,v\vDash\psi$

Implication for sequences of formulas

Let $\{\varphi_n\}_{n\in\omega^{\mathrm{op}}}$ and $\{\psi_n\}_{n\in\omega^{\mathrm{op}}}$ be sequences of formulas. Define

$$(\psi \Rightarrow \varphi)_n := \bigwedge_{m \le n} \psi_m \to \varphi_n,$$

General Exponentials

The exponential object of $\sigma, \tau \in \overline{\mathbf{E}}_c$ is given by the end

$$(\tau^{\sigma})(n) = \int_{m \le n} \left(c(m \le n)^* \tau(m) \right)^{c(m \le n)^* \sigma(m)}$$

Recursive Logic

Later Modality

Theorem

For each $c \in \overline{\mathbf{B}}$, there is a fibred functor $\mathbf{P}^c \colon \overline{\mathbf{E}}_c \to \overline{\mathbf{E}}_c$ given by

$$(\blacktriangleright^c \sigma)_0 = \mathbf{1}_{c_0}$$
$$(\blacktriangleright^c \sigma)_{n+1} = c(n \le n+1)^* (\sigma_n).$$

- ►^c preserves fibred finite products
- ►^c preserves all fibred limits if p is a bifibration
- there is a natural transformation $next^c$: $Id \Rightarrow \triangleright^c$

Associated proof rules

$$\frac{f:\tau \to (\blacktriangleright^c \sigma) \times (\blacktriangleright^c \sigma')}{\check{f}:\tau \to \blacktriangleright^c (\sigma \times \sigma')} \quad \frac{f:\tau \to \sigma}{\operatorname{next}^c \circ f:\tau \to \blacktriangleright^c \sigma}$$

Later Modality

Theorem

For each $c \in \overline{\mathbf{B}}$, there is a fibred functor $\mathbf{P}^c \colon \overline{\mathbf{E}}_c \to \overline{\mathbf{E}}_c$ given by

$$(\blacktriangleright^c \sigma)_0 = \mathbf{1}_{c_0}$$
$$(\blacktriangleright^c \sigma)_{n+1} = c(n \le n+1)^* (\sigma_n).$$

- ►^c preserves fibred finite products
- \triangleright^c preserves all fibred limits if p is a bifibration
- there is a natural transformation $next^c$: $Id \Rightarrow \triangleright^c$

Associated proof rules

$$\frac{f \colon \tau \to (\blacktriangleright^c \sigma) \times (\blacktriangleright^c \sigma')}{\check{f} \colon \tau \to \blacktriangleright^c (\sigma \times \sigma')} \quad \frac{f \colon \tau \to \sigma}{\operatorname{next}^c \circ f \colon \tau \to \blacktriangleright^c}$$