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Syntactic logic for program equivalence in my thesis
Recursive proof system based on later modality
Recursion gives rise to proof search

Many of the constructions are pedestrian

Need for an abstract framework






Stream Differential Equations

Example (Constant Streams)

a’ : R¥ ag =a (a¥) = a¥

Example (Point-wise Stream Addition)

@: RY 5> R¥Y - R
(S@t)0280+t0
sot) =5t

Example (Stream of Positive Numbers)

s: R sop=1 s =1"®s



Point-wise Positive Streams

Example (Predicate Transformer)
PPCRY)={seRY|sp>0As €P}

® ® monotone
® Greatest fixed point v® exists

® s c v iff s is point-wise greater than 0
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Positive Numbers are Greater Than 0
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Positive Numbers are Greater Than 0
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Extending a Logic

® Given a logic £ with formulas ¢ and provability I' | A - ¢

e Construct a new logic £ with the same propositional and
first-order connectives, ...

e . .and a new connective », the later modality, that fulfils the
axioms for the later modality ...

Rules for the later modality
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Extending a Logic

® Given a logic £ with formulas ¢ and provability I' | A - ¢

Construct a new logic £ with the same propositional and

first-order connectives, ...

e . .and a new connective », the later modality, that fulfils the
axioms for the later modality ...

® . .and enables coinductive predicates and up-to techniques

Rules for coinductive predicates and up-to techniques

I'AF»(se @)
'AFsevd

(Step)

C' is ®-compatible F'NAkFteCv?)

T[AFtevd (Up-to)
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Fibrations provide abstraction of first- (and higher-)order logic
B — Category of typed contexts and terms

E — Category of formulas with variables typed in B

p: E — B — functor that assigns to a formula its context



Fibrations

¢ Fibrations provide abstraction of first- (and higher-)order logic
o B — Category of typed contexts and terms
o E — Category of formulas with variables typed in B

®* p: E — B — functor that assigns to a formula its context

Example

® Set-based predicates: Pred — Set

Quantitative predicates: qPred — Set

Syntactic logic over syntactic terms: £ — C
Set-indexed families (dependent types): Fam(C) — Set



Example: Quantitative Predicates

Category of quantitative predicates

morphisms:  f: (X,d) = (Y,7) if f: X - Y in Set

objects: (X,06) with X € Set and §: X — [0, 1]
qPred =
and d <~vyof
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Reindexing along u: X — Y gives fibration qPred — Set

u*(Y,v) = (X, )\:L"y(u(x)))



Example: Quantitative Predicates

Category of quantitative predicates

objects: (X,06) with X € Set and §: X — [0, 1]
qPred = ¢ morphisms: f: (X,d) = (Y,v)if f: X = Y in Set
and d <~vyof

Reindexing along u: X — Y gives fibration qPred — Set
uw*(Y,v) = (X, Az. y(u(z)))
Products and Exponents
(0 x7)(2) = min{é(z),~(z)}
- {1, 00

v(z), otherwise



Coinductive Predicates

Predicate lifting G of behaviour functor F’

E-“,E

PP
B-.B

commutes and G preserves Cartesian morphisms.

Predicate transformer for coalgebra ¢: X — F'X

(I)IZEXg)EFXi)EX

Coinductive predicate
Final coalgebra £: v® — ®(v®) for @



wP-Diagrams in Fibrations

Category of Descending Chains

C = [w°P, C] = “category of functors w°? — C"



wP-Diagrams in Fibrations

Category of Descending Chains
C = [w, C] = “category of functors w’® — C”

Constant-Index Chains

If o € Ey, then p(o,) =p(0)n = (Kx)n = X.

The final chain % cEx

2
T o= 1 o) 2 e21) IY e3(1)
If ® preserves wP-limits, then maps A — v® in Ex can be given
by maps K4 — @ in Ex.



Greater-Than-0 Example

Example (Predicate lifting and coinductive predicate)

F: Set — Set G: Pred — Pred
F=RxId G(X,P)=(FX,{(a,z)|a>0Ax € P})
Predicate transformer
® = (hd, t)* o G
Coinductive predicate
v® C O(vd)



Greater-Than-0 Example

Example (Predicate lifting and coinductive predicate)

F: Set — Set G: Pred — Pred
F=RxId G(X,P)=(FX,{(a,z)|a>0Azx € P})
Predicate transformer
® = (hd, t)* o G
Coinductive predicate
v® C O(vd)

Example (Notation)

Given a descending chain o € Predy, we define
Fo:=1xCo (< there exists 1x — o)
z € o = o=

_ —
Fs€ & «<— VneN.se ¢, I e vd — s greater t. 0



Later Modality

Theorem

For each ¢ € B, there is a fibred functor »¢: E. — EL..
® »- preserves fibred finite products
® »¢ preserves all fibred limits if p is a bifibration

® there is a natural transformation next¢: Id = »¢



Later Modality

Theorem

For each ¢ € B, there is a fibred functor »¢: E. — EL..
® »- preserves fibred finite products
® »¢ preserves all fibred limits if p is a bifibration

® there is a natural transformation next®: Id = »¢
Associated proof rules

fiT—0o
> T —>Po

fiT—o0o
next¢o f: 7 — po

(Mon)

(Next)



The Lob Rule

Theorem

If p: E — B has fibred finite limits and exponents, then also
p: E — B does.
Notation: for o,7 € E, have 0™ € E,.

Theorem

For every o € E, there is a unique map in E., dinatural in o,

16bS: o™ = 0.



The Lob Rule

Theorem

If p: E — B has fibred finite limits and exponents, then also
p: E — B does.
Notation: for o,7 € E, have 0™ € E,.

Theorem

For every o € E, there is a unique map in E., dinatural in o,
16bS: o™ = 0.
Associated proof rule

fiTxplo—>o
I6bS o Af: T =0

(Léb)



Steps on the Final Chain

Theorem
% = >(6<6), where » = pEx



Steps on the Final Chain

Theorem
% = >(6<6), where » = pEx

Associated proof rule

f:rm— ><6%
p = (Step)
ST =




Up-To Techniques

Theorem

e 4
ForT:Ex — Ex and p: T® = T, thereis?:T§>—> d.



Up-To Techniques

Theorem

—= =
ForT: Ex — Ex and p: T® = ®T, there is?: T — .
Associated proof rule

fi1=T®  p:T®= &T (T compatible)

e
<ﬁof:7'—> d

(Up-to)



Quantifiers (Products & Coproducts)

Theorem

If for w: I — J in B the coproduct [1,: Er — E; along u exists,
then the coproduct [[: Ef — E; along u: K; — K is given by
L1, Similarly, the product [ [ along w is given by [],,.



Quantifiers (Products & Coproducts)

Theorem

If for w: I — J in B the coproduct [I,: Er — E; along u exists,
then the coproduct [[: Ef — E; along u: K; — K is given by
L1, Similarly, the product [ [ along w is given by [],,.

Associated proof rule

Let w: [ x J — I, and write W = 7" for weakening
W E] — E[XJ and VJ = Hﬁ: E[XJ —)E]. Then

f: Wr— o

f: T— Vjy0






Related Systems

Parameterised coinduction — only for lattices; works on fixed
points

CIRC — cyclic proof system for coinductive predicates; hard
to understand and hand-crafted

Cyclic proof systems — purely syntactic (?7), hence have to
be hand-crafted; rely on global correctness conditions

(Bisimulation) Games — also rely on global parity conditions;
proof steps in presented system can be seen as
challenge-response pairs

Step-indexed relations — instance of this and the framework by
Birkedal et al.



Extensions and Future Directions

Preprint: ArXiv 1802.07143
Publication with more examples etc. under review

Extend to larger ordinals; the CCC result is already general,
the results about the final chain need work:

» o)y = limo

(»0)a B<a B

Properly apply to motivating, syntactic example; possibly by
automatically extracting a syntactic logic

Can we construct other recursive proof systems in fibrations?
(Later with clocks, cyclic proof systems, ...)



Thank you very much for your attention!
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Implication for sequences of formulas

Let {@n}newor and {1, }newor be sequences of formulas. Define

m<n



Diagrams are Fibred CCCs

Intuition from Kripke models
WwEe—=1Y <+ VYw<v.WvEgpimplies W vE

Implication for sequences of formulas

Let {@n}newor and {1, }newor be sequences of formulas. Define

m<n

General Exponentials

The exponential object of o, 7 € E,. is given by the end

(77)(n) = / ) (c(m < n)* r(m)) = o ),






Later Modality

Theorem
For each c € B, there is a fibred functor »¢: E. — E, given by

(»C 0)0 = 160
(»C0)nt1 =c(n <n+ 1) (op).

® »- preserves fibred finite products
® »¢ preserves all fibred limits if p is a bifibration

® there is a natural transformation next¢: Id = »¢



Later Modality

Theorem
For each c € B, there is a fibred functor »¢: E. — E, given by

(»0)o = 1¢,

(»C0)nt1 =c(n <n+ 1) (op).

® »- preserves fibred finite products
® »¢ preserves all fibred limits if p is a bifibration

® there is a natural transformation next¢: Id = »¢

Associated proof rules

fim— (o) x (»°0) fit—>o0o
fir = »(oxd) next‘o f: 7 — po
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