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Abstract Higher-dimensional automata (HDA) are a formalism to faith-
fully model the behaviour of concurrent systems. For ordinary automata,
there is a correspondence between regular expressions, regular languages
and finite automata, which provides a powerful link between algebraic
proofs and operational behaviour. It has been shown by Fahrenberg et al.
that finite HDA correspond with interfaced interval pomset languages
generated by sequential and parallel composition and non-empty iter-
ation, and thereby to a variant of Kleene algebras (KA) with parallel
composition. It is known that this correspondence cannot be extended
to concurrent KA, which additionally have process replication. An al-
ternative to finite HDA are locally finite HDA, in which every state can
only reach finitely many other states, and finitely branching HDA. In this
paper, we show that both classes of HDA are closed under process replic-
ation and thus models of concurrent KA. To achieve this, we prove that
the category of HDA is locally finitely presentable, where the finite HDA
generate all other HDA. We then prove that this has the unfortunate
side-effect that all HDA are locally finite, which means that the corres-
pondence with concurrent KA trivialises. Similarly, we also show that,
even though finitely branching HDA are closed under process replication,
the resulting HDA necessarily have infinitely many initial states.

Keywords: Higher-dimensional automata · Process replication · Con-
current Kleene Algebras · Locally finitely presentable categories

1 Introduction

Automata theory has as a core goal that problems, like deciding language mem-
bership, should be solved by finitary means. With this goal in mind, research on
automata typically strives for a correspondence between certain kinds of finitary
automata, languages, syntactic expressions, and algebras. The classical example
of this correspondence is between finite (non)deterministic automata, regular
languages, free Kleene algebras (aka. regular expressions), and finite syntactic
monoids. In the area of concurrency, such correspondences have been sought as
well [7,9,13,23,25]. Several automata models have emerged from this as did the
notion of concurrent Kleene algebras [15,16], which extend Kleene algebras with



parallel computation and process replication (also called parallel closure). Con-
current Kleene algebras (CKA) correspond to several automata models [23,25].

Parallel to automata models for CKA, several operational models of true
concurrency have been developed, such as Petri nets and higher-dimensional
automata (HDA). These are models that can faithfully represent parallel com-
putation without having to resort to sequentialisation [32]. HDA have received a
lot of attention recently because of the geometric view on concurrency that they
offer [10,11,12,19,29,30,32]. Fahrenberg et al. showed that there is a correspond-
ence between finite HDA and Kleene algebras (KA) with parallel composition
and that KA with process replication cannot be given semantics in terms of
finite HDA [9, Lemma 12]. We show in this paper that process replication can
also not be realised as neither locally finite HDA, in which every state can only
reach finitely many other states [4,27,28], nor as finitely branching HDA with
finitely initial states. Our approach is to prove that the category of HDA is loc-
ally finitely presentable, which allows us to define the language of HDA in terms
of languages of finite HDA [8], prove that any HDA is locally finite HDA and
that process replication cannot be realised in any finitary way over HDA.

But what are HDA in the first place? The idea is that they generalise labelled
transition systems to allow for n actions to be active simultaneously by modelling
transitions as n-cells in higher-dimensional cubes. For instance, fig. 1 shows a
graphical representation of a HDA over an alphabet with actions {a, b, c, d}. The
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Figure 1. Event a may happen in parallel with b and d (filled squares), while c is in
conflict with b and d (not filled); two parallel executions of a and b, and a and d are
indicated by the dashed homotopic paths; cells with double arrows are accepting cells

dots indicate 0-cells, in which no action is active, solid arrows are 1-cells that
are transitions with one active action, and the blue shaded areas are 2-cells with
two active actions. Starting from the bottom left, first a and b may be active
in parallel and any execution path through the shaded area is allowed. In the
square above that, the action c and b have to be executed sequentially because
the square is not filled. The HDA in fig. 1 accepts a run if one of the 0-cells
with a double arrow is reached. For instance, the (sequential) path a→ b→ c is
accepted. More generally, HDA accept pomset languages [8]. In the case of fig. 1,
the accepted language is given by the following set consisting of ten pomsets.{

(a b c) , (a c b) , (b a c) , (a b d c) ,
a

c

b

( )

(b a d c) , (b d a c) ,
a

c

b d

( )
,

a

d c

b

( )
,

a

b c

d

( )}



The first six are purely sequential runs, while the last four use the concur-
rent capabilities of the HDA to run a, b, c and d in parallel. Pomset languages
can be composed with the operations of concurrent Kleene algebras, and one
may then ask which of these operations carry over to HDA and may result in
a correspondence between (locally) finite HDA and rational pomset languages
constructed from these operations.

Outline and Contributions We show in section 3.3 that the category of HDA is
locally finitely presentable (lfp) and that finite HDA are exactly the compact
(or finitely presentable) objects. This allows the reduction of arguments to finite
HDA. In section 4.2, we show that languages of coproducts and filtered colimits
of HDA are given directly by the languages of the HDA in the corresponding
diagrams, and that this fails for general colimits. We also give in section 3.2 a
novel characterisation of the tensor product of HDA, and then use this and the
lfp property to show that the tensor product yields the parallel composition of
languages. In section 5 we present two possible local finiteness conditions for
HDA that are stable under process replication. We then show that both notions
involve some infinite branching and we end with a proof that it is impossible to
realise process replication without infinite branching. We begin with a recap of
the theory of pomset languages in section 2 and of HDA in section 3.

Related Work The work of Lodaya and Weil [25] offers another automaton model
for concurrency, called branching automata, as well as an algebraic perspective.
Interestingly, their correspondence is restricted to languages of bounded width.
Our result in section 5 could be extended to show that finitely branching HDA
correspond to languages of bounded width, but we do not explore this further,
as bounded width languages can be realised without process replication.

Ésik and Németh [7] prove a correspondence between rational languages of
series-parallel biposets, which are essentially pomsets, and finite parenthesising
automata. Such automata have two kinds of states and transition relations that
can be thought of as 0- and 1-cells, and transitions among them (respectively 1-
and 2-cells) and transitions up and down one dimension and that are guarded by
parentheses. Thus, they make HDA more flexible in that they allow dimension
change but also restrict the dimensions.

Jipsen and Moshier [18] reiterate on branching automata [25] but improve
them by adding a bracketing condition akin to parenthesising automata [7].

Kappé et al. [21,22,23] have shown that finite well-nested pomset automata
correspond to concurrent Kleene algebras and, what they call, series-parallel
rational expressions. Pomset automata have two transition functions, one for
sequential and one for parallel computation. The latter can branch out to finitely
many parallel states and synchronise after each has completed their work. This
allows them to implement process replication because the number of parallel
processes can grow arbitrarily during execution, while the dimension of a cell in
a HDA fixes the number of parallel processes. We will discuss this in section 6.

Finally, our work builds on the work by Fahrenberg et al. [9]. For the most
part, we follow their work [9] in our definitions of HDA and languages, but also



deviate in some choices, like the definition of the cube category and the tensor
product of HDA. We have also followed them in giving up on event consist-
ency [8], as the category of HDA would otherwise not be cocomplete [3].

2 Concurrent Words via Ipomsets

In this section, we recap the theory of interval ipomsets and their languages,
sequential composition, parallel composition and parallel Kleene closure [8].

2.1 Ipomsets

Definition 1. A labelled iposet P is a tuple (|P |, <P , 99KP , SP , TP , λP ) where

– |P | is a finite set,
– <P is a strict partial order on |P | called precedence order,
– 99KP is a strict partial order on |P |, called event order, that is linear on
<P -antichains,

– λP : |P | → Σ is a labelling map to an alphabet Σ,
– SP ⊆ |P | is a set of <P -minimal elements called the source set, and
– TP ⊆ |P | is a set of <P -maximal elements called the target set.

Note that the condition that 99KP is linear on <P -antichains implies that 99KP
and <P together form a total order.

Definition 2. We say that a labelled iposet P is subsumed by a labelled iposet
Q, written P ⊑ Q, if there exists a bijection f : |P | → |Q| with f(SP ) = SQ,
f(TP ) = TQ and such that for all x, y ∈ |P | we have

1. f(x) <Q f(y) =⇒ x <P y
2. x 99KP y, x ̸<P y, y ̸<P x =⇒ f(x) 99KQ f(y)
3. λP (x) = λQ ◦ f(x)

The labelled iposets P and Q are isomorphic if f is an isomorphism for both
orders. An ipomset is an isomorphism class of labelled iposets.

P ⊑ Q intuitively means that P is more ordered by the precedence order < than
Q, which means that P has less “concurrency”. Isomorphisms between labelled
iposets are unique, which means that any skeleton of the category of labelled
iposets and subsumptions isomorphic to the quotient by isomorphisms.

Definition 3. An ipomset P is an interval ipomset if there is a pair of functions
b, e : |P | → R to the real numbers, such that b(x) ≤ e(x) for all x ∈ |P | and
x <P y ⇐⇒ e(x) < b(y) for all x, y ∈ |P |. The pair of functions (b, e) is called
an interval representation of P . We let iiPom be the set of all interval ipomsets.

The simplest example of an ipomset that is not interval is the ipomset P with
|P | = {a, b, c, d} with a <P b and c <P d but where a and b are incomparable
with c and d. This is the ipomset variant of the (2 + 2)-poset. Given a set
of interval ipomsets A ⊆ iiPom, the down-closure of A is defined as usual by
A↓ = {P ∈ iiPom | ∃Q ∈ A.P ⊑ Q}.



Definition 4. A language L of interval ipomsets is a down-closed set of interval
ipomsets, that is, if L↓ ⊆ L holds. We denote by Lang the thin category with
languages as objects and subset inclusions as morphisms.

2.2 Composition of ipomsets and languages

Definition 5. We say that ipomsets P and Q sequentially match if there is a
(necessarily unique) isomorphism f : (TP , 99KP )→ (SQ, 99KQ) with λQ◦f = λP .
If P and Q match sequentially, then we define the gluing composition by

P ∗Q = (|P ∗Q|, <P∗Q, 99KP∗Q, SP , TQ, λP∗Q) ,

where (|P ∗Q|, 99KP∗Q) is the pushout colim
(
(|P |, 99KP )←↩ TP

f−→ (|Q|, 99KQ)
)

of posets of f along the inclusion. The precedence order <P∗Q is the union of
the images of <P , <Q and (|P |\TP )×(|Q|\SQ) in |P ∗Q|. Finally, the labelling
function λP∗Q : |P ∗Q| → Σ is defined as the copairing [λP , λQ] on the pushout
using that f preserves labelling.

If P and Q are interval ipomsets, then their gluing composition P ∗ Q is an
interval ipomset as well [8, Lem. 41]. This uses that the map f , which attaches
the interfaces, is an order isomorphism and that the event order is linear.

If the interfaces TP and SQ are empty, then P ∗ Q is the coproduct of
(|P |, 99KP ) and (|Q|, 99KQ), and at the same time the join of (|P |, <P ) and
(|Q|, <Q) considered as categories. This amounts to the serial pomset composi-
tion [9], which is the generalisation of concatenation of words to pomsets.

Definition 6. The sequential composition of languages L1 and L2 is defined as

L1 ∗ L2 = {P ∗Q | P ∈ L1, Q ∈ L2, and P and Q match sequentially}↓

Definition 7. We define the parallel composition of ipomsets P and Q by

P ∥ Q =
(
|P |+ |Q|, <P∥Q, 99KP∥Q, SP∥Q, TP∥Q, λP∥Q

)
Let iP : |P | → |P | + |Q| and iQ : |Q| → |P | + |Q| be the canonical injection
maps. Using these injection maps we define <P∥Q= iP (<P )∪ iQ (<Q), SP∥Q =
iP (SP )∪ iQ (SQ), TP∥Q = iP (TP )∪ iQ (TQ) and λP∥Q = [λP , λP ]. Then 99KP∥Q
is defined as the ordered sum of the event orders, in other words, iP preserves
the order 99KP as 99KP∥Q and iQ preserves 99KQ as 99KP∥Q and for all x ∈ |P |,
y ∈ |Q| we have iP (x) 99KP∥Q iQ(y).

Differently said, the event order 99KP∥Q on the parallel composition P ∥ Q
is defined as the join of (|P |, 99KP ) and (|Q|, 99KQ) thought of as categories.

Definition 8. The parallel composition of languages L1 and L2 is defined as

L1 ∥ L2 = {P ∥ Q | P ∈ L1, Q ∈ L2}↓

and the parallel Kleene closure of a language L as

L(∗) =
⋃
n∈N

L∥n where L∥0 = {ε} and L∥(n+1) = L ∥
(
L∥n)



Down-closure is needed in Definitions 6 and 8, since sequential or parallel
compositions of down-closed languages may not result in a down-closed language.
However, we can form unions of languages.

Lemma 1. Languages are closed under arbitrary unions.

We conclude this section by showing that the parallel composition of lan-
guages respects small colimits.

Lemma 2. For small diagrams M : D → Lang and N : E → Lang of lan-
guages we have ⋃

(d,e)∈D×E

Md ∥ Ne =
(⋃

d∈D
Md

)∣∣∣∣∣∣(⋃
e∈E

Ne

)

3 Higher-Dimensional Automata

In this section we first recall the definition of HDA, then discuss the monoidal
structure of HDA to model parallel computation and finally show in section 3.3
that the category of HDA is locally finitely presented by finite HDA.

3.1 The Category of HDA

Higher-dimensional automata are modelled as labelled precubical sets, which
in turn are presheaves over a category of basic hypercubes. Such cubes can be
represented as ordered sets, where the size of the set corresponds to the dimension
of the cube, and the morphism of the ordered sets determine how the faces of
(n+1)-cells in a precubical set match with n-dimensional faces. We fix from now
on an alphabet Σ in which HDA are labelled.

Definition 9. A labelled linearly ordered set or lo-set (U, 99K, λ) is a finite set
U with a strict linear order 99K and a labelling map λ : U → Σ. We write ε for
the unique empty lo-set. A lo-map is a map between lo-sets that preserves the
order and the labelling. Lo-sets and -maps form a category ℓSLO.

The category ℓSLO is monoidal with U ⋆ V being the join of U and V
considered as thin categories and the monoidal unit being the empty set. Expli-
citly, the underlying set of U ⋆ V is the coproduct U + V , the order is given by
x 99KU⋆V y iff x 99KU y, x 99KV y, or x ∈ U and y ∈ V . The labelling λU⋆V is
given by the copairing [λU , λV ] : U + V → Σ.

Note that lo-maps are necessarily injective, which means that morphisms
f : U → V in ℓSLO are equivalently defined by their image f(U) or their
complement V \ f(U). Moreover, f is an isomorphism iff f is surjective, i.e.
if V \ f(U) = ∅. Since isomorphisms in ℓSLO are unique, we can safely identify
it with a skeleton that has as objects pairs (n, w) where n ∈ N, n is the finite
ordinal {0 < · · · < n− 1} with n elements and w ∈ Σn is a word of length n.



Definition 10. A coface map d : U → V between lo-sets U and V is a triple
(f,A,B), where f : U → V is a lo-map and {A,B} is a partition of the comple-
ment image of f , that is, V \ f(U) = A ∪ B and A ∩ B = ∅. We write d(x) for
the application of the underlying map f to x to simplify notation. For A,B ⊆ U
that are disjoint, we denote by dA,B : U \ (A∪B)→ U the coface map (i, A,B),
where i : U \ (A ∪B)→ U is the inclusion.

The monoidal structure on ℓSLO induces a monoidal structure on the cat-
egory of lo-sets and coface maps, which is the full precube category ⊡.

Lemma 3. The lo-sets and coface maps form a monoidal category (⊡,⊕, I).

Since isomorphisms in ℓSLO are unique, they are in ⊡ as well and we can
use the same skeleton as for ℓSLO only with the morphisms of ⊡. We denote
this small skeleton by □.

Definition 11. A precubical set is a presheaf X : □op → Set and a morphism
of precubical sets is a natural transformation. They form a category PSh(□).
We writeよ for the Yoneda embedding □→ PSh(□) withよU = □(−, U).

We refer to the elements of X[U ] as cells and to the cardinality of U as the
dimension of those cells. If for some U of cardinality n the set X[U ] is inhabited
and for all V with cardinality greater than n the sets X[U ] are empty, then we
say that X has finite dimension n. A precubical set X is finite if it has finite
dimension and if for all U ∈ □ the set X[U ] is finite.

To ease notation, we denote the face map X[dA,B ] : X[U ]→ X[U \ (A ∪B)],
induced by a coface map dA,B : U \ (A ∪B) → U , by δA,B . The face maps δA,∅
and δ∅,B will be suggestively abbreviated to δ0A and δ1B .

Definition 12. A higher-dimensional automaton (HDA) is a tuple
(
X,X⊥, X

⊤)
where X is a precubical set, X⊥ and X⊤ are families of sets indexed by lo-sets of
starting and accepting cells with (X⊥)U ⊆ XU and (X⊤)U ⊆ XU . A HDA map
f :
(
X,X⊥, X

⊤) → (
Y, Y⊥, Y

⊤) is a precubical map f : X → Y that preserves

the starting and accepting cells, that is, f(X⊥) ⊆ Y⊥ and f
(
X⊤) ⊆ Y ⊤. We

denote by HDA the category of higher-dimensional automata and their maps.

We usually leave out the index on X⊥ and X⊤ for better readability.

Lemma 4. The forgetful functor F : HDA → PSh(□) has left and right ad-
joints N and T given, respectively, by NX = (X, ∅, ∅) and TX = (X, |X|, |X|)
where |X| is the family obtained by forgetting the action of X on morphisms.
Thus, the left adjoint N stipulates no starting or accepting cells, while T con-
siders all cells as starting and accepting.

3.2 Monoidal Structure on HDA

Our main interest in this paper is to realise (repeated) parallel composition of
languages as HDA. In this section we briefly discuss how HDA can be synchron-
ised in parallel via a monoidal product on HDA.



Definition 13. The tensor product of HDA is the Day convolution [6,17,26],
which is given for HDA X and Y on the precubical sets by the following coend.

X ⊗ Y =

∫ V,W

□(−, V ⊕W )×X[V ]× Y [W ]

The starting cells (X ⊗ Y )⊥ are given as the image of all inclusions

(X⊥ ∩X[V ])× (Y⊥ ∩ Y [W ]) □(V ⊕W,V ⊕W )×X[V ]× Y [W ] X ⊗ Y

and analogously for accepting cells (X ⊗ Y )
⊤
. A diagram chase shows that ⊗ is

well-defined on HDA morphisms. For any U ∈ □, we can makeよU an HDA by
taking all cells to be starting and accepting. The monoidal unit I is the Yoneda
embeddingよε of the empty lo-set with the only 0-cell being starting and accepting.

By this definition, the Yoneda embedding is a strong monoidal functor and ⊗
preserves colimits [17]. Moreover, F is clearly a strict monoidal functor. Usually,
the tensor product of (pre)cubical sets is defined as a coproduct [5,9,14,20].
Indeed, one can prove that (X ⊗ Y )(U) ∼=

∐
U=V⊕W X[V ]× Y [W ].

3.3 Filtered Colimits and Compact HDA

Compact (or finitely presentable) objects in a category can be thought of as the
analogue of finite sets, relative to what morphisms in that category perceive as
finite. For instance, compact objects in the category VecR of R-vector spaces are
vector spaces with finite dimension. In Set and VecR, arguments can be reduced
to arguments about compact objects because all objects in those categories are
given as nice colimits of a set of chosen compact objects. For instance, each set
U is given as a colimit of finite sets by taking the unit of the finite subsets of U .
This process is given by so-called filtered colimits. The advantage of breaking
down objects to filtered colimits of compact objects is that constructions on
objects can be carried out on a set of compact objects instead. Categories that
admit these kind of reduction are called locally finitely presentable (lfp).

In what follows, we recall the definition of lfp categories, show that the cat-
egory of HDA is lfp and that the compact objects are precisely the finite HDA.

We first provide the basics of lfp categories [1,31]. A category C is called
essentially small if it is equivalent to a small category. We call a category D
filtered if any finite diagram in D has a cocone, or equivalently if (1) D is
inhabited, (2) for any two objects c, d ∈ D there exists an object e ∈ D and two
morphisms c → e ← d, and (3) for any two morphisms f, g : c → d there exist
an object e ∈ D and a morphism h : d→ e with h ◦ f = h ◦ g. A filtered colimit
in a category C is a colimit of a diagram F : D → C where D is filtered. We say
that an object X ∈ C is compact if the hom-functor C(X,−) : C → Set preserves
filtered colimits. Finally, the category C is called locally finitely presentable (lfp)
if it is cocomplete, the subcategory Cc of compact objects is essentially small,
and every object in C is isomorphic to a filtered colimit of compact objects.



Many calculations are simplified by the fact that the category Cc is closed under
finite colimits [1, Prop. 1.3]. One of the important examples of a lfp category
is the functor category of precubical sets PSh(□) [1, Ex. 1.12] and that the
hom-functorよU is compact in PSh(□) for all U ∈ □. Similarly, the category
HDA is also lfp, as we show now.

Lemma 5. The forgetful functor F : HDA → PSh(□) creates colimits [31,
Sec. 3.3] and the category of HDA is thus cocomplete.

Theorem 1. A HDA is compact if and only if it is finite.

Let I : HDAc → HDA be the inclusion functor of the full subcategory of
compact HDA in HDA. For a HDA X, we denote by I ↓ X the comma category
that has as objects morphisms Y → X from a compact HDA Y into X, and
morphisms are the evident commutative triangles. The comma category I ↓ X
is essentially small and closed under finite colimits, thus it is a filtered category.
We write UX : I ↓ X → HDAc for the domain projection functor.

Lemma 6. Every HDA X can be canonically expressed as the filtered colimit of
finite HDA, that is, we have X ∼= colimUX .

Theorem 2. The category of HDA is locally finitely presentable.

An alternative proof that HDA is lfp is to show that it is equivalent to a
reflective subcategoryH of a presheaf category that is closed under filtered colim-
its. This implies that H and HDA are lfp [1, Sec. 1C]. We thank an anonymous
referee of a previous version of this paper for the suggestion.

4 Languages of Higher-Dimensional Automata

Computations as modelled by HDA can be expressed as higher-dimensional paths
running through the HDA from a starting cell to an accepting cell. Each of these
accepting paths corresponds to an interval ipomset, which allows us to define
the languages of HDA as the set of interval ipomsets it accepts. We expand here
on previous work [9] by also including infinite HDA and by showing that HDA
languages preserve coproducts and filtered colimits.

4.1 Paths and languages

Let us start by defining paths and their labelling.

Definition 14. A path (of length n) in a precubical set or HDA X is a (finite)
sequence

α = (x0, φ1, x1, φ2, ..., φn, xn)

where xk ∈ X [Uk] are cells for Uk ∈ □ and for all 1 ≤ k ≤ n we have an

– up-step: φk = dA,∅ ∈ □ (Uk−1, Uk), xk−1 = δ0A (xk) and A = Uk\Uk−1, or



– down-step: φk = d∅,B ∈ □ (Uk, Uk−1), δ
1
B (xk−1) = xk and B = Uk−1\Uk.

The elements xk define cells while the φk define how these cells are connected.
Since for a path we cannot have δ0A (xk−1) = xk or xk−1 = δ1B (xk) it can only
move along the direction of the arrows. Two paths where the first ends at the
cell the other starts in can be composed in the following intuitive manner.

Definition 15. Let α = (x0, φ1, x1, ..., φn, xn) and β = (y0, ψ1, y1, ..., ψm, ym)
be two paths in a precubical set or HDA X with xn = y0. Then we define their
concatenation α ∗ β as the following path in X.

α ∗ β = (x0, φ1, x1, ..., φn, xn, ψ1, y1, ..., ψm, ym)

Every path α = (x0, φ1, x1, ..., φn, xn) can therefore be broken down into paths
of length 1, called steps. We can denote a step (xk−1, φk, xk) with xk−1 ↗A xk
if φk = dA,∅ (an up step) or with xk−1 ↘B xk if φk = d∅,B (a down step). We
get the unique representation (x0, φ1, x1) ∗ (x1, φ2, x2) ∗ ... ∗ (xn−1, φn, xn) for
the path α. Using this we define the labelling of paths recursively.

Definition 16. Let X be a precubical set or HDA. Let α be a path in X, let U
and V be objects in □ and let x ∈ X[U ], y ∈ X[V ]. Then the labelling ev (α) of
α is the ipomset that is computed as follows:

– If α = (x) is a path of length 0 then its label is ev (α) = (U, ∅, 99KU , U, U, λU ).
– If α = (x, φ, y) is a path with x↗A y then its label is

ev (α) = (V, ∅, 99KV , V \A, V, λV )

– If α = (x, φ, y) is a path with x↘B y then its label is

ev (α) = (U, ∅, 99KU , U, U\B, λU )

– If α = β1 ∗ β2 ∗ ... ∗ βn the concatenation of steps β1, β2, ..., βn then its label
is the gluing composition of ipomsets ev (α) = ev (β1) ∗ ev (β2) ∗ ... ∗ ev (βn).

The labels of paths of length 0 or 1 are trivially interval ipomsets, since the
relation < is empty. Since the labelling of paths of length greater than 1 is
defined as the gluing of the labels of its steps it follows that they are interval
ipomsets as well.

For a precubical set or HDA X we define PX as the set of paths in X. For a
path α = (x0, φ1, x1, ..., φn, xn) we call s (α) = x0 the source and t (α) = xn the
target of the path. We can now define the languages of HDA.

Definition 17. The language of an HDA X is the set of interval ipomsets

L(X) =
{
ev (α) | α ∈ PX , s (α) ∈ X⊥, t (α) ∈ X⊤}

We refer to a path α with s (α) ∈ X⊥ and t (α) ∈ X⊤ as an accepting
path. In lemma 11 we will prove that for each HDA X the language L(X) of
X is a down-closed interval ipomset language as defined in definition 4. Let X



and Y be precubical sets with the precubical map f : X → Y . For each path
α = (x0, φ1, x1, ..., φn, xn) in X with xk ∈ X [Uk] we define
f (α) = (fU0 (x0) , φ1, fU1 (x1) , ..., φn, fUn (xn)) which by definition of the pre-
cubical maps is a path in Y . With this we get two lemmas regarding the way
precubical maps and HDA maps preserve paths and languages.

Lemma 7. Let X and Y be precubical sets and let f : X → Y be a precu-
bical map. Suppose that we have α, β ∈ PX with s (α) = t (β). Then we have
ev (α ∗ β) = ev (α) ∗ ev (β) and ev (f (α)) = ev (α).

Lemma 8. Let X and Y be HDA and let f : X → Y be a HDA map. Then we
have L(X) ⊆ L(Y ). If f is an isomorphism then we have L(X) = L(Y ).

4.2 Composition of HDA and their languages

We want to know the relation between the languages of diagrams of HDA and
the languages of their colimits. We start with a theorem that is relevant for all
colimits and cocones.

Lemma 9. Let (X,ϕ) be a cocone of the small diagram F : D → HDA. Then
we have

⋃
d∈D L (F (d)) ⊆ L(X).

We get equality in the case that (X,ϕ) is a coproduct or a filtered colimit, as we
will prove with the next two theorems.

Lemma 10. Let F : D → HDA be a small discrete diagram of HDA with cop-
roduct (X,ϕ) = colimF . Then we have

⋃
d∈D L (F (d)) = L(X).

Theorem 3. Let F : D → HDA be a small filtered diagram of HDA with filtered
colimit (X,ϕ) = colimF . Then we have

⋃
d∈D L (F (d)) = L(X).

Proof. Suppose that P ∈ L(X). Then there exists a path α in X with s(α) ∈ X⊥
and t(α) ∈ X⊤ such that ev(α) = P . Let α = (x0, φ1, x1, ..., φn, xn). Lemma 17
gives us that there exists an index d ∈ D and a path α′ = (y0, φ1, y1, ..., φn, yn)
such that ϕd (α

′) = α (a path in this case can be seen as a finite set S). Because
of lemma 15 we can assume that this path is accepting. This gives us that
ev (α′) = P ∈

⋃
d∈D L (F (d)), which proves with lemma 9 the statement. ⊓⊔

The theorem above together with lemma 6 shows that all infinite HDA can
be expressed using finite HDA respecting the corresponding languages. This
powerful tool allows us to prove statements about the languages of HDA in a
simple way by using the filtered colimits of finite HDA demonstrated by the
following theorem.

Lemma 11. The languages of HDA are down-closed interval ipomset languages.

Since Lang is the category with as objects down-closed interval ipomset lan-
guages and as morphisms the subset inclusion maps, the theorem above and
lemma 8 allow us to see L as a functor L : HDA → Lang. Since the colimit
of a diagram of languages is the union, lemma 10 and theorem 3 give us that
L preserves coproducts and filtered colimits. However, it does not preserve all
colimits as we show with the next theorem.



Proposition 1. There is a small diagram F : D → HDA, whose colimit accepts
more than the HDA in the diagram together:

⋃
d∈D L (F (d)) ⊊ L(colimF ).

Proof. We use for D the category of shape 1 ← 2 → 3. Consider the following
pushout of HDA, which is a colimit over a diagram of shape D.

(◦) (⇒ • a−→ ◦)

(◦ c−→ • ⇒) (⇒ • a−→ • c−→ • ⇒)

i2

i1

⌟

The inclusions ik map ◦ to ◦ and the double arrows indicate starting and accept-
ing cells. Note that the languages of the HDA at the corners are all empty, except
of the HDA at the bottom right corner, which accepts the word (a → c). Thus
the pushout of these HDA with empty languages has a non-empty language. ⊓⊔

Finally, we prove that the language of the tensor product of two HDA is the
same as the parallel composition of their two individual languages.

Theorem 4. The functor L is a strict monoidal (HDA,⊗, I)→ (Lang, ∥, {ε}).

Proof. Let X and Y be HDA. We have to show that L (X ⊗ Y ) = L (X) ∥ L (Y ).
Lemma 6 provides use with filtered diagrams F : D → HDA and G : E → HDA
of finite HDA with X and Y being their respective filtered colimits. This allows
us to generalise [9, Prop. 19], where L(X ⊗ Y ) = L(X) ∥ L(Y ) is proved for
finite HDA, to arbitrary HDA.

L (X ⊗ Y ) = L
(

colim
(d,e)∈D×E

F (d)⊗G(e)
)

tensor product preserves colimits

=
⋃

(d,e)∈D×E
L (F (d)⊗G(e)) by theorem 3

=
⋃

(d,e)∈D×E
L (F (d)) ∥ L (G(e)) [9, Prop. 19] for finite HDA

=
⋃

d∈D
L (F (d)) ∥

⋃
e∈E

L (G(e)) by lemma 2

= L(X) ∥ L(Y ) by theorem 3

This shows that even for arbitrary HDA the parallel composition of their lan-
guages is given by tensoring the HDA. That L(I) = {ε} is obvious. ⊓⊔

5 Process Replication as Rational HDA

In this section, we seek to complete the correspondence between concurrent
Kleene algebras and HDA, which requires us to identify a notion of rational HDA
that can capture finitary behaviour. This has almost been accomplished [9] but
the parallel closure could not be realised as finite HDA. For regular languages,
linear weighted languages and various other languages without true concurrency,



the correspondence between languages and automata has been studied from a
coalgebraic perspective [4,27,28]. We make in section 5.1 a first attempt, where
we follow these ideas by studying locally compact HDA and by showing how
to realise the parallel closure as locally compact HDA. However, we will see
that this model is too powerful and will restrict to finitely branching HDA in
section 5.2. These can realise the parallel Kleene star as well, but will require an
infinite choice at the start. Thus, none of these choices is satisfactory to act as
rational HDA and we show that it is impossible to realise the parallel closure as
finitely branching HDA with finitely many starting cells.

5.1 Locally Compact HDA

Let us first define what we mean by locally compact HDA. This follows work on
rational coalgebraic behaviour [28,27] and can be seen as axiomatisation of the
factorisation property that filtered colimits enjoy in lfp categories.

Definition 18. A HDA
(
X,X⊥, X

⊤) is locally compact if the forgetful functor
F : HDAc ↓ X → PSh(□)c ↓ X is cofinal. Explicitly, this means [1, 0.11]
that 1) for all compact precubical set P and f : P → X there is a factorisation

of f into P
f ′

−→ Y
h−→ X, where h :

(
Y, Y⊥, Y

⊤) → (
X,X⊥, X

⊤) is a HDA

morphism and
(
Y, Y⊥, Y

⊤) ∈ HDAc; and 2) for all
(
Y ′, Y ′

⊥, Y
′⊤) ∈ HDAc,

h′ :
(
Y ′, Y ′

⊥, Y
′⊤)→ (

X,X⊥, X
⊤) and f ′′ : P → Y ′ with h′ ◦f ′′ = f , there exists(

R,R⊥, R
⊤) ∈ HDAc and an HDA morphisms e :

(
Y ′, Y ′

⊥, Y
′⊤)→ (

R,R⊥, R
⊤)

and e′ :
(
Y, Y⊥, Y

⊤)→ (
R,R⊥, R

⊤) such that e′ ◦ f ′ = e ◦ f ′′.

The following lemma shows that the second condition is redundant, which
follows from HDA being an lfp category.

Lemma 12. An HDA
(
X,X⊥, X

⊤) is locally compact if and only if all presheaf

morphisms f : P → X factor as P
f ′

−→ Y
h−→ X into a presheaf morphism f ′ and

a HDA morphism h :
(
Y, Y⊥, Y

⊤)→ (
X,X⊥, X

⊤) from (
Y, Y⊥, Y

⊤) ∈ HDAc.

Since morphisms into filtered colimits factor essentially uniquely through the
colimit inclusion, HDA given by a filtered colimit of compact HDA are locally
compact. The other way around this is also true. Combined with lemma 6 this
gives us the following result.

Theorem 5. All HDA are locally compact.

Proof. For one direction, we use that if D → HDAc is a filtered diagram, then
colim(D → HDAc → HDA) is locally compact because filtered colimits in lfp
categories factor essentially uniquely through colimit inclusions.

For the other direction, we use that every x ∈ X[U ] generates a compact sub-
precubical set ⟨x⟩ ↪→ X that contains x and all its boundary cells. This inclusion
factors essentially uniquely into an inclusion of a compact HDA, as X is locally
compact. This gives us inclusions HDA into colimUX for every U and x ∈ X[U ].
It is easy to see that these inclusions jointly set up an isomorphism. ⊓⊔



This shows that local compactness is no restriction in the case of HDA,
contrary to other computational models. Let us, nevertheless, apply the lessons
of local compactness to get closer to an HDA that models process replication in
a reasonably finitary way. Before that, let us warm up and construct a HDA as
a filtered colimit with infinite branching.

Example 1. Let F : D → HDAc be the diagram given by

0 1
a −→

2

0 1
a

a

−→

3

2

0 1
a

a
a

−→ · · ·

This is a chain and thus filtered, and its colimit a 1-dimensional HDA with
infinitely many branches coming out of 0. Nevertheless, since each HDA in the
chain is compact, colimF is locally compact.

Example 2. Similarly to example 1, we can also branch with higher dimensions
and thus realise process replication as filtered colimit of compact HDA. For the
purpose of this example it is simpler to ignore starting cells, but it is easy to see
that tensor product and colimits are not affected by this.

Let A be the HDA with one 1-cell labelled with a and the endpoint of this
1-cell taken as accepting. This is illustrated in fig. 2 on the left, where the double
arrows mark accepting cells. The maps dn : An → An+1 in fig. 2, where A1 = A,

•

0

a

d1−→ • •

0 •a

a a

a d2−→

• •

• •

• •

0 •a

a

a

a

a

a

a

a

a

aa
d3−→ · · ·

Figure 2. Chain of HDA to construct process replication of the HDA A on the left.
The starting cell named 0 serves as orientation as to how dn embeds the cells matching
with the accepting cells.

are constructed as in the following pushout diagram. In this diagram, we denote
by A⊗n the n-fold tensor product of A with itself, where A⊗0 = I. For an HDA
X, we write Xε for the HDA that has the same underlying precubical set but
no starting and accepting states.

A⊗n,ε A⊗n,ε ⊗ I A⊗n+1 A⊗n+1,ε

An An+1

∼=

in

dn

⌟

in+1

Intuitively, the HDA An+1 is given by extending An to a full n+ 1-dimensional
cube, where An is included via dn as the “front face”. In fig. 2, this inclusion



is indicated by the vertex 0, which is identified via dn. The indicated maps dn
form a chain of compact HDA and thus a filtered diagram F : D → HDAc. By
taking the colimit of F and declaring the cell marked 0 as starting cell, we obtain
an HDA that accepts L(A)(∗), the parallel Kleene closure of the language of A.
That this is the case follows directly from theorem 4 and theorem 3. Since each
HDA in the chain is compact, colimF is locally compact, but this colimit is a
HDA with infinitely many branches coming out of 0.

5.2 Finitely Branching HDA

The HDA that we constructed in example 2 has the pleasant property that
during execution many a-processes can be spawned, as one would expect from a
process replication operator that occurs in process algebra. However, the HDA
in example 2 has infinitely many cells branching out of any cell. This makes
it impossible to realise this HDA on a physical machine and motivates another
possible definition of what one may consider rational HDAs.

Definition 19. A HDA X is finitely branching if for all lo-sets U ∪{a} and all
x ∈ XU the set {y ∈ XU∪{a} | δA,B(y) = x} is finite. We denote by HDAfb the
full subcategory of HDA that consists of finitely branching HDA.

Clearly, finitely branching HDA are not closed under filtered colimits, as
example 2 shows. However, they are closed under coproducts.

Lemma 13. Let F : D → HDAfb a diagram on a small discrete category D.
Then the colimit (coproduct) colimF exists in HDAfb.

The parallel Kleene star of a finitely branching HDAX, also known as process
replication, can be realised as finitely branching HDA. We write X⊗n for the
n-fold tensor product of X with itself, where X⊗0 = I, and define the parallel
replication of X to be !X =

∐
n∈NX

⊗n.

Theorem 6. The HDA !X is finitely branching and we have L(!X) = L(X)(∗).

Proof. By lemma 10 and theorem 4 we have

L(!X) = L
(∐

n∈N
X⊗n

)
=
⋃

n∈N
L
(
X⊗n

)
=
⋃

n∈N
L(X)

∥n
= L(X)(∗)

That !X is finitely branching is given by lemma 13. ⊓⊔

The caveat of this theorem, and the definition of finitely branching in general,
is that we do not make any restrictions on the number of starting cells. In fact,
!X will have infinitely many starting cells, if X has at least one.

Example 3. Let A again be the HDA as in example 2. The HDA !A looks as in
fig. 3. Notice that it consists of little finite islands, each with a starting cell. The
HDA has to make at the beginning of an execution a choice on the number of
parallel executions of the action a. This means that this HDA is not realisable,
as such a guess requires knowledge about how many parallel processes will be
needed. For instance, a web server would need to know when it is started how
many clients will connect during its life time. This is clearly impossible.



1 •a

• •

2 •a

a a

a

• •

• •

• •

3 •a

a

a

a

a

a

a

a

a

aa

· · ·

Figure 3. Finitely branching HDA for replication of A constructed as coproduct, where
the cells 1, 2, 3, . . . are starting cells and double arrows mark accepting cells

The examples 2 and 3 show that either way of realising process replication,
as locally compact HDA or as finitely branching HDA, leads to operational prob-
lems. In fact, it is not possible to realise process replication as finitely branching
HDA with finite starting cells.

Theorem 7. There is no HDA X ∈ HDAfb with finitely many initial states,
such that X would realise the parallel Kleene star of L(A) = {(a)}, where A is
the HDA with only one a-transition, as in example 2.

Proof. Suppose there is an HDA X ∈ HDAfb with finite initial states, such that
L(X) = L(A)(∗) = {(a)}(∗). We partition L(X) into languages Lx for x ∈ X⊥.
Since X⊥ is finite, some Lx must be infinite. Thus for every (a) ∥ · · · ∥ (a)︸ ︷︷ ︸

n

∈ Lx

there must be an n-cell of which x is a boundary. But then X has infinitely many
branches at x, and thus X cannot exist with the proclaimed properties. ⊓⊔

Since the identity language has infinite width [9, Example 4], it cannot be
represented by a finite HDA. One can provide a finitely branching HDA that
accepts the identity language, but again with infinitely many starting cells. Thus,
even this simple language does not fit into any reasonable restriction of HDA.

6 Conclusion

What does this leave us with? The problem is that HDA combine state space
and transitions into one object, a precubical set. Intuitively, this prevents us
from having transitions and cycles among cells of higher dimension. More tech-
nically, the locally compact HDA allow infinite branching, while finite branching
limits the number of active parallel events to be finite. This can be compared
to the coalgebras for the finite powerset functor, also known as finitely branch-
ing transition systems. Here, locally compact transition systems may only have
finite branching and thus realise locally the behaviour of finite transition sys-
tems, as one would expect. Therefore, one is led to the conclusion that HDA as
a computational model are unsuited to model process replication and another
model for true concurrency has to be sought. This is not say that topological or
geometrical models, like HDA, are inherently flawed but rather that they have
to be expanded to allow for the dynamic spawning of processes, in contrast to
the static nature of HDA.



References
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A Notation

Notation Meaning
C Standard or specific categories
Set Category of sets
Top Category of topological spaces
よ Yoneda embedding
Σ Fixed alphabet
|P | Carrier of iposet P
A↓ Downwards closure
ε empty lo-set
ℓSLO category of labelled strict linear orders
⋆ monoidal product of ℓSLO
n finite ordinal with n elements (possibly empty!)
[n] finite ordinal with n+ 1 elements (spine of n-simplex)
⊡ Full labelled precube category
□ Labelled precube category (skeletal)
dA,B Coface map arising from the inclusion U \ (A ∪B)→ U
HDA Category of HDA
C Generic category
Cop Opposite category
PSh(I) Set-Valued presheaves indexed by I
X⊥ Starting cells of HDA
X⊤ Accepting cells of HDA(
X,X⊥, X

⊤) Tuple that makes an HDA
Lang Category of languages
iiPom The set of interval ipomsets
s(α) Source of path α in an HDA
t(α) Source of path α in an HDA

B Convolution Product on HDA

B.1 Day Convolution Precubical Sets is Coproduct

In definition 13 we defined the tensor products of HDA as extending the tensor
product of precubical sets given by Day convolution with appropriate starting
and accepting cells. We show here that the coend formula

X ⊗ Y =

∫ V,W

□(−, V ⊕W )×X[V ]× Y [W ] (1)

for Day convolution reduces to a coproduct formula

(X ⊗ Y )(U) ∼=
∐

U=V⊕W

X[V ]× Y [W ] (2)

and thus reduces to the standard definition [5,14,20]



Recall that objects in ℓSLO are pairs (n, w) where n ∈ N and w is a word
of length n over Σ. Let us write in,j : n → n+ 1 for the unique map that does
not have j in its image. Clearly, any map (n, w) → (n+ 1, w′) is determined
by the embedding maps in,j . Therefore, we will leave out in the remainder the
words w and pretend that ℓSLO consists of unlabelled finite ordinals n. Further,
a map d : n→ n+ 1 in □ comes with a partition of the complement image and
is therefore given by either (in,j , {j}, ∅) or (in,j , ∅, {j}). For what follows, this
duplication of morphisms also makes no difference and we focus attention on the
maps in,j .

The strategy to show that eq. (2) holds is to show that any cowedge for the
coend in eq. (1) is uniquely determined by a cocone for the coproduct in eq. (2).
Write Fn,X,Y : □×□×□op ×□op → Set for the functor given by

Fn,X,Y (m,k,m′,k′) = □(n,m⊕ k)×Xm′ × Yk′

on objects, which gives us (X ⊗ Y )n =
∫m,k

Fn,X,Y (m,k,m,k). Suppose now
that f : F → C is a cowedge, which means that it consists of maps fm,k : □(n,m⊕
k) × Xm × Yk → C in Set, such that the following diagram commutes for all
u : m→m′ and v : k→ k′.

□(n,m′ ⊕ k′)×Xm′ × Yk′

□(n,m⊕ k)×Xm′ × Yk′ C

□(n,m⊕ k)×Xm × Yk

fm′,k′

id×X(u)×Y (v)

□(n,u⊕v)×id× id

fm,k

Suppose now that n = m + k and consider the following diagram, which
commutes for all appropriate choices of j since f is a cowedge.

□(n, (m+ 1)⊕ (k− 1))×Xm+1 × Yk−1

□(n, (m+ 1)⊕ (k− 1))×Xm+1 × Yk

□(n, (m+ 1)⊕ k)×Xm+1 × Yk C

□(n,m⊕ k)×Xm+1 × Yk

□(n,m⊕ k)×Xm × Yk

fm+1,k

id×X(im,j)×id

□(n,im,j⊕id)×id

fm,k

□(n,id⊕ik−1,j)×id

id× id×Y (ik−1,j)

fm+1,k−1



But then fm+1,k is determined from fm+1,k−1 and fm,k, since any map n→
(m+ 1)⊕k is uniquely determined by the only number j that is not in its image.
These are exactly the maps obtained as the image of the maps □(n, im,j ⊕ id)
and □(n, id⊕ik−1,j). Hence, the parts in the coend of eq. (1) where n < k +m
do not contribute and it suffices to consider splittings of n = m+ k. This gives
us eq. (2).

C Proofs

C.1 Proofs for section 2

Proof (Proof of lemma 1 on page 6). Let L : D → Lang be a small diagram of
down-closed interval ipomset languages and let L∪ =

⋃
d∈D Ld be their union.

Then for every Q ∈ L∪ there exists at least one d ∈ D such that Q ∈ Ld, which
means that Q has to be an interval ipomset. Moreover for every P ∈ iiPom with
P ⊑ Q we by definition have P ∈ Ld which means that we have to have P ∈ L∪
as well. Therefore L∪ is down-closed as well.

Proof (Proof of Lemma 2 on page 6). Suppose that L1 =
⋃

(d,e)∈D×E Md ∥ Ne

and L2 =
(⋃

d∈DMd

)
∥
(⋃

e∈E Ne

)
.

Suppose that R ∈ L1. Then there exist d ∈ D and e ∈ E such that R ∈Md ∥
Ne. Then there exists a P ∈ Md and a Q ∈ Ne such that R ⊑ P ∥ Q. Since
P ∈

⋃
d∈DMd and Q ∈

⋃
e∈E Ne this means that P ∥ Q ∈ L2 and therefore

R ∈ L2. This gives us L1 ⊆ L2.
Suppose that R ∈ L2. Then there exists a P ∈

⋃
d∈DMd and a Q ∈

⋃
e∈E Ne

such that R ⊑ P ∥ Q. Therefore there exist d ∈ D and e ∈ E such that P ∈Md

and Q ∈ Ne, which means that P ∥ Q ∈ Md ∥ Ne and therefore P ∥ Q ∈ L1.
This gives us R ∈ L1 and therefore L1 ⊇ L2 which means that we have L1 = L2.

C.2 Proofs for section 3.1

Proof (Proof of lemma 3 on page 7). Composition of (e, C,D) : V → W and
(d,A,B) : U → V is given by (e, C,D)◦(d,A,B) = (e◦d, e(A)∪C, e(B)∪D). That
{e(A)∪C, e(B)∪D} form a partition of the complement image of e◦d follows from
injectivity of e, properties of the image and the given partitions. The identity
is given by (id, ∅, ∅), and the unit and associativity axioms follow from colimit
preservation of the image. The monoidal structure in inherited from ℓSLO: on
objects we use ⋆ and on morphisms we take (d1, A1, B1) ⊕ (d2, A2, B2) = (d1 ⋆
d2, A1 ⋆ A2, B1 ⋆ B2), where we write A1 ⋆ A2 for the application of ⋆ to the
inclusions Ak ⊆ V . Finally, the associator and unitor isomorphisms have empty
complement image that can be trivially partitioned.

Definition 20. Let D be a small category and let F : D → PSh(□) be a small
diagram of precubical sets. For each object U in □ we define the relation ∼ on∐

d∈D F (d)[U ] as the transitive closure of{
(x, y)

∣∣∣∣ d, e ∈ D, x ∈ F (d)[U ], y ∈ F (e)[U ]
∃c ∈ D, f : d→ c, g : e→ c s.t. (F (f)[U ]) (x) = (F (g)[U ]) (y)

}



Note that if D is a filtered category the above is already transitive.

Lemma 14. Let D be a small category and let F : D → PSh(□) be a small
diagram of precubical sets. Then for each object U in □ we have(

colim
d∈D

F (D)

)
[U ] ∼= colim

d∈D
(F (d)[U ]) ∼=

(∐
d∈D

(F (d)[U ])

)/
∼

where ∼ is the relation defined in definition 20.

Proof. Proposition 8.8 from [2] gives us the first isomorphism and the second
isomorphism follows from the description of colimits in the category of sets (see,
for instance, Example 5.2.16 of [24]).

Theorem 8. Let (X,ϕ) be a colimit of the small diagram F : D → PSh(□)
of precubical sets. Then for all objects U in □, all d, e ∈ D, x ∈ F (d)[U ] and
y ∈ F (e)[U ] we have

x ∼ y ⇐⇒ ϕ(d)[U ](x) = ϕ(e)[U ](y)

Proof. lemma 14 gives us that for all objects U in □ there exists a bijection
q[U ] : X[U ] →

(∐
d∈D (F (d)[U ])

)
/ ∼. For all d ∈ D and every object U in □

there also exists a unique set map ψd,U : F (d)[U ]→
(∐

d∈D (F (d)[U ])
)
/ ∼. We

then have q[U ] ◦ ϕ(d)[U ] = ψd,U which because q[U ] is a bijection gives us

x ∼ y ⇐⇒ ψd,U (x) = ψe,U (y) ⇐⇒ ϕ(d)[U ](x) = ϕ(e)[U ](y)

which proves the statement.

Lemma 15. Let F : D → HDA be a small diagram of HDA with the colimit
(X,ϕ). Then for all U ∈ □ and all x ∈ X[U ] there exists a d ∈ D and a
y ∈ F (d)[U ] such that ϕd[U ](y) = x and

x ∈ X⊥ ⇐⇒ y ∈ F (d)⊥

x ∈ X⊤ ⇐⇒ y ∈ F (d)⊤

If D is discrete then this y ∈ F (d)[U ] is unique.

Proof. The fact that for each x ∈ X[U ] there exists a d ∈ D and a y ∈ F (d)[U ]
with ϕd[U ](y) = x follows from theorem 8. Suppose that we have x ∈ X⊥ but
y ̸∈ F (d)⊥ for all y ∈ F (d)[U ] with ϕd[U ](y) = x. Then we can define (X ′, ϕ′)
as the cocone of F with the same underlying precubical set and maps as (X,ϕ)
but with x ̸∈ X ′

⊥. Then there exists no unique HDA map q : X → X ′ as
per the universal property, which is in contradiction with X being the colimit.
Combined with the above working analogously for the accepting cells gives us
that there must exist a y ∈ F (d)[U ] which reflects the starting and accepting
cells of ϕd[U ](y) = x.

Since a discrete category D contains no morphisms for all d1, d2 ∈ D, y1 ∈
F (d1) [U ], y2 ∈ F (d2) [U ] with ϕd1

[U ] (y1) = ϕd2
[U ] (y2) because of theorem 8

we have y1 ∼ y2 and therefore d1 = d2 and y1 = y2.



Lemma 16. Let (X,ϕ) be a cocone of the small diagram F : D → PSh(□) of
precubical sets such that for all objects U in □, all d, e ∈ D, x ∈ F (d)[U ] and
y ∈ F (e)[U ] we have

x ∼ y ⇐⇒ ϕ(d)[U ](x) = ϕ(e)[U ](y)

and suppose that for all x ∈ X[U ] there exists a d ∈ D and a y ∈ F (d)[U ] such
that ϕd[U ](y) = x. Then (X,ϕ) is a colimit.

Proof. Suppose that (Y, ψ) is a colimit of F : D → PSh(□) and let q : Y → X
be the unique precubical map with q ◦ψd = ϕd for all d ∈ D. Because of the first
property of X and lemma 15 this map is injective, and because of the second
property it is surjective. Therefore (X,ϕ) is isomorphic to (Y, ψ) through the
cocone map q : Y → X which means that (X,ϕ) is a colimit.

C.3 Proofs for section 3.3

Proof (Proof of lemma 5 on page 9). Let F : D → HDA be a small diagram
of HDA. We write F ′ : D → PSh(□) for F ◦ F . Since PSh(□) is a cocomplete
category there exists a colimit (L′, ϕ) of this diagram.

We can then convert this colimit of precubical sets back to a HDA. Let L
be the HDA with the underlying precubical set L′. The starting and accepting
cells L⊥ and L⊤ we define as follows: For every object U in □, every d ∈ D and
every x ∈ F (d)[U ] we have

x ∈ F (d)⊥ =⇒ ϕ(d)[U ](x) ∈ L⊥

x ∈ F (d)⊤ =⇒ ϕ(d)[U ](x) ∈ L⊤

The precubical maps ϕ(d) : F (d) → L then by definition preserve starting and
accepting cells making them HDA maps. Therefore (L, ϕ) is a cocone of the
diagram F : D → HDA.

In fact, we define the sets of starting and accepting cells of L[U ] as the
colimits of the sets of starting and accepting cells of F (d)[U ]. It is clear from the
construction that (L,L⊥, L

⊤) is the colimit.

Lemma 17. Let F : D → PSh(□) be a filtered diagram with the filtered colimit
(X,ϕ). Let S be a finite set of pairs (U, x) with U ∈ □ and x ∈ X[U ]. Then
there exists a d ∈ D and a finite set S′ of pairs (U, y) with U ∈ □ and y ∈
F (d)[U ] such that the universal map of the colimit provides a bijection q : S′ →
S that maps (U, y) to (U, ϕd(y)) with the property that for all (U, y) ∈ S′ if
(V, δA,B ◦ ϕd[U ](y)) ∈ S for a certain V ∈ □ then (V, δA,B(y)) ∈ S′.

Proof. For each U ∈ □ and x ∈ X[U ] such that (U, x) ∈ S there exists a dx ∈ D
and a yx ∈ F (dx) [U ] such that ϕdx

[U ] (yx) = x. Because D is filtered there
exists a d ∈ D and morphisms gx : dx → d for each dx ∈ D corresponding to a
x ∈ X[U ] for a certain U ∈ □. Therefore we can assume that each yx resides in
the same precubical set F (d). Here we have that for all (U, x) ∈ S there exists



a yx ∈ F (d)[U ] such that ϕd[U ] (yx) = x. We can define the set map q−1 that
sends (U, x) to (U, yx). This then automatically gives us our finite set S′ and our
bijection q : S′ → S.

Let (U, y) ∈ S′ and suppose that (V, δA,B ◦ ϕd[U ](y)) ∈ S for a certain V ∈ □.
Then there exists a (V, y′) ∈ S′ such that ϕd[V ] (y′) = δA,B ◦ ϕd[U ](y) = ϕd[V ] ◦
δA,B(y), which gives us y′ ∼ δA,B(y). Therefore there exists a e ∈ D and a
morphism f : d→ e such that F (f)[V ] (y′) = F (f)[V ] (δA,B(y)).

Since there are only a finite amount of elements in S′ and only a finite amount
of elements that can be reached form a certain element by the face maps this
means that there exists a d ∈ D and a finite set S′ with the bijection q : S′ → S
for which we have that for all (U, y) ∈ S′ if (V, δA,B ◦ ϕd[U ](y)) ∈ S for a certain
V ∈ □ then (V, δA,B(y)) ∈ S′.

Lemma 18. Let X be a finite HDA, let F : D → HDA be a filtered diagram
with the colimit (Y, ϕ) and let f : X → Y be a HDA map. Then there exists a
d ∈ D such that there exists a HDA map g : X → F (d) with ϕd ◦ g = f .

Proof. Let S be the set of pairs (U, f [U ](x)) with U ∈ □ and x ∈ X[U ]. Then,
lemma 17 says that there exists a d ∈ D with a set S′ of pairs (U, y), y ∈ F (d)[U ]
such that if (U, y) ∈ S′ and (V, δA,B ◦ ϕd(y)) ∈ S then (V, δA,B(y)) ∈ S′. This
means that for each x ∈ X[U ] there exists a certain yx ∈ F (d)[U ] such that
f [U ](x) = ϕd[U ] (yx) and such that for all V ∈ □ and all face maps δA,B we
have f [V ] ◦ δA,B(x) = ϕd[V ] ◦ δA,B (yx) = ϕd[V ]

(
yδA,B(x)

)
. This in turn gives us

the precubical map g : X → F (d) with ϕd ◦ g = f . By lemma 15 we can also
assume that g : X → F (d) is a HDA map, by choosing the yx reflecting the
starting and accepting cells of ϕd[U ] (yx) = x.

Differently stated, lemma 18 says that if X is a finite HDA and F : D →
HDA is a filtered diagram with the colimit (Y, ϕ), then any HDAmap f : X → Y
factors through some F (d).

Lemma 19. Let X be a finite HDA, let F : D → HDA be a filtered diagram
with the colimit (Y, ϕ) and let f1, f2 : X → F (d) be HDA maps for a certain
d ∈ D. Then we have ϕd ◦ f1 = ϕd ◦ f2 if and only if there exists a e ∈ D and a
morphism g : d→ e such that F (g) ◦ f1 = F (g) ◦ f2.

Proof. Suppose that there exists a e ∈ D and a morphism g : d → e such that
F (g) ◦ f1 = F (g) ◦ f2. Then we have ϕe ◦ F (g) ◦ f1 = ϕe ◦ F (g) ◦ f2 which
automatically gives us ϕd ◦ f1 = ϕd ◦ f2, since for all U ∈ □ and all x ∈ X[U ] we
have

ϕd ◦ f1[U ](x) = ϕe ◦ F (g) ◦ f1[U ](x) = ϕe ◦ F (g) ◦ f2[U ](x) = ϕd ◦ f2[U ](x)

For the other direction, suppose that we have ϕd ◦ f1 = ϕd ◦ f2. Then for all
U ∈ □ and all x ∈ X[U ] we have ϕd ◦ f1[U ](x) = ϕd ◦ f2[U ](x). By theorem 8
there exist ex ∈ D and morphisms g1, g2 : d→ ex such that F (g1) ◦ f1[U ](x) =
F (g2) ◦ f2[U ](x). Because D is filtered there exists a e′x ∈ D and a h : ex →
e′x such that h ◦ g1 = h ◦ g2. For the sake of convenience we say that for all



U ∈ □ and all x ∈ X[U ] there exists a ex ∈ D and a gx : d → ex such that
F (gx) ◦ f1[U ](x) = F (gx) ◦ f2[U ](x).

Since X is finite this gives us only a finite amount of ex ∈ D. Therefore there
exists a e ∈ D and morphisms hx : ex → e for each U ∈ □ and each x ∈ X[U ].
This gives us the morphisms hx ◦ gx : d → e which then because of D being a
filtered category gives us a morphism h : e→ e′ such that h◦hx ◦gx = h◦hy ◦gy
for all U, V ∈ □ and all x ∈ X[U ], y ∈ X[V ].

Therefore for all U ∈ □ and all x ∈ X[U ] we have a morphism h ◦ hx ◦ gx :
d → e′. This morphism is the same for all U ∈ □ or x ∈ X[U ]. Renaming e′ to
e and h ◦ hx ◦ gx to g gives us the required morphism.

Lemma 20. All finite precubical sets or HDA are compact

Proof. Since a precubical set can be seen as a special case of HDA (one with
empty starting and accepting cells) we will just consider the HDA.

LetX be a finite HDA and let F : D → HDA be a small filtered diagram with
the colimit (Y, ϕ). This gives us the small filtered diagram Hom(X,F (−)) : D →
Set which has the filtered colimit (colimd∈D Hom(X,F (d)) , Φ) and the cocone
(Hom(X,Y ),Hom(X,ϕd)) with the unique cocone map q : colimd∈D Hom(X,F (d))→
Hom(X,Y ).

Suppose that f ∈ Hom(X,Y ). Then from lemma 18 it follows that there
exists a d ∈ D and a g ∈ Hom(X,F (d)) such that ϕd ◦ g = f and therefore
Hom (X,ϕd) (g) = f . Since we have g ◦ Φd = Hom(X,ϕd) this means that q is
surjective.

Suppose that f1, f2 ∈ colimd∈D Hom(X,F (d)) such that q (f1) = q (f2).
Then by definition there exists a d ∈ D and g1, g2 ∈ Hom(X,F (d)) such that
Φd (g1) = f1 and Φd (g2) = f2 (we can assume that g1 and g2 are in the same
set due to D being filtered). Then q ◦ Φd (g1) = q (f1) = q (f2) = q ◦ Φd (g2)
which gives us ϕd ◦ g1 = ϕd ◦ g2. Then lemma 19 gives us that there exists an
object e ∈ D and a morphism h : d → e such that F (h) ◦ g1 = F (h) ◦ g2. This
then gives us the morphism Hom (X,F (h)) : Hom (X,F (d)) → Hom(X,F (d))
for which we have Hom (X,F (h)) (g1) = Hom (X,F (h)) (g2), which means that
we have to have Φd (g1) = Φd (g2). Therefore q is injective as well, which means
that it is an isomorphisms which therefore gives us that X is compact.

Since every representable precubical set is finite by definition this means that
they are compact as well.

Definition 21. Let X be a precubical set or HDA. Then the category of elements
el(X) is the category where

– an object is a pair (U, x) with U ∈ □ an object and x ∈ X[U ].

– A morphism (U, x) → (V, y) consists of a coface map dA,B : U → V such
that δA,B(y) = x.

The category comes with a forgetful functor p : el(X)→ □ with p ◦ (U, x) = U .



Lemma 21. Let X be a precubical set and let el(X) be the category of elements.
We have the Yoneda embeddingよ : □ → PSh(□) that sends each object of □
to its respective representable precubical set. Then X is a colimit of the diagram
よ ◦ p : el(X)→ PSh(□) of finite precubical sets.

Proof. This is the density theorem applied on precubical sets.

Lemma 22. Let X be a precubical set. Then X can be canonically expressed
as the colimit of a diagram F : el(X) → PSh(□) of representable precubical
sets. Suppose that we have y1 ∈ F (d1) [U ], y2 ∈ F (d2) [U ] with y1 ∼ y2 for
certain d1, d2 ∈ el(X) and an object U ∈ □. Then there exists a d3 ∈ el(X)
and morphisms f1 : d3 → d1 and f2 : d3 → d2 in el(X) such that there exists a
x ∈ F (d3) [U ] with F (f1) [U ](x) = y1 and F (f2) [U ](x) = y2.

Proof. From lemma 21 we get the diagram F : el(X)→ PSh(□) of which (X,ϕ)
is a colimit. Since y1 ∼ y2 theorem 8 gives us that ϕd1 [U ] (y1) = ϕd2 [U ] (y2) =
x ∈ X[U ]. Then there exists an object d3 = (U, x) in el(X). Then there also
exists a x′ ∈ F (d3) [U ] such that ϕd3

[U ] (x′) = x.
Let d1 = (V1, z1) and d2 = (V2, z2). Let the unique element of F (d1) [V1]

be z′1 and let the unique element of F (d2) [V2] be z
′
2. Then there exist coface

maps dA1,B1 : V1 → U and dA2,B2 : V2 → U such that δA1,B1 (z
′
1) = y1 and

δA2,B2 (z
′
2) = y2.

Therefore we have ϕd1
[U ] ◦ δA1,B1

(z′1) = ϕd1
[U ] (y1) = x and ϕd2

[U ] ◦
δA2,B2

(z′2) = ϕd2
[U ] (y2) = x. This then means that δA1,B1

(z1) = x = δA2,B2
(z2).

By definition of el(X) this means that there exist morphisms f : (U, x)→ (V1, z1)
and g : (U, x) → (V2, z2) such that F (f)[U ] (x′) = y1 and F (g)[U ] (x′) = y2,
which proves the statement.

Proof (Proof of lemma 6 on page 9). Let
(
X,X⊥, X

⊤) be a HDA and suppose
that X is empty (for all objects U of □ we have X[U ] = ∅). Then we can express
X as the filtered colimit of the diagram H : D → HDA where D is a discrete
category containing only a single object d (and therefore also a filtered category)
with F (d) = X.

Let
(
X,X⊥, X

⊤) be a non-empty HDA. By the density theorem, every pre-
cubical set can be expressed canonically as the colimit of finite precubical sets,
i.e, there exists a diagram F : D → PSh(□), so that X ∼= colimd∈D F (d).
We convert this diagram into a diagram of finite HDA F : D → HDA where
x ∈ F (d)⊥ ⇐⇒ ϕd(x) ∈ X⊥ and x ∈ F (d)⊤ ⇐⇒ ϕd(x) ∈ X⊤. The colimit
of this diagram of HDA is exactly

(
X,X⊥, X

⊤) which is by definition of the
colimit of HDA.

The category D used in the density theorem is the category of elements el(X)
of X. Let S be a finite full subcategory of el(X) and let GS : S → HDA be
the finite diagram of HDA where GS(d) = F (d) for every object d of S and
GS(f) = F (f) for every morphism f : d→ e in S.

Let E be the (small) category of finite full subcategories of el(X) where
the morphisms are the canonical inclusion functors. The category E is filtered
since it is not empty, has no parallel morphisms and for each pair of objects S1



and S2 of E there exists a third object S3 (the full subcategory of el(X) with
obj (S3) = obj (S1) ∪ obj (S2)) and morphisms f1 : S1 → S3, f2 : S2 → S3.

Let H : E → HDA be the filtered diagram with H(S) = colims∈S GS(s)
for all S ∈ E. Because GS : S → HDA is a finite diagram of finite HDA its
colimit H(S) must be a finite HDA as well. For all S1, S2 ∈ E there exists a
morphism f : S1 → S2 if and only if S1 is a full subcategory of S2. In this case
colims∈S2

GS2
(s) is a cocone of the diagram GS1

: S → HDA which gives us
the unique HDA map H(f) : H (S1) → H (S2). This makes H : D → HDA a
well-defined filtered diagram of finite HDA.

Each S ∈ E is a full subcategory of el(X) with GS(d) = F (d) for all d ∈ S
and GS(f) = F (f) for all morphisms f in E. Therefore X is a cocone of each
GS : S → HDA which gives us the unique HDA maps φS : H(S) → X. Due
to the properties of cocone maps we get that for each pair of objects S1, S2 ∈ E
with the morphism f : S1 → S2 we have φS2 ◦H(f) = φS1 , which makes (X,φ)
a cocone of H : E → HDA.

Suppose that we have an object U ∈ □ and an element x ∈ X[U ]. Since (X,ϕ)
is a colimit of F : el(X) → HDA there by definition exists a y ∈ F ((U, x)) [U ]
such that ϕx[U ](y) = x. By definition there is a category Sx in E containing
only the object (U, x) which means that we have H (Sx) = colimd∈Sx

GSx
=

F ((U, x)). In this case the cocone map φSx is the same as the injection map
ϕ(U,x), which then gives us φSx

[U ](y) = x.
Suppose that we have S1, S2 ∈ E and x1 ∈ H (S1) [U ], x2 ∈ H (S2) [U ] for a

certain object U ∈ □ such that φS1
[U ] (x1) = φS2

[U ] (x2). Since E is filtered we
can simply assume that S = S1 = S2.

Per definition we have the colimit (H (S) , θ) of GS : S → HDA. Then
lemma 15 gives us that there exist d1, d2 ∈ S such that there exist y1 ∈
GS (d1) [U ] and y2 ∈ GS (d2) [U ] such that θd1

[U ] (y1) = x1 and θd2
[U ] (y2) = x2.

Then because (X,ϕ) is a cocone of GS : S → HDA with the cocone map
φS : H (S)→ X we get

ϕd1
(y1) = φS◦θd1

[U ] (y1) = φS [U ] (x1) = φS [U ] (x2) = φS◦θd2
[U ] (y2) = ϕd2

(y2)

This gives us ϕd1
(y1) = ϕd2

(y2) and therefore because of theorem 8 we get
y1 ∼ y2 in F : el(X)→ HDA.

Then because of lemma 22 there exists a d3 ∈ el(X) and morphisms f :
d3 → d1 and g : d3 → d2 in el(X) such that there exists a y3 ∈ F (d3) [U ] with
F (f)[U ] (y3) = y1 and F (g)[U ] (y3) = y2. We have d3 = (V, z) for some object
V ∈ □ and some z ∈ X[V ].

This gives us that there exists a S′ ∈ E with obj (S′) = S ∪ {(V, z)} and a
morphism h : S → S′. S′ by definition includes d1, d2 and d3 and the morphisms
f and g which gives us that

H(h)[U ] (x1) = H(h) ◦ θd1 [U ] (x1) = θ′d1
[U ] (y1)

= θ′d2
[U ] (y2) = H(h) ◦ θ′d2

[U ] (y2) = H(h)[U ] (x2)

with (H (S′) , θ′) being the colimit of GS′ : S′ → HDA. This gives us that for
all x1 ∈ H (S1) [U ] and x2 ∈ H (S2) [U ] we have x1 ∼ x2 ⇐⇒ φd1 [U ] (x1) =
φd2

[U ] (x2).



From lemma 16 it then follows that (X,ϕ) is a filtered colimit of H : E →
HDA assuming that the starting and accepting cells are correct. Because of the
way we defined F : el(X) → HDA this is the case. If x ∈ X[U ] and x ∈ X⊥
then F (d) with d = (U, x) is defined such that for the element y ∈ F (d)[U ] with
ϕd[U ](y) we have y ∈ F (d)⊥. For Sx ∈ E the full subcategory containing only
d = (U, x) we then have H (Sx) = F (d) such that φSx

[U ](y) = x. Analogously
the same is true for the accepting cells.

Lemma 23. Every compact precubical set or HDA is finite.

Proof. We will again only consider the HDA. Let X be a compact HDA and let
F : D → HDA be a filtered diagram of finite HDA with the filtered colimit
(X,ϕ) as per lemma 6. Then, since X is compact, we have

colim
d∈D

Hom(X,F (d)) ∼= Hom

(
X, colim

d∈D
F (d)

)
∼= Hom(X,X)

As a consequence, we get that the identity map idX factors through a map
X → F (d). Since F (d) is a finite HDA, X has to be finite as well.

Proof (Proof of theorem 1 on page 9). This follows from lemma 20 and lemma 23.

Proof (Proof of theorem 2 on page 9). HDA is cocomplete by lemma 5. Lemma 6
shows that any HDA is given as filtered colimit of compact HDA. Since by
theorem 1 the compact HDA are finite, we have that HDAc is essentially small.
Thus, HDA is a lfp category.

Alternative Proofs for section 3.3 An alternative proof that the category
of HDA is lfp goes as follows. The idea is to construct a reflective subcategory
H of a presheaf category that is closed under filtered colimits and equivalent to
HDA. This implies then that H and thus HDA is lfp [1, Sec. 1C]. We thank
an anonymous referee of a previous version of the paper for this suggestion.

We define a category ℓSLO▷ with objects

|ℓSLO▷| = |ℓSLO| ∪ {⊤,⊥} × |ℓSLO|

and morphisms between objects are given as follows.

ℓSLO▷(X,Y ) =


ℓSLO(X,Y ), X, Y ∈ |ℓSLO|
{∗⊤}, X ∈ |ℓSLO|, Y = (⊤, X)

{∗⊥}, X ∈ |ℓSLO|, Y = (⊥, X)

∅, otherwise

We will write U⊤ and U⊥ instead of (⊤, U) and (⊥, U) for U ∈ ℓSLO. Let H
be the full subcategory of PSh(ℓSLO▷) of presheaves P for which P (∗⊤) and
P (∗⊥) are injective. The idea is that P (U⊤) and P (U⊥) contain the starting
and accepting cells of dimension U . We now have to show that H is a reflective
subcategory of PSh(ℓSLO▷), closed under filtered colimits and equivalent to
HDA.



Reflective subcategory Let I : HPSh(ℓSLO▷) be the inclusion functor. We con-
struct a left-adjoint T to I using the orthogonal epi-mono factorisation system
(E,M) on Set as follows. For a presheaf P : (ℓSLO▷)op → Set and U, V ∈
ℓSLO, we define a presheaf TP by (TP )(U) = P (U), (TP )(k) = Pk for
k : V → U and (TP )(U⊤) and (TP )(U⊥) by the following factorisations into
a surjection followed by an injection.

P (U⊥)
ηP,U⊥−−−−→ (TP )(U⊥)

(TP )(∗⊥)−−−−−−→ P (U)

P (U⊤)
ηP,U⊤−−−−→ (TP )(U⊤)

(TP )(∗⊤)−−−−−−→ P (U)

Since the epi-mono factorisation system is functorial, this assignment defines
a functor T : PSh(ℓSLO▷) → H. If we put ηP,U = idP (U) for U ∈ ℓSLO,
then this yields together with the above factorisation a natural transformation
η : Id → IT . Let now f : P → K be map natural transformation with K ∈ H.
Since (E,M) is an orthogonal factorisation system, there is for all U a unique
map f̄U⊥ filling the following diagram.

P (U⊥) (TP )(U⊥) P (U)

K(U⊥) K(U⊥) K(U)

ηP,U⊥ T (∗⊥)

fU⊥

id K(∗⊥)

fUf̄U⊥

Similarly, there is a unique map f̄U⊤ : (TP )(U⊤) → K(U⊤) with f̄U⊤ ◦ ηP,U⊤ =
fU⊤ . If we put f̄U = fU , then we obtain a unique natural transformation
f̄ : TP → K with f̄ ◦ ηP = f . Thus, (TP, η) is a reflection of P along I and
thus T ⊣ I. The inclusion I is by definition full and thus H is a reflective sub-
category of the presheaf category PSh(ℓSLO▷).

H is closed under filtered colimits Let C be filtered and D : C → H a diagram.
Since PSh(ℓSLO▷) is a presheaf category, the colimit colim ID is computed
point-wise. Thus, it remains to prove that (colim ID)(∗⊤) and (colim ID)(∗⊥)
are injective, where we only prove the first and the second is analogous. We note
that the following diagram is a pullback for all c ∈ C and U ∈ ℓSLO because
Dc(∗⊤) is a monomorphism (injective).

Dc(U⊤) Dc(U⊤)

Dc(U⊤) Dc(U)
Dc(∗⊤)

Dc(∗⊤)id

id

Since filtered colimits commute with finite limits and because colim preserves
identities, the following is also a pullback.

(colimD)(U⊤) (colimD)(U⊤)

(colimD)(U⊤) Dc(U)
(colimD)(∗⊤)

(colimD)(∗⊤)id

id

⌟



Therefore, (colimD)(∗⊤) is a monomorphism and colimD ∈ H.

H is equivalent to HDA This is obvious by mapping P ∈ H to the HDA
(X,X⊥, X⊤) withX(U) = P (U),X⊥ =

⋃
U P (∗⊥)(U⊥) andX⊤ =

⋃
U P (∗⊤)(U⊤).

This mapping induces clearly a fully faithful functor that is essentially surjective,
and is thus part of an equivalence.

C.4 Proofs for section 4

Proof (Proof of lemma 7 on page 11). This follows directly from the definition
of ev.

Proof (Proof of lemma 8 on page 11). If P ∈ L(X) then there exists a path
α in X with s (α) ∈ X⊥ and t (α) ∈ X⊤ such that ev (α) = P . lemma 7
gives us that f (α) is a path in Y and because HDA maps preserve starting
and accepting cells we have s (f (α)) ∈ X⊥ and t (f (α)) ∈ X⊤ and therefore
P = ev (α) = ev (f (α)) ∈ L(Y ).

In the case that f : X → Y is an isomorphism there exists an inverse map
f−1 : Y → X, which gives us L(Y ) ⊆ L(X) as well and therefore L(X) = L(Y ).

Proof (Proof of lemma 9 on page 11). For every d ∈ D we have the HDA map
ϕ(d) : F (d)→ X. Lemma 8 then gives us that L (F (d)) ⊆ L(X), from which the
statement follows.

Proof (Proof of lemma 10 on page 11). Suppose that we have P ∈ L(X). Then
there exists an accepting path α = (x0, φ1, x1, ..., φn, xn) in X with s(α) ∈ X⊥
and t(α) ∈ X⊤ such that ev(α) = P .

Lemma 15 gives us that for each xk ∈ X [Uk] for 1 ≤ k ≤ n and the object
Uk ∈ □ there exists a unique dk ∈ D and a unique yk ∈ F (d) [Uk] such that
ϕdk

[Uk] (yk) = xk. It also gives us that y1 ∈ F (d1)⊥ and yn ∈ F (dn)⊥.
Suppose that we have xk = δ0A (xk+1). Because we have

ϕdk
[Uk] (yk) = xk = δ0A (xk+1) = δ0A ◦ ϕdk+1

[Uk+1] (yk+1) = ϕdk
[Uk] ◦ δ0A (yk+1)

we get yk ∼ δ0A (yk+1) (with ∼ as defined in definition 20) which because of
lemma 15 gives us dk = dk+1 and yk = δ0A (yk+1). Analogously the same works
for if we have δ1B (xk) = xk+1.

Therefore there exists an accepting path α′ = (y0, φ1, y1, ..., φn, yn) in F (d)
with d = d1 = d2 = ... = dn such that ϕd (α

′) = α. Lemma 7 gives us that
P = ev(α) = ev (α′) and therefore ev (α′) ∈ L (F (d)). As a result we have that
P ∈ L(X) =⇒ P ∈

⋃
d∈D L (F (d)). Combined with lemma 9 this proves the

statement.

Proof (Proof of lemma 11 on page 11). For finite HDA X, L(X) is a language
by [9, Prop. 10]. Suppose that X is an arbitrary HDA. From lemma 6 we get a
filtered diagram F : D → HDA of finite HDA such that X ∼= colimd∈D F (d).
lemma 8 and theorem 3 give us that

L(X) = L
(
colim
d∈D

F (d)
)
=
⋃

d∈D
L (F (d))

The result follows because languages are closed arbitrary unions, see lemma 1.



C.5 Proofs for section 5

Proof (Proof of lemma 12 on page 13). Suppose that we are given compact HDA
Y =

(
Y, Y⊥, Y

⊤) and Y ′ =
(
Y ′, Y ′

⊥, Y
′⊤) with morphisms h : Y →

(
X,X⊥, X

⊤),
h′ : Y ′ →

(
X,X⊥, X

⊤), g : P → Y and g′ : P → Y ′, such that h ◦ g = f and
h′◦g′ = f . SinceHDAc is closed under finite colimits, we can form the coproduct
Y + Y ′ with inclusions κ and κ′. Let [h, h′] : Y + Y ′ → X be the copairing of h
and h′, where X =

(
X,X⊥, X

⊤). Because HDA is lfp, we can factor [h, h′] into

an epimorphism q and a monomorphism m: [h, h′] = Y + Y ′ e−→ R m−→ X . We
then define e = q ◦ κ and e′ = q ◦ κ′. Note that because q is an epimorphism, R
is a compact HDA. With this notation set up, we have

me′g′ = mqκ′g′ = [h, h′]κ′g′ = h′g′ = hg = [h, h′]κg = mqκg = meg

and thus, since m is mono, e′g′ = eg. ⊓⊔
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