Coinduction in Flow: The Later Modality in Fibrations

Henning Basold
CNRS, ENS de Lyon
henning.basold@ens-lyon.fr

Abstract
This paper provides a construction on fibrations that gives access to the so-called later modality, which allows for a controlled form of recursion in coinductive proofs and programs. The construction is essentially a generalisation of the topos of trees from the codomain fibration over sets to arbitrary fibrations. As a result, we obtain a framework that allows the addition of a recursion principle for coinduction to rather arbitrary logics and programming languages. The main interest of using recursion is that it allows one to write proofs and programs in a goal-oriented fashion. This allows for easily understandable coinductive proofs and programs, and fosters automatic proof search.

Part of the framework are also various results that enable a wide range of applications: preservation of (co)limits, exponentials, fibred adjunctions and first-order fibrations, which means that the construction extends any first-order logic with the later modality; soundness and completeness; and up-to techniques as proof rules. Since the construction works for a wide variety of fibrations, we will be able to use the recursion offered by the later modality in various context. In particular, we will show how recursive proofs can be obtained for arbitrary (syntactic) first-order logics, for coinductive set-predicates, and for the probabilistic modal μ-calculus. Moreover, we use the same construction to obtain a novel language for probabilistic productive coinductive programming. These examples demonstrate the flexibility of the framework and its accompanying results.

2012 ACM Subject Classification General and reference → General literature; General and reference

Keywords and phrases Coinduction, Fibrations, Later Modality, Recursive Proofs, Up-to techniques

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding Henning Basold: This work is supported by the European Research Council (ERC) under the EU’s Horizon 2020 programme (CoVeCe, grant agreement No. 678157).

1 Introduction
Recursion is one of the most fundamental notions in computer science and mathematics, be it as the foundation of computability, or to define and reason about structures determined by repeated constructions. In this paper, we will focus on the use of recursion as method for coinductive proofs and coinductive programming.

Usually, coinductive programming is presented by means of coiteration schemes and coinduction as bisimulation proof principle. Coiteration schemes are a syntactic implementation of coalgebras and their coinductive extension to a homomorphism into the final coalgebra [29, 44]. The bisimulation proof principle, on the other hand, asserts that bisimilarity implies equality in the final coalgebra [26, 33, 56]. There are, however, also different approaches that break with this dogma. In coinductive programming, guarded recursion [3, 4, 13, 46, 48], and sets of recursive equations [1, 30, 57] have been used to construct elements of final coalgebras and of coinductive types. On the side of proofs, there have been several improvements of coinduction suggested: simplifications of invariant proof [58] through up-to techniques [16, 50, 54], and the companion [8, 51, 52], incremental techniques [35, 47], games [49, 60], and basic cyclic

© Henning Basold; licensed under Creative Commons License CC-BY
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:21
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
proceeds for stream equality [53]. In this paper, we will focus on guarded recursion because it
can be widely applied, and because it leads to clean proof and programming methods.

A concrete appearance of coinduction can be found, for instance, in the modal µ-calculus
L_µ [42, 17] and its quantitative interpretations [36] pL_µ or L_µ [45] in form of Park’s rule:
\[
\frac{\psi \rightarrow \varphi[\psi/X]}{\psi \rightarrow \nu X. \varphi}
\]
This rule says that an implication with a greatest fixed point as conclusion can be proven by showing that ψ is an invariant for \(\varphi \). Kozen [42] gave an axiomatisation of L_µ based on this rule, and its dual, that turned out to be complete [70]. Thus, this axiomatisation is expressive, but often difficult to use in practice, let alone for proof search. It should be noted that L_µ is decidable if it is interpreted in classical logic. The goal of this work is, however, to develop techniques that can also be used to obtain (constructive) proof objects and can be applied to more general logics. Thus, our focus will be on improving the axiomatisation of L_µ and of coinductive proofs in general.

Coming back to Park’s rule, we often find ourselves having to prove \(\psi \rightarrow \nu X. \varphi(X) \) for a
formula \(\psi \), which is not an invariant. We are then required to find an invariant \(\psi' \), such that,
\(\psi \rightarrow \psi' \). Finding such an invariant can be difficult in general and it does not fit common
practice. Instead, it would be preferable if we could incrementally construct the proof for
\(\psi \rightarrow \nu X. \varphi(X) \) rather than guessing an invariant \(\psi' \). Such an incremental construction leads to a recursive proof methodology for coinductive proofs. As such incremental methods are valuable in any theory that is based on coiteration or coinduction schemes, we set out in this paper to replace invariant guessing by a general iterative programming and proof method.

The proposed iterative method will be given in form of a framework that introduces
recursion into coinductive proofs and programs, while preserving soundness and termination.
This framework is centred around the so-called later modality [48], which allows us to control
the use of recursion and thereby avoid the introduction of non-termination. The later modality
has been successfully used in the context of semantics [13, 67], programming [3, 4, 46], and
reasoning [20, 11]. Ultimately, we generalise the work of Birkedal et al. [13] on the topos
of trees to arbitrary fibrations with the effect of much wider applicability to, for example,
quantitative reasoning and probabilistic programming.

In the case of L_µ, we extend the logic with the later modality as a new logical connective.
Given a formula \(\varphi \), we thus obtain a formula \(\bullet \varphi \). This formula should be read as “\(\varphi \) holds later” and thus allowing us to formulate knowledge that varies over time. The later modality comes with three crucial axioms: \(\varphi \rightarrow \bullet \varphi \) (next), \(\bullet(\varphi \rightarrow \psi) \rightarrow \bullet \varphi \rightarrow \bullet \psi \) (monotonicity), and \(\bullet(\varphi \rightarrow \psi) \rightarrow \varphi \) (fixed point or Löb). It is the Löb rule that introduces recursion into the
logic, and it should be read as “if we can prove \(\varphi \) from the assumption that \(\varphi \) holds later,
then \(\varphi \) holds at any time”. However, the assumption \(\bullet \varphi \) introduced by the Löb rule cannot
be used directly. We need one final axiom for that: \(\varphi[\bullet \nu X. \varphi/X] \rightarrow \nu X. \varphi \) (step). These
axioms can be combined to obtain recursive proofs, as we will show later. As an appetiser,
the reader may have a look already at Figure 2 on Page 14.

The reader may have noticed that the first three axioms, next, monotonicity and Löb,
are independent of the logic at hand. Only the step axiom makes use of the structure of formulas. This observation is what enables the topos of trees and the framework presented here to work. More precisely, we will start with a given fibration \(p: E \rightarrow B \) and construct a
new fibration \(\mathcal{F}: \mathcal{E} \rightarrow \mathcal{B} \) out of it. This fibration will have, under mild conditions, the later
modality as a map of fibrations \(\bullet, \varphi \) on it. The next and Löb axioms correspond then to
certain morphisms in \(\mathcal{E} \), while monotonicity says that \(\bullet \) is a strong functor. From a logical
perspective, it is more natural to consider another fibration \(\mathcal{F}: E \rightarrow B \) over the same base
category as the initial fibration. In this fibration, we will not only have access to the later
modality and its axioms, but also to quantifiers that are present in the original fibration \(p \).
Contributions Put slightly more technical, the contributions of this paper are as follows. Given a fibration p and a well-ordered class I, we let \mathcal{E} be the category of I^{op}-indexed chains in E, that is, functors $\sigma: I^{\text{op}} \to E$. The fibration \mathcal{P} is given by post-composition with p and thus maps a chain to the chain of its indices given by p. On this fibration, we construct the later modality and find all its good properties. We then restrict our attention to the fibration $\mathcal{P}: E \to B$, which consists only of chains with constant index. In other words, \mathcal{P} is given by the change-of-base (pullback) along the functor $K: B \to \mathcal{B}$ that maps $I \in B$ to the chain that is equal to I at every position. This is indicated in the right diagram in Figure 1.

The diagram on the left summarises the relation between all the involved fibrations and the most important ingredients of the framework:

- the later modality is a map of fibrations $\Rightarrow: \mathcal{P} \to \mathcal{P}$ and $(\bullet, \bullet): \mathcal{P} \to \mathcal{P}$ with a natural transformation $\text{Id} \Rightarrow \bullet$ (Theorem 15 and Theorem 16);
- \mathcal{P} and \mathcal{P} are fibred Cartesian closed categories and feature the Löb rule as morphism $\text{Löb}_\sigma: \sigma^{\bullet} \to \sigma$ that fulfils a unique solution condition (Theorem 19 and Theorem 25);
- fixed points of so-called locally contractive functors on \mathcal{P} and \mathcal{P} (Theorem 28);
- the final chain construction of final coalgebras via contractive functors (Proposition 31) and up-to techniques as proof rules (Theorem 32);
- if B has I^{op}-limits, then there is an adjunction $K^B \dashv L^B$ between B and \mathcal{B} and the fibred adjunction induces an adjunction $I \dashv R$ between E and \mathcal{E} (Theorem 18);
- if p has fibred I^{op}-limits, then there is a fibred adjunction $K^E \dashv L^E$ between E and \mathcal{E} (Theorem 18);
- if p is a first-order fibration, then \mathcal{P} is a first-order fibration and L^E preserves truth of first-order formulas if disjunction, existentials and equality preserve I^{op}-limits (Theorem 38).

Particularly interesting is that \mathcal{P} is a first-order fibration, in other words, models first-order logic. This result can be restricted to any subset of connectives, which allows us to extend any logic with the later modality and its axioms. The adjunction between p and \mathcal{P} shows then that this yields a sound and complete axiomatisation of coinductive predicates. We leverage this generality to devise a novel proof system for the probabilistic modal μ-calculus and a language for productive probabilistic programming with coinductive types.

Another interesting aspect of the diagram is that one of the central constructions of [32] (Lem. 3.5) appear here as the composition $L^E \circ R: \mathcal{E} \to E$. In fact, the results in [32] tell us under which conditions we can use the finite ordinals ω as index I to still obtain a sound and complete proof system for coinductive predicates.

Organisation The framework is introduced in the following steps. First, we provide in Section 2 a brief overview over fibrations, coinductive predicates and well-founded induction.
Next, we describe in Section 3 the chain fibrations \(\mathcal{P} \) and \(\mathcal{P} \), construct the later modality and give some basic results. Section 4 is devoted to show that the functor fibrations are fibred Cartesian closed and to the Löb rule. In Section 5 we construct fixed points of so-called locally contractive functors, both, on the whole fibration and on the fibres. Moreover, we show how the final chain arises as locally contractive functor, and how this leads to the proof rule “step” that we saw above. This allows us also to obtain proof rules on the final chain for compatible up-to techniques. As promised, we prove in Section 6 that \(\mathcal{P} \) is a first-order fibration. Furthermore, we give the adjunctions from Figure 1 that relate the various fibrations. The flexibility of the framework is then demonstrated by providing a recursive proof system for probabilistic \(\mathbb{L} \) and a language for guarded recursive probabilistic programming in Section 7. We conclude with a few remarks and future work in Section 8.

Related Work

To a large part, the present paper generalises the work of Birkedal et al. [13] from the codomain fibration \(\text{Set} \rightarrow \text{Set} \) of sets to arbitrary fibrations. That [13] was so restrictive is not so surprising, as the intention there was to construct models of programming languages, rather than applying the developed techniques to proofs. Going beyond the category of sets also means that one has to involve much more complicated machinery to obtain exponential objects, see Section 4. Later, Bizjak et al. [14] extended the techniques from [13] to dependent type theory, thereby enabling reasoning by means of recursive proofs in a syntactic type theory. However, also this is again a very specific setting, which rules out the main examples that we are interested in here. Similarly, also the parameterised coinduction in categories [47] and in lattices [35] is too restrictive, as they only apply to, respectively, propositional and to set theoretic settings. It might be possible to develop parameterised coinduction in the setting of fibrations by using the companion [8, 51, 52], but we leave this question for another time. Recursion is also central to cyclic proof systems [18, 21, 23, 59]. These are particularly useful in settings that require proofs by induction or coinduction because cyclic proof systems ease proofs enormously compared to the invariant-based method of (co)induction schemes. Nothing comes for free though: In this case checking proofs becomes more difficult, as the correctness conditions are typically global for a proof tree and not compositional. For the same reason, also soundness proofs are often rather complex. The framework we study here gives rise to proof rules that require no further global condition on proofs, which straightforwardly yields proof checking [5] and soundness. Higher-order recursion has also been studied other categorical settings like topos theory [43, 37] or monoidal categories [27, 31]. Unfortunately, these neither apply to our examples of interest, nor do they provide the logical results and constructions that appear in this paper.

Finally, there is the realm of algorithmic proofs, where circular proofs have been used to automatically prove identities of streams [53]. Otherwise, computer-supported coinduction is usually limited to proof checking [28, 15, 22]. There have been limited approaches to combine coinduction with resolution [61]. In [7], we were able to go beyond that by extending uniform proofs to coinduction and using the framework presented in this paper as logical foundation. This shows that the framework of this paper paves the way for algorithmic proof search.

2 Preliminaries

2.1 Fibrations

One of the central notions used in this paper are fibrations [10, 38, 66], as they are an elegant way of capturing that variables in a (higher-order) predicate logic range over some type.
Definition 1. Let \(p : E \to B \) be a functor, where \(E \) is called the total category and \(B \) the base category. A morphism \(f : A \to B \) in \(E \) is said to be Cartesian over \(u : I \to J \), provided that i) \(pf = u \), and ii) for all \(g : C \to B \) in \(E \) and \(v : pC \to I \) with \(pg = u \circ v \) there is a unique \(h : C \to A \) such that \(f \circ h = g \). For \(p \) to be a fibration, we require that for every \(B \in E \) and \(u : I \to pB \) in \(B \), there is a cartesian morphism \(f : A \to B \) over \(u \). Finally, a fibration is cloven, if it comes with a unique choice for \(A \) and \(f \), in which case we denote \(A \) by \(u^*B \) and \(f \) by \(\pi_B \), as displayed in the diagram on the right.

On cloven fibrations, we can define for each \(u : I \to J \) in \(B \) a functor, the reindexing along \(u \), as follows. Let us denote by \(E_I \) the category having objects \(A \) with \(p(X) = I \) and morphisms \(f : A \to B \) with \(p(f) = \text{id}_I \). We call \(E_I \) the fibre above \(I \) and the morphisms in \(E_I \) vertical. The assignment of \(u^*B \) to \(B \) for a cloven fibration can then be extended to a functor \(u^* : E_J \to E_I \). Moreover, one can show that there are natural isomorphisms \(\text{id}^*_I \cong \text{id}_{E_I} \) and \((v \circ u)^* \cong u^* \circ v^* \) subject to some coherence conditions.

For a fibration \(p : E \to B \) and a functor \(F : C \to B \), we can form a new fibration \(F^*(p) : F^*(E) \to C \) by pulling \(p \) back along \(F \), see [38]. The fibration \(F^*(p) \) is said to be obtained by change-of-base. Given another fibration \(q : D \to A \), a map of fibrations \(p \to q \) is a pair \((F,G)\) of functors \(F : A \to B \) and \(G : D \to E \), with \(p \circ G = F \circ q \) and such that \(G \) preserves Cartesian morphisms. This means in particular for \(u : I \to J \) and \(A \in E_J \) that for \(G(u^*A) \cong (Fu)^*(GA) \). Finally, the fibration \(p \) is said to have \text{fibred finite products}, if every fibre has finite products and these products are preserved by reindexing.

Let \(C \) be a Cartesian closed category. We denote for \(f : Y \to X \) by \(f^* : 1 \to XY \) the code of \(f \). Recall [41] that a functor \(F : C \to C \) is strong if there is natural family of morphisms \(\text{st}^F_{X,Y} : XY \to FXFY \), s.t. \(\text{st}^F_{X,Y} \circ f^* = Ff^* \). A lifting \((F,G) : p \to p \) is strong if both \(F \) and \(G \) are strong, and \(p \circ \text{st}^G = \text{st}^F \).

As the definition of fibrations and the associated notions are fairly abstract, let us give a few examples. There are four examples that we shall use to illustrate different aspects of the theory: predicates over sets, quantitative predicates, syntactic logic and categories as trivial fibrations. Another example is the fibration of set families to model dependent types, but we leave this aside for now. We begin with the simplest example, namely that of predicates. Despite its simplicity, it is already quite useful because it allows us to reason about predicates and relations for arbitrary coalgebras in \text{Set}.

Example 2 Predicates. The fibration \(\text{Pred} \to \text{Set} \) of predicates has as objects in its total category \(\text{Pred} \) predicates \((P \subseteq X)\) over a set \(X \). Each fibre \(\text{Pred}_X \) has a final object \(1_X = (X \subseteq X) \) and the fibred binary products are given by intersection. We note that fibred constructions, like the above products, are preserved by a change-of-base, see [38, Lem. 1.8.4]. Hence, one can also apply the results in this paper to, for example, the fibration of (binary) relations \(\text{Rel} \to \text{Set} \), which is given by pulling \(\text{Pred} \to \text{Set} \) back along the diagonal functor \(\delta : \text{Set} \to \text{Set} \) with \(\delta(I) = I \times I \).

Often, one is not just interested in merely logical predicates, but rather wants to analyse quantitative aspects of system. Such predicates will be the foundation for the probabilistic \(\mu \)-calculus. The following example extends the predicate fibration from Ex. 2 to quantitative predicates, which will give us a convenient setting to reason about quantitative properties.
Example 3. We define the category of quantitative predicates $qPred$ as follows.

$$qPred = \left\{ \begin{array}{ll}
\text{objects:} & \text{pairs } (X, \delta) \text{ with } X \in \text{Set} \text{ and } \delta : X \to [0, 1] \\
\text{morphisms:} & f : (X, \delta) \to (Y, \gamma) \text{ if } f : X \to Y \text{ in Set and } \delta \leq \gamma \circ f
\end{array} \right.$$

It is easy to show that the first projection $qPred \to \text{Set}$ gives rise to a cloven fibration, for which the reindexing functors are given for $u : X \to Y$ by $u^*(Y, \gamma) = (X, \lambda x. \gamma(u(x)))$. For brevity, let us refer to an object (X, δ) in $qPred_X$ just by its underlying valuation δ. One readily checks that in $qPred$ fibred products can be defined by $(\delta \times \gamma)(x) = \min\{\delta(x), \gamma(x)\}$ and coproducts as maximum. Fibred final objects are given by the constantly 1 valuation.

The original motivation for the work presented in this paper was to abstract away from the details that are involved in constructing a syntactic logic for a certain coinductive relation in [6]. In [6], the author developed a first-order logic that features the later modality to reason about program equivalences. This logic was given in a very pedestrian way, since the syntax, proof system and models were constructed from scratch. The proofs often involved phrases along the lines of “true because this is an index-wise interpretation of intuitionistic logic”. In the following example, we show how a first-order logic can be presented as a fibration.

Example 4 Syntactic Logic. Suppose we are given a typed calculus, for example the simply typed λ-calculus or even the category Set of sets, and a first-order logic, in which the variables range over the types of the calculus. More precisely, let Γ be a context with $\Gamma = x_1 : A_1, \ldots, x_n : A_n$, where the x_i are variables and the A_i are types of the calculus. We write then $\Gamma \vdash t : A$ if t is a term of type A in context Γ, $\Gamma \vdash \varphi$ if φ is formula with variables in Γ, and $\Gamma \vdash \varphi$ if φ is provable in the given logic. This allows us to form a fibration as follows. First, we define \mathcal{C} to be the syntactic category that has context Γ as objects and tuples t of terms as morphisms $\Delta \to \Gamma$ with $\Delta \vdash t_i : A_i$. Next, we let \mathcal{L} be the category that has pairs (Γ, φ) with $\Gamma \vdash \varphi$ as objects, and a morphism $(\Delta, \psi) \to (\Gamma, \varphi)$ in \mathcal{L} is given by a morphism $t : \Delta \to \Gamma$ in \mathcal{C} if $\Delta \vdash \psi \to \varphi[t]$, where $\varphi[t]$ denotes the substitution of t in the formula φ. The functor $p : \mathcal{L} \to \mathcal{C}$ that maps (Γ, φ) to Γ is then easily seen to be a cloven fibration, see for example [38]. Let us assume that the logic also features a truth formula \top, conjunction \land and implication \rightarrow, which are subject to the usual proof rules of intuitionistic logic. We note that p has fibred finite products given by \top and conjunction.

The final example will allow us to apply the framework of this paper to any category.

Example 5 Trivial Fibration. Let $\mathbf{1}$ be the final category with one object $*$ and only the identity on $*$. Then any category \mathbf{C} can be seen as fibration $!: \mathbf{C} \to \mathbf{1}$, such that fibred products etc. are just normal product.

2.2 Coalgebras and Coinductive Predicates

Let us now introduce the second central notion of this paper: coinductive predicates. For that, we first need the notion of coalgebra.

Definition 6. Let $F : \mathbf{C} \to \mathbf{C}$ be a functor. A coalgebra is a morphism $c : X \to FX$. Given coalgebras $c : X \to FX$ and $d : Y \to FY$, a homomorphism from c to d is a morphism $h : X \to Y$ with $Fh \circ c = d \circ h$. We can form a category $\text{CoAlg}(F)$ of coalgebras and their homomorphisms and we call a final object in this category a final coalgebra.
Coinductive predicates are easiest introduced by taking for a moment a more abstract perspective. Recall that we introduced fibrations as a way to talk abstractly about predicates, relations etc. Now we use this view to define coinductive predicates over a given coalgebra for an arbitrary notion of predicate.

\> **Definition 7.** Let \(p : E \rightarrow B \) be a cloven fibration and \(F : B \rightarrow B \) an endofunctor. We say that a functor \(G : E \rightarrow E \) is a lifting of \(F \), if \(p \circ G = F \circ p \). A \(G \)-invariant in a coalgebra \(c : X \rightarrow FX \) in \(E \) is \((c^* \circ G) \)-coalgebra in \(E_X \). Further, a \(G \)-coinductive predicate in \(c \) is a final \((c^* \circ G) \)-coalgebra. We often denote the carrier of the \(G \)-coinductive predicate in \(c \) by \(\nu(c^* \circ G) \), see [32]. A compatible up-to technique for \(c^* \circ G \) is a functor \(E \rightarrow E \) with a natural transformation \(T \circ c^* \circ G \Rightarrow c^* \circ G \circ T \), see [16, 55].

Let us illustrate the notion of coinductive predicate in an example.

\> **Example 8.** In this example, we show how the semantics of the modalities of the probabilistic modal \(\mu \)-calculus (pL\(\mu \)) can be modelled as liftings. Given a set \(X \), we say that a function \(\rho : X \rightarrow [0, 1] \) to the unit interval is a (finitely supported) probability distributions on \(X \), if the support \(\text{supp} \rho = \{ x \mid \rho(x) \neq 0 \} \) is finite and \(\sum_{x \in \text{supp} \rho} \rho(x) = 1 \). One can then define a functor \(D : \text{Set} \rightarrow \text{Set} \) that maps a set to the set of all probability distributions on \(X \). An (unlabelled) Segala system [64] or probabilistic transition system (PTS) is a coalgebra for the functor \(S \) given by \(S = \mathcal{P} \circ \mathcal{D} \), in which states have non-deterministic transition into probability distributions. We can now give liftings \(S^{\square} \) and \(S^{\Diamond} \) of \(S \) to qPred, which correspond to the box and diamond modality, respectively, of pL\(\mu \):

\[
\begin{align*}
S^{\square}(\delta : X \rightarrow [0, 1])(D \in S(X)) &= \bigwedge_{d \in C} \sum_{x \in \text{supp} d} \delta(x) \cdot d(x) \\
S^{\Diamond}(\delta : X \rightarrow [0, 1])(D \in S(X)) &= \bigvee_{d \in C} \sum_{x \in \text{supp} d} \delta(x) \cdot d(x)
\end{align*}
\]

Suppose now that we have a PTS \(c : X \rightarrow S(X) \) at hand, then \(c^* \circ S^{\square} : \text{qPred}_X \rightarrow \text{qPred}_X \) yields the expected semantics of the box modality [45].

\subsection{Well-Founded Induction}

One of the central notions throughout this paper is that of well-founded induction. We will use a rather general form, which is based on classes, rather than sets.

\> **Definition 9.** Let \(A \) be a class and \(< \) a binary relation on \(A \). We say that the relation \(< \) is well-founded, if the well-founded induction principles holds for all \(P \subseteq A \): If \(\alpha \in A \) and \((\forall \beta < \alpha, \alpha \in P \implies \beta \in P) \), then \(\alpha \in P \).

Given a well-founded order, we can form as usual a category from the induced partial order \(\leq \) with \(\alpha \leq \beta \) if \(\alpha < \beta \) or \(\alpha = \beta \). Typical examples, to which the presented framework applies, are the set \(\omega \) of finite ordinals with the successor relation; the set of ordinals below any limit ordinal with their usual order; and the class of all ordinals Ord.

Recall that ordinals can be constructed as zero, successor and limit ordinals. We say that \(\mathbf{1} \) is a classical ordinal category, if every \(\alpha \in \mathbf{1} \) is either zero, a successor or a limit.

\section{Descending Chains in Fibrations}

It is well-known that a final coalgebra of a functor \(F \), hence also coinductive predicates, can be constructed as limit of \(\alpha^\text{op} \)-chains for some limit ordinal \(\alpha \) if such limits exist and are
Coinduction in Flow

preserved by F [39, 71]. This observation is essential to the proof approach given in this paper, as we rely essentially on the fact that maps into a coinductive predicate, thus proofs, can alternatively be given as maps into this α^{op}-chain. In the following, we introduce the necessary machinery to leverage this fact. This will allow us to construct from a first-order logic, given by a fibration, a new logic of descending chains that admits the same logical structure as the given fibration and admits recursive proofs for coinductive predicates.

3.1 Categories of Diagrams

Before we analyse the final chain of a functor, we introduce general diagrams and establish properties of these. We fix an index category I and let $[I,C]$ for a category C be the category of functors from I to C, also called the category of I-indexed diagrams in C. Given a functor $F: C \to D$, we define a functor $[I,F]: [I,C] \to [I,D]$ on categories of diagrams by $[I,F](\sigma) = F \circ \sigma$. Since $[I,-]$ preserves composition of functors and applies to natural transformations, we obtain a strict 2-functor $[I,-]: \text{Cat} \to \text{Cat}$. We use this to define a functor $F: X \to Y$ in C, a morphism $[I,F]: K_X \Rightarrow K_Y$ in $[I,C]$ where K_X is the constant functor sending any object in I to X. Note that there is a natural transformation $K_f: K_X \Rightarrow K_Y$, which is given by $K_{f,I} = f$. Thus, we can put $[I,F] = [I,K_f]$.

The assignment of diagrams and lifting functors not only preserves 2-structure, but also fibrational structure.

> **Lemma 10.** The functor $[I,-]$ extends to a fibred functor on the fibration $\text{Fib} \to \text{Cat}$.

Also adjunctions are preserved in the transition to diagrams.

> **Lemma 11.** If $F: C \to D$ and $G: D \to C$ with $F \dashv G$, then $[I,F] \dashv [I,G]$.

3.2 Descending Chains and the Later Modality

In this section, we extend the development in [13] to fibrations. We will give some intuition for the later modality and prove some basic results.

> **Assumption 12.** In the remainder of the paper, we assume that I is the category induced by a well-founded class I.

In the construction of final coalgebras, one considers I^{op}-indexed diagrams, which give rise to a functor $\text{Cat} \to \text{Cat}$ with

$$(-) = [I^{op},-],$$

(1)
as in the last section. The category of descending chains in C is then the category \mathring{C}, the objects of which we denote by σ, τ, \ldots. More explicitly, $\sigma \in \mathring{C}$ assigns as a functor $\sigma: I^{op} \to C$ to each $\alpha \in I$ an object $\sigma_\alpha \in C$ and to each pair α and β with $\beta \leq \alpha$ a morphism $\sigma(\beta \leq \alpha): \sigma_\alpha \to \sigma_\beta$ in C.

By the above discussion, we obtain by Lem. 10 that the functor $\mathring{p}: \mathring{E} \to \mathring{B}$ given by post-composition is a fibration. Since (co)limits are constructed point-wise in functor categories, the fibration \mathring{p} inherits (co)limits from p. We obtain another fibration by change-of-base along the constant functor $K: B \to \mathring{B}$ that sends an object $I \in B$ to the constant chain $K_I: I^{op} \to B$ as in the diagram on the right. We note the following result, which allows us to apply, for instance, Lem. 11 to functors between fibres of a given fibration.

> **Lemma 13.** We have that $\mathring{E}_I \cong \mathring{E}_I \cong \mathring{E}_{K_I}$.
Many constructions in this paper require only limits over a bounded part of P^p.

Definition 14. Let J be a category and denote for $i \in J$ by $i \downarrow J$ the coslice category under i. We say that C has bounded J-limits, if for every $i \in J$ all $(i \downarrow J)$-limits exist in C.

With this definition, we can now introduce the later modality, which is the central construction that underlies the recursive proofs that we develop in this paper.

Theorem 15. Suppose that p has fibred bounded P^p-limits. There are functors $\triangleright: B \to B$ and $\bullet: E \to E$ given on objects by

$$(\triangleright c)_a = \lim_{\beta < a} c_\beta \quad \text{and} \quad (\bullet \sigma)_a = \lim_{\beta < a} \sigma_\beta,$$

together with a natural transformations next$^\triangleright: \Id \Rightarrow \triangleright$ and next: $\Id \Rightarrow \bullet$. The pair $(\bullet, \triangleright)$ forms a map of fibrations $\overline{p} \to \overline{p}$ and we have \overline{p}(next) = next$^\triangleright$. Moreover, \triangleright preserves fibred finite limits. Finally, if I is a classical ordinal category, then \bullet has a left-adjoint \bullet^\triangleright.

We note that because $\bullet: E \to E$ maps $\sigma \in E_c$ to $\cdot \sigma \in E_{\sigma, c}$, we can define a restricted version $\bullet^\triangleright: E_c \to E_c$ of the later modality that leaves the index chain untouched by putting

$$\bullet^\triangleright = (\text{next}^\triangleright)^\# \circ \bullet \quad \text{and} \quad \text{next}^\triangleright = (\text{next}^\triangleright)^\# \text{ next}.$$

Also \bullet^\triangleright has a left-adjoint if I is classical and if p is a bifibration.

Another special case is obtained for the chains with constant index.

Theorem 16. The later modality is a strong fibred functor $\bullet: \overline{p} \to \overline{p}$ with a vertical natural transformation next: $\Id \Rightarrow \bullet$, that is, \overline{p}(next) = id.

Since the intention is to use Theorem 16 to extend a logic, let us present the results as proof rules. The first rule is given by the strength of \bullet and the last rule for product preservation can be applied in both directions, indicated by double lines.

$$\text{mon}_{\sigma, \tau}: \sigma^{\tau} \to \triangleright \sigma^{\tau} \quad \begin{array}{c} f: \tau \to \sigma \quad \text{next} \circ f: \tau \to \triangleright \sigma \quad \text{next}^\triangleright \circ f: \tau \to \bullet (\sigma \times \sigma') \quad \text{f: \tau \to (\bullet \sigma) \times (\bullet \sigma')} \end{array}$$

The following assumption ensures that the above proof rules are available throughout the remainder of this paper.

Assumption 17. p is a cloven fibration with fibred finite limits and bounded P^p-limits.

So far, we have established the fibrations and the later modality in the overview diagram in Figure 1. What remains are the adjunctions that relate the fibrations.

Theorem 18. If E has fibred P^p-limits, then $K: E \to E$ has a fibred right adjoint L^E, given by $L^E(\sigma) = \lim_{a \in I} \sigma_a$. If B has P^p-limits, then $K: B \to B$ and $L: E \to E$ have right adjoints L^B and R, given by $L^B(\varepsilon) = \lim_{a \in I} c_\alpha$ and $R = \pi^\#$, where $\pi_{\beta}: \lim_{a \in I} c_\alpha \to c_\beta$ are the limit projections and $(-)^\#$ is reindexing in \overline{p}.

Cartesian Closure and the Löb Rule

Up to this point, we have only shown the existence of the next and monotonicity rule that we used in the example in the introduction. What is missing is the recursion given in form of the Löb rule. The goal of this section is to establish the recursion mechanism by utilising so-called Löb induction, which is based on the later modality that we introduced in Sec. 3.2. To state and prove the Löb induction, we need exponential objects in our fibration $\overline{p}: E \to B$ of chains. In the first part of this section, we show how to construct these from exponential objects in $p: E \to B$. The second part is the devoted to establishing the Löb rule.
4.1 Fibred Cartesian Closure of Diagrams

A fibred Cartesian closed category (fibred CCC) is a fibration \(p: E \to B \) in which every fibre is Cartesian closed and reindexing preserves this structure, see [38, Def. 1.8.2]. In a fibred CCC we can model in particular implication, which is what we will need to formulate the L"ob rule below. Given a fibred CCC, we show now that the fibration of diagrams is also a fibred CCC. Since the construction of exponential objects in categories of diagrams does not depend on working with a well-founded index category, we will formulate the results in this section for an arbitrary index category \(I \), like we did in Sec. 3.1.

Let \(S: I^p \times I \to C \) be a functor. The end of \(S \) is an object \(\int_{i: I} S(i, i) \) in \(C \) together with a universal extranatural transformation \(\pi: \int_{i: I} S(i, i) \to S \). Concretely, this means that \(\pi \) is a family of morphisms indexed by objects in \(I \), such that the diagram on the right commutes for all \(u: i \to j \). Moreover, given any other extranatural transformation \(\alpha: X \to S \) there is a unique \(f: X \to \int_{i: I} S(i, i) \) with \(\pi_i \circ f = \alpha_i \) for every \(i \in I \). It is well-known that ends can be computed as certain limits in \(C \). By analysing carefully the necessary limits, we obtain the following result.

> **Theorem 19.** Let \(I \) be a category and \(p: E \to B \) a cloven fibration that has fibred finite limits, fibred exponentials and fibred bounded \(I \)-products. Then \([I, p]: [I, E] \to [I, B]\) is again a fibred CCC. The exponential object of \(F, G \in [I, E]_U \) is given by

\[
(G^F)(i) = \int_{u: I \to i} ((U(v)^* G(j))(v)^* F(j)).
\]

> **Assumption 20.** In the remainder we additionally assume that \(p: E \to B \) is a fibred CCC.

From Assumption 17 and 20, we get that \(\overline{\mathcal{P}} \) is a fibred CCC. Note that change-of-base also preserves fibred exponentials, hence the fibration that we obtained by pulling \(\overline{\mathcal{P}} \) back along the diagonal in Sec. 3.2 is also a fibred CCC, see [38, Ex. 1.8.8] and [66].

> **Example 21.** Fibred exponentials exist in \(\overline{\text{Pred}}_X \) with \(Q^P = \{ x \in X \mid x \in P \implies x \in Q \} \).

The fibration \(\overline{\text{Pred}} \) consists then of descending chains of predicates. In particular, if \(\sigma \in \overline{\text{Pred}}_X \), then \(\sigma \) is a chain with \(\sigma_0 \supseteq \sigma_1 \supseteq \cdots \). Note now that each fibre \(\overline{\text{Pred}}_X \) is a poset, hence equalisers are trivial and (finite) limits are just given as (finite) products. Hence, Thm. 19 applies and we obtain that \(\overline{\text{Pred}}_X \) is a fibred CCC. Since equalisers are trivial, it is easy to see that the exponential for \(\sigma, \tau \in \overline{\text{Pred}}_X \) can be defined as follows.

\[
(\sigma\tau)_n = \bigcap_{m \leq n} \tau^n \subseteq X
\]

Since fibred exponentials are preserved by a change-of-base, see [38, Lem. 1.8.4], they also exist in the fibration of relations \(\text{Rel} \to \text{Set} \) and the associated fibration \(\overline{\text{Rel}} \to \overline{\text{Set}} \).

> **Example 22.** Recall that we defined in Ex. 3 a category of quantitative predicates. We note that this fibration is a fibred CCC with exponents given by

\[
(\delta \Rightarrow \gamma)(x) = \begin{cases} 1, & \delta(x) \leq \gamma(x) \\ \gamma(x), & \text{otherwise} \end{cases}
\]

Again, each fibre \(\overline{\text{qPred}}_X \) is a complete lattice and so \(\overline{\text{qPred}} \) is a fibred CCC for any \(I \).

> **Example 23.** In Ex. 4, we defined a fibration \(p: \mathcal{L} \to \mathcal{C} \) for a first-order logic with conjunction and implication. From the implication we obtain that \(p \) is a fibred CCC. Moreover, since
each fibre is a pre-order, equalisers are again trivial. If I is the poset ω of finite ordinals, then p is a fibred CCC. Explicitly, for chains φ, ψ of formulas in \mathcal{P}_A above a type A, the exponent $\psi \Rightarrow \varphi$ in p^* is given by a finite conjunction:

$$(\psi \Rightarrow \varphi)_n = \bigwedge_{m \leq n} \psi_m \Rightarrow \varphi_m.$$

4.2 The Löb Rule

One purpose of the later modality is that it allows us to characterise maps in p^*, so-called contractive maps, of which we can construct fixed points.

- **Definition 24.** A map $f : \tau \times \sigma \rightarrow \sigma$ in E_c is called g-contractive if $g : \tau \times \bullet^c \sigma \rightarrow \sigma$ with $f = g \circ (\text{id} \times \text{next}_{\sigma})$. We call $s : \tau \rightarrow \sigma$ a fixed point or solution for f, if $s = f \circ (\text{id} , s)$.

 We can now see that there is a operator in p^* that allows us to construct fixed points.

- **Theorem 25.** For every $\sigma \in E_c$ there is a unique morphism $\text{lob}_\sigma^c : \cdot^{\sigma}_{\cdot} \sigma \rightarrow \sigma$ in E_c, dinatural in σ, such that for all g-contractive maps f the map $\text{lob}_\sigma^c \circ g$ is a solution for f. Dinaturality means thereby that for all $h : \sigma \rightarrow \tau$ the diagram on the right commutes.

 \[
 \begin{array}{cc}
 \sigma \times \tau & \xrightarrow{h \cdot} \tau \\
 \sigma \times \tau & \xrightarrow{\cdot \sigma \\ \tau} \sigma \\
 \end{array}
 \]

 From Thm. 25, we obtain the Löb proof rule. This rule allows us to introduce recursion into proofs, by giving us the proof goal σ as an assumption guarded by the later modality.

$$f : \tau \times \bullet^c \sigma \rightarrow \sigma \quad \text{with} \quad \text{lob}_\sigma^c \circ \lambda f = f \circ (\text{id} \times \text{next}_{\sigma}) \circ (\text{id}, \text{lob}_\sigma^c \circ \lambda f)$$

5 Locally Contractive Functors and Coinduction

One of the central notions of Birkedal et al. [13] is that of locally contractive functors. Such functors admit fixed points in the topos of trees and are closed under various constructions like composition and products. Locally contractive functors are used in [13] as a different way of solving recursive domain equations, which is where the name “synthetic domain theory” comes from. In this section, we restate the definition of contractive functors, and generalise the fixed point construction and the closure properties to the fibrations p^* and \overline{p}.

In the following, we use the natural transformation $\text{comp}_{X,Y,Z} : X^Y \times Z^X \rightarrow Z^Y$ that composes internal morphisms. We will refer to the isomorphism $\bullet \sigma \times \bullet \tau \rightarrow \bullet (\sigma \times \tau)$ as δ^c.

- **Definition 26.** A functor $F : C \rightarrow C$ is called locally contractive if F is strong, there is a natural transformation $C^c_{\sigma, \tau} : \bullet (\sigma \tau) \rightarrow F\sigma F\tau$ with $\text{st}^c_{\sigma, \perp} = C^c_{\sigma, \perp} \circ \text{next}_{\sigma \perp}$, and fulfils $C^c_{\sigma, \tau} \circ \bullet \text{id} = \text{id}$ and $\text{comp} \circ (C^c_{\sigma, \tau} \times C^c_{\tau, \sigma}) = C^c_{\tau, \sigma} \circ \bullet \text{comp} \circ \delta^c$. A lifting $(F, G) : \overline{p} \rightarrow \overline{p}$ is locally contractive if (F, G) is strong, F and G are locally contractive and $\overline{p} C^G = C^F$.

 The next theorem records the essential closure properties of locally contractive functors.

- **Theorem 27.** Let $F, G : C \rightarrow C$ be functors. If F or G is locally contractive, then $F \circ G$ is; if F and G are locally contractive, then $F \times G$ is. Both, $(\cdot \cdot) : \overline{p} \rightarrow \overline{p}$ and $\cdot : p \rightarrow p$ are locally contractive. Finally, the constant functor $\lambda \tau. \sigma$ is locally contractive for any $\sigma \in E_c$.

 The proof of the following theorem proceeds essentially in the same way as the one given in [13] by first establishing for all $\alpha \in I$ and $\beta < \alpha$ that locally contractive functors map for any β-isomorphism f to an α-isomorphism Gf above the corresponding α-iso $F(\beta f)$.
Theorem 28. Any locally contractive lifting \((F,G)\) has a unique fixed point in \(\overline{E}\).

In Section 7, we will need the following version on fibres for the semantics of \(p\mathcal{L}\mu\).

Theorem 29. For any \(c \in \overline{B}\) and locally contractive functor \(F: \overline{E}_c \to \overline{E}_c\) a unique fixed point of \(F\) exists in \(\overline{E}_c\).

5.1 The Final Chain and Up-To Techniques

Having laid the ground work, we come to the objects of interest: coinductive predicates. The following definition captures the usual construction of the final chain. Recall that \((-\)) is a functor \(\text{Cat} \to \text{Cat}\). Thus, from \(\Phi: \mathcal{E}_I \to \mathcal{E}_I\), we obtain \(\nu: \mathcal{E}_I \to \mathcal{E}_I\) by Lemma 13.

Definition 30. Given a functor \(\Phi: \mathcal{E}_I \to \mathcal{E}_I\), we define the final chain of \(\Phi\) to be the fixed point \(\nu(\nu \Phi)\) of the locally contractive functor \(\nu \Phi\).

We can now construct an adjunction between \(\Phi\)-invariants and coalgebras for \(\nu \Phi\), cf. [40]. This is slightly more expressive version of the usual construction of final coalgebras.

Proposition 31. Suppose \(\Phi: \mathcal{E}_I \to \mathcal{E}_I\) preserves \(\text{op}\)-limits. Then the adjunction \(K^\mathcal{E} \dashv L^\mathcal{E}\) lifts to an adjunction \(K_\Phi^\mathcal{E} \dashv L_\Phi^\mathcal{E}\) between the categories \(\text{CoAlg}(\Phi)\) and \(\text{CoAlg}(\nu \Phi)\) of \(\Phi\)- and \(\nu \Phi\)-coalgebras. In particular, \(\nu \Phi \simeq L_\Phi(\nu \nu \Phi)\), where \(\nu \nu \Phi\) is the unique fixed point of \(\nu \Phi\).

Proposition 31 will play a central role in recursive proofs, as it allows us to unfold the final chain and thereby to make progress in a recursive proof. Just as important as unfolding is the ability to reason inside syntactic contexts, use transitivity of relations etc. in a proof. Such properties are captured through up-to techniques, see Def. 7.

Theorem 32. Let \(T\) and \(\Phi\) be functors \(\mathcal{E}_I \to \mathcal{E}_I\). If there is a natural transformation \(\rho: T\Phi \Rightarrow \Phi T\), then there is a map \(\bar{\rho}: T\nu(\nu \Phi) \to \nu(\nu \Phi)\) in \(\mathcal{E}_I\).

Remark 33. Pous and Rot [52] prove a result similar to Thm. 32, namely that a monotone function \(T\) on a complete lattice is below the companion of \(\Phi\) if and only if there is a map \(\bar{\rho}: T\nu(\nu \Phi) \to \nu(\nu \Phi)\). This is equivalent to Thm. 32 because the companion is compatible.

From Proposition 31 and Theorem 32 we obtain the following proof rules, where the last can as well be read as a soundness and completeness result.

\[
\begin{align*}
f: \tau \to \nu(\nu \Phi) \\
\overline{\rho}: T\Phi \Rightarrow \Phi T \\
f: \tau \to T\nu(\nu \Phi) \\
\overline{\rho} \circ f: \tau \to \nu(\nu \Phi)
\end{align*}
\]

The last result in this section allows us to obtain compatible up-to techniques on fibres from global up-to techniques.

Theorem 34. Let \((F,G)\): \(p \to p\) be a map of fibrations, \(n : I \to FI\) a coalgebra in \(\mathcal{B}\), and \(T: \mathcal{E} \to \mathcal{E}\) a lifting of the identity \(\text{Id}_\mathcal{E}\). Define \(\Phi := n^\mathcal{E} \circ G: \mathcal{E}_I \to \mathcal{E}_I\) to be the predicate transformer associated to \(c\), see Definition 7. If there is a vertical natural transformation \(\rho: TG \Rightarrow GT\), then there is a vertical natural transformation \(\rho^\mathcal{E}: T\Phi \Rightarrow \Phi T\).

6 Chains in First-Order Fibrations

The goal of this section is to show that the fibration \(p: \mathcal{E} \to \mathcal{B}\) of \(\mathcal{F}\)-chains with constant index is a first-order fibration (FO fibration) if \(p: \mathcal{E} \to \mathcal{B}\) is an FO fibration. This allows us to construct out of a given FO logic another FO logic that features the later modality.
6.1 Products, Coproducts and Quantifiers for Descending Chains

Because of Lem. 13, we can apply many construction easily point-wise to chains with constant index. For instance, we can lift products and coproducts in the following sense.

Theorem 35. If for \(u: I \to J \) in \(B \) the coproduct \(\coprod u: E_I \to E_J \) along \(u \) exists, then the coproduct \(\coprod u: \mathcal{E}_I \to \mathcal{E}_J \) along \(u \) is given by \(\coprod u \). Similarly, the product \(\prod u \) along \(u \) is \(\prod u \).

Example 36. Both \(\text{Pred} \) and \(q\text{Pred} \) to have products and coproducts along any function in \(\text{Set} \). For instance, products in \(q\text{Pred} \) along functions \(u: X \to Y \) are given by

\[
\prod u(\delta: X \to [0,1])(y) = \inf \{ \delta(x) \mid x \in X, u(x) = y \}.
\]

In a syntactic logic, Ex. 4, one has that \(L \to C \) products and coproducts along projections \((\Gamma, x: A) \to \Gamma \) are universal and existential quantification over \(A \), respectively. Arbitrary (co)products can be then be defined in terms of the equality relation in the logic, cf. [38]. By Thm. 35, all these products and coproducts lift to the fibrations of descending chains.

Let us denote for \(I \in B \) the later modality on \(\mathcal{E}_I \) by \(\gamma^I \). We can then establish the following essential properties about the interaction of the later modalities and (co)products, which are analogue to those in [13, Thm. 2.7]. This theorem allows one to distribute in proofs quantifiers over the later modality.

Theorem 37. The following holds for fibred products and coproducts in \(\mathcal{P} \).

- There is an isomorphism \(\gamma^I \circ \prod u \cong \prod u \circ \gamma^I \).
- There is a natural transformation \(\iota: \prod u \circ \gamma^I \Rightarrow \gamma^I \circ \prod u \). Moreover, if \(u \) is inhabited, that is, has a section \(\upsilon: J \to I \), then \(\iota \) has a section \(\iota^\upsilon \).

For \(u: I \to J \) in \(B \), we can present the central results of this section as proof rules:

\[
\begin{align*}
\frac{f: \tau \to u^* \sigma}{\bar{f}: \prod u \tau \to \sigma} & \quad \frac{f: \tau \to \prod u (\gamma^I \sigma)}{\bar{f}: \gamma^I \prod u \sigma} & \quad \frac{f: \gamma^I \tau \to \sigma}{\bar{f}: \gamma^I \prod u \sigma} & \quad \frac{f: \gamma^I \tau \to \sigma}{\bar{f}: \gamma^I \prod u (\gamma^I \sigma)}
\end{align*}
\]

6.2 First Order Fibration of Descending Chains

As the name suggests, a first-order fibration models first-order logic with equality. Such an FO fibration is a fibration \(p: E \to B \), which is a fibred pre-ordered lattice and fibred CCC, and has products and coproducts, which satisfy the Beck-Chevalley and Frobenius conditions, along all morphisms in \(B \), see [38, Def. 4.2.1] for details. We now show that not only is the fibration of constant-index chains in \(p \) an FO fibration, but is also strongly related to \(p \).

Theorem 38. If \(p: E \to B \) is an FO fibration, then \(\mathcal{P}: \mathcal{E} \to B \) is as well an FO fibration. Furthermore, if the fibred coproducts and coproducts along morphisms preserve \(\text{Fin} \)-limits, then \(\mathcal{I}^E: E \to E \) preserves all the FO structure except for implication. For implication, truth is preserved, i.e., for all \(\sigma, \tau \in \mathcal{E}_I \) there is a morphism \(L(\sigma^\tau) \to L \sigma^{\gamma^\tau} \). If \(\tau = K_X \) for some \(X \in E_I \), then this morphism is an isomorphism. Finally, \(K \) is a fully faithful functor.

That preservation of exponentials fails can be seen by taking \(\sigma, \tau \in [\omega^{\text{op}}, \text{Pred}_N] \) to be \(\tau_n = N \setminus \{1, \ldots, n\} \) and \(\sigma_n = \{0\} \). Then \(L(\sigma^\tau) = \{0\} \) but \(L \sigma^{\gamma^\tau} = N \).

7 Examples

In this section, we show the framework in action. Specifically, we show how a novel proof system for the probabilistic modal \(\mu \)-calculus pLHU can be obtained, and we show a language and its semantics for probabilistic productive coinductive programming.
7.1 Recursive Proofs for the Probabilistic Modal μ-Calculus

The probabilistic modal μ-calculus μL has exactly the same syntax as the modal μ-calculus L_μ. However, formulas are interpreted as probability distributions [36]. We extend the coinductive fragment of μL here with the later modality and thereby obtain the following formulas over sets \At and \Var of propositional variables P and fixed point variables X

$$\phi, \psi ::= P | \overline{P} | X | \top | \bot | \nu X. \phi | \boxdot \phi | \Box \phi | \phi \land \psi | \phi \lor \psi | \phi \to \psi,$$

where X must occur positively in ϕ when forming $\nu X. \phi$. Given a formula ϕ with no or one free variable $^1 X$, a Segala system $c : Q \to S(Q)$ and an interpretation $I : Q \to \Pred_{\mathbb{A}}$, we use Theorem 27 to define a locally contractive functor $[\phi] : \Pred_{\mathbb{Q}} \to \Pred_{\mathbb{Q}}$ with $n = 0, 1$, where we only display the interesting cases. The remaining cases are given in Appendix A.

$$[P] = K(I(P)), \quad [X] = \top, \quad [\nu X. \phi] = \nu [\phi], \quad [\Box \phi] = c^# \circ S \circ [\phi].$$

This definition and the previous development gives us immediately the following rules are sound for this interpretation, where double lines are rules that can be used in both directions.

$$\Delta \vdash [\nu X. \phi/X] \quad (\text{Step}) \quad \Delta \vdash [\phi] \quad (\text{Next}) \quad \Delta \vdash [\phi] \quad (\text{Löb}) \quad \Delta \vdash [\phi] \quad + \text{propositional and modal rules}$$

In Figure 2, we show how Park’s rule can be proven from these rules. Theorem 38 gives us that these rules are sound and their semantics are complete for the standard semantics of formulas that only have constant premises, i.e. pure modal formulas, in implications.

Let us make two final remarks about this example. First, note that the implication is an internalisation of the ordering on quantitative predicates and thus has, a priori, nothing to do with probabilities. In particular, we have $[P] \neq [P \to \bot]$. Second, the proof rules give rise to a constructive and recursive proof system for μL. This is insofar interesting, as that the completeness proof for Kozen’s axiomatisation for L_μ is non-constructive, and non-probabilistic version of the above presented proof system may give new insights, cf. [24]. Also an analogous version of our cut-free proof system for Horn clause theories [7] may be shed new light on cut-free proofs for (p)L_μ, cf. [2].

\(^1\) We restrict ourselves to this case for simplicity. Supporting several variables is a direct generalisation.
7.2 Probabilistic Productive Coinductive Programming

In this last example, we show how one can obtain a new programming language for higher-order probabilistic programming with coinductive types, in which all programs are terminating. This is in contrast to the language provided in [69], where full recursion is essential to coinductive programming. Full recursion introduces, however, non-terminating and non-productive programs, which makes reasoning about programs unnecessarily difficult [68], especially in the probabilistic setting. As such, the total programming language, which we are about to introduce, provides us with coinductive, probabilistic types, while retaining the good properties of terminating and productive programs.

The essential ingredient are so-called quasi-Borel spaces that were introduced by Heunen et al. [34] as a setting for higher-order probabilistic programming. In particular, the category \(qBS \) of quasi-Borel spaces and their morphisms is (co)complete and Cartesian closed, see [34, 69] for details. From the framework, we obtain that \(qBS = [\omega^{op}, qBS] \) is as well a (co)complete CCC with later modality and Löb rule. This allows us to provide a probabilistic higher-order programming language with coinductive types.

This language has types and terms that are given in Appendix B. One coinductive example given in [69] is that of a random walk, which produces a stream of random positions for a given standard deviation \(\sigma \). We may define the type \(\mathbb{R}^\omega \) of \(\mathbb{R} \)-valued streams as fixed point type by \(\mathbb{R}^\omega = fix \mathbb{R} \times \mathbb{R} \times \mathbb{R}^\omega \). A random walk can be produced by the following guarded recursive program \(RW : \mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R}^\omega \):

\[
RW = \lambda \sigma. fix f : \mathbb{R} \rightarrow \mathbb{R}^\omega. \lambda x. \text{in} (x, f \circ \text{next (normal } (x, \sigma)))
\]

The details of how the above types and terms can be interpreted in \(qBS \) are given in Appendix B. Since \(qBS \) is complete, we thus obtain an interpretation of the types and terms in \(qBS \), which corresponds to the expected final coalgebra semantics, see Proposition 31.

8 Conclusion and Future Work

In this paper, we have established a framework that allows us to reason about coinductive predicates in many cases by using recursive proofs. At the heart of this approach sits the so-called later modality, which was comes from provability logic [9, 63, 65] but was later used to obtain guarded recursion in type theories [3, 4, 14, 48] and in domain theory [12, 13]. This modality allows us to control the recursion steps in a proof without having to invoke parity or similar conditions [19, 25, 59, 62], as we have seen in the examples in Sec. 7. Moreover, even though Birkedal et al. [13] obtained similar results, their framework is limited to \(\text{Set} \)-valued presheaves, while our results are applicable in a much wider range of situations. In particular, we were able to devise a novel probabilistic programming language that guarantees productivity on coinductive types.

So what is there left to do? For once, we have not touched upon how to automatically extract a syntactic logic and models from the fibration \(\mathcal{L} \rightarrow \mathcal{C} \) obtained in Ex. 23. This would subsume and simplify much of the development in [6]. Next, we only proved only the existence of quantifiers that range over fixed domains. It would be useful to extend this construction to indexed domains to, for example, obtain Kripke models abstractly. However, such a construction would be similar to that of exponents in Thm. 19 and thus quite involved. Finally, also a closer analysis of the relation to proof systems obtained through parameterised coinduction, the companion or cyclic proof systems may shed some light on the strength of the proof approach presented in this paper.
References

Coinduction in Flow

H. Basold 23:19

A Interpretation of the Probabilistic Modal μ-Calculus

Given a formula φ with no or one free variable X, a Segala system $c: Q \to S(Q)$, and an interpretation $I: Q \to q\text{Pred}_Q$ with $n = 0, 1$, we use Theorem 27 to define a locally contractive functor $\llbracket \varphi \rrbracket: \text{Pred}_Q \to \text{Pred}_Q$ with $\llbracket 0 \rrbracket = \top$, $\llbracket 1 \rrbracket = \perp$, and $\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket$. Given a formula φ with no or one free variable X, a Segala system $c: Q \to S(Q)$, and an interpretation $I: Q \to q\text{Pred}_Q$ with $n = 0, 1$, we use Theorem 27 to define a locally contractive functor $\llbracket \varphi \rrbracket: \text{Pred}_Q \to \text{Pred}_Q$ with $\llbracket 0 \rrbracket = \top$, $\llbracket 1 \rrbracket = \perp$, and $\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket$.

\[\llbracket \varphi \rrbracket = K(1 - I(\varphi)) \]
\[\llbracket \top \rrbracket = \top \]
\[\llbracket \bot \rrbracket = \bot \]
\[\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket \]
\[\llbracket \varphi \rrbracket = \varphi \]
\[\llbracket \varphi \rrbracket = \varphi \]
\[\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket \]
\[\llbracket \varphi \rrbracket = \varphi \]
\[\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket \]

\[\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket \]
\[\llbracket \varphi \rrbracket = \varphi \]
\[\llbracket \varphi \rrbracket = \varphi \]
\[\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket \]
\[\llbracket \varphi \rrbracket = \varphi \]
\[\llbracket \nu X. \varphi \rrbracket = \nu I \llbracket \varphi \rrbracket \]

B Types and Terms for Guarded Probabilistic Programming

Type, context and term formation rules for guarded probabilistic programming:

<table>
<thead>
<tr>
<th>$\Delta \vdash X : Ty$</th>
<th>$\Delta \vdash \nu X. A : Ty$</th>
<th>$\Delta \vdash A : Ty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \vdash A : Ty$</td>
<td>$\Delta \vdash \nu X. A : Ty$</td>
<td>$\Delta \vdash X : Ty$</td>
</tr>
<tr>
<td>$\Delta \vdash A : Ty$</td>
<td>$\Delta \vdash \nu X. A : Ty$</td>
<td>$\Delta \vdash X : Ty$</td>
</tr>
</tbody>
</table>

Interpretation of types, context and terms over $q\text{BS}$:

| $\llbracket \Delta \vdash A : Ty \rrbracket : q\text{BS}^- \to q\text{BS}$ |
| $\llbracket \Gamma \text{ Ctx} \rrbracket \in q\text{BS}$ |
| $\llbracket \Gamma \vdash t : A \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$ |

Interpretation of types, context and terms over $q\text{BS}$:

| $\llbracket \Delta \vdash A : Ty \rrbracket : q\text{BS}^- \to q\text{BS}$ |
| $\llbracket \Gamma \text{ Ctx} \rrbracket \in q\text{BS}$ |
| $\llbracket \Gamma \vdash t : A \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$ |

Interpretation of types, context and terms over $q\text{BS}$:

| $\llbracket \Delta \vdash A : Ty \rrbracket : q\text{BS}^- \to q\text{BS}$ |
| $\llbracket \Gamma \text{ Ctx} \rrbracket \in q\text{BS}$ |
| $\llbracket \Gamma \vdash t : A \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$ |
\[
\begin{align*}
\{X\} &= \pi_X \\
\{\text{fix } X \cdot A\} &= \nu\{A\} \\
\{A \times B\} &= \{A\} \times \{B\} \\
\{A \to B\} &= \{A\} \Rightarrow \{B\} \\
\{\bot\} &= 1 \\
\{\Gamma, x : A\} &= \{\Gamma\} \times \{A\} \\
\{x\} &= \pi_x \\
\{t \odot s\} &= \text{ev} \circ \langle \text{mon} \circ \{t\}, \{s\}\rangle \\
\{\text{in } t\} &= \xi^{-1} \circ \{t\} \\
\{\lambda x . t\} &= \lambda\{t\} \\
\{\langle t, s\rangle\} &= \langle \{t\}, \{s\}\rangle \\
\{\text{snd } t\} &= \pi_2 \circ \{t\} \\
\{\text{normal}\} &= K(\text{normal})
\end{align*}
\]

Here, normal refers to the normal distribution given as map \(R \times R \to R\) in \(qBS\), see [69].