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Abstract
This paper provides a construction on fibrations that gives access to the so-called later modality,
which allows for a controlled form of recursion in coinductive proofs and programs. The construction
is essentially a generalisation of the topos of trees from the codomain fibration over sets to arbitrary
fibrations. As a result, we obtain a framework that allows the addition of a recursion principle
for coinduction to rather arbitrary logics and programming languages. The main interest of using
recursion is that it allows one to write proofs and programs in a goal-oriented fashion. This allows
for easily understandable coinductive proofs and programs, and fosters automatic proof search.

Part of the framework are also various results that enable a wide range of applications: preserva-
tion of (co)limits, exponentials, fibred adjunctions and first-order fibrations, which means that the
construction extends any first-order logic with the later modality; soundness and completeness; and
up-to techniques as proof rules. Since the construction works for a wide variety of fibrations, we will
be able to use the recursion offered by the later modality in various context. In particular, we will
show how recursive proofs can be obtained for arbitrary (syntactic) first-order logics, for coinductive
set-predicates, and for the probabilistic modal µ-calculus. Moreover, we use the same construction
to obtain a novel language for probabilistic productive coinductive programming. These examples
demonstrate the flexibility of the framework and its accompanying results.
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1 Introduction

Recursion is one of the most fundamental notions in computer science and mathematics, be
it as the foundation of computability, or to define and reason about structures determined
by repeated constructions. In this paper, we will focus on the use of recursion as method for
coinductive proofs and coinductive programming.

Usually, coinductive programming is presented by means of coiteration schemes and coin-
duction as bisimulation proof principle. Coiteration schemes are a syntactic implementation of
coalgebras and their coinductive extension to a homomorphism into the final coalgebra [29, 44].
The bisimulation proof principle, on the other hand, asserts that bisimilarity implies equality
in the final coalgebra [26, 33, 56]. There are, however, also different approaches that break
with this dogma. In coinductive programming, guarded recursion [3, 4, 13, 46, 48], and sets of
recursive equations [1, 30, 57] have been used to construct elements of final coalgebras and of
coinductive types. On the side of proofs, there have been several improvements of coinduction
suggested: simplifications of invariant proof [58] through up-to techniques [16, 50, 54] and
the companion [8, 51, 52], incremental techniques [35, 47], games [49, 60], and basic cyclic
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23:2 Coinduction in Flow

proofs for stream equality [53]. In this paper, we will focus on guarded recursion because it
can be widely applied, and because it leads to clean proof and programming methods.

A concrete appearance of coinduction can be found, for instance, in the modal µ-calculus
Lµ [42, 17] and its quantitative interpretations [36] pLµ or Łµ [45] in form of Park’s rule:

ψ Ñ ϕrψ{Xs

ψ Ñ νX.ϕ

This rule says that an implication with a greatest fixed point as conclusion
can be proven by showing that ψ is an invariant for ϕ. Kozen [42] gave
an axiomatisation of Lµ based on this rule, and its dual, that turned out

to be complete [70]. Thus, this axiomatisation is expressive, but often difficult to use in
practice, let alone for proof search. It should be noted that Lµ is decidable if it is interpreted
in classical logic. The goal of this work is, however, to develop techniques that can also be
used to obtain (constructive) proof objects and can be applied to more general logics. Thus,
our focus will be on improving the axiomatisation of Lµ and of coinductive proofs in general.

Coming back to Park’s rule, we often find ourselves having to prove ψ Ñ νX.ϕpXq for a
formula ψ, which is not an invariant. We are then required to find an invariant ψ1, such that,
ψ Ñ ψ1. Finding such an invariant can be difficult in general and it does not fit common
practice. Instead, it would be preferable if we could incrementally construct the proof for
ψ Ñ νX.ϕpXq rather than guessing an invariant ψ1. Such an incremental construction leads
to a recursive proof methodology for coinductive proofs. As such incremental methods are
valuable in any theory that is based on coiteration or coinduction schemes, we set out in this
paper to replace invariant guessing by a general iterative programming and proof method.

The proposed iterative method will be given in form of a framework that introduces
recursion into coinductive proofs and programs, while preserving soundness and termination.
This framework is centred around the so-called later modality [48], which allows us to control
the use of recursion and thereby avoid the introduction of non-termination. The later modality
has been successfully used in the context of semantics [13, 67], programming [3, 4, 46], and
reasoning [20, 11]. Ultimately, we generalise the work of Birkedal et al. [13] on the topos
of trees to arbitrary fibrations with the effect of much wider applicability to, for example,
quantitative reasoning and probabilistic programming.

In the case of Lµ, we extend the logic with the later modality as a new logical connective.
Given a formula ϕ, we thus obtain a formula §ϕ. This formula should be read as “ϕ holds
later” and thus allowing us to formulate knowledge that varies over time. The later modality
comes with three crucial axioms: ϕ Ñ §ϕ (next), §pϕ Ñ ψq Ñ §ϕ Ñ §ψ (monotonicity),
and p§ϕÑ ϕq Ñ ϕ (fixed point or Löb). It is the Löb rule that introduces recursion into the
logic, and it should be read as “if we can prove ϕ from the assumption that ϕ holds later,
then ϕ holds at any time”. However, the assumption §ϕ introduced by the Löb rule cannot
be used directly. We need one final axiom for that: ϕr§ νX.ϕ{Xs Ñ νX.ϕ (step). These
axioms can be combined to obtain recursive proofs, as we will show later. As an appetiser,
the reader may have a look already at Figure 2 on Page 14.

The reader may have noticed that the first three axioms, next, monotonicity and Löb,
are independent of the logic at hand. Only the step axiom makes use of the structure of
formulas. This observation is what enables the topos of trees and the framework presented
here to work. More precisely, we will start with a given fibration p : E Ñ B and construct a
new fibration ÐÝp : ÐÝE Ñ

ÐÝB out of it. This fibration will have, under mild conditions, the later
modality as a map of fibrations p§, Żq on it. The next and Löb axioms correspond then to
certain morphisms in ÐÝE, while monotonicity says that § is a strong functor. From a logical
perspective, it is more natural to consider another fibration p : E Ñ B over the same base
category as the initial fibration. In this fibration, we will not only have access to the later
modality and its axioms, but also to quantifiers that are present in the original fibration p.
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Figure 1 Relation between p (base logic), ÐÝp (all chains in p) and p (chains with constant index)

Contributions Put slightly more technical, the contributions of this paper are as follows.
Given a fibration p and a well-ordered class I, we let ÐÝE be the category of Iop-indexed chains
in E, that is, functors σ : Iop Ñ E. The fibration ÐÝp is given by post-composition with p
and thus maps a chain to the chain of its indices given by p. On this fibration, we construct
the later modality and find all its good properties. We then restrict our attention to the
fibration p : E Ñ B, which consists only of chains with constant index. In other words, p is
given by the change-of-base (pullback) along the functor K : B Ñ

ÐÝB that maps I P B to the
chain that is equal to I at every position. This is indicated in the right diagram in Figure 1.
The diagram on the left summarises the relation between all the involved fibrations and the
most important ingredients of the framework :

the later modality is a map of fibrations § : p Ñ p and p§, §q : ÐÝp Ñ ÐÝp with a natural
transformation next : Id ñ § (Theorem 15 and Theorem 16);
ÐÝp and p are fibred Cartesian closed categories and feature the Löb rule as morphism
l:obσ : σ§σ Ñ σ that fulfils a unique solution condition (Theorem 19 and Theorem 25);
fixed points of so-called locally contractive functors on ÐÝp and p (Theorem 28)
the final chain construction of final coalgebras via contractive functors (Proposition 31)
and up-to techniques as proof rules (Theorem 32);
if B has Iop-limits, then there is an adjunction KB % LB between B and ÐÝB and the
fibred adjunction induces an adjunction I % R between E and ÐÝE (Theorem 18);
if p has fibred Iop-limits, then there is a fibred adjunction KE % LE between E and E
(Theorem 18);
if p is a first-order fibration, then p is a first-order fibration and LE preserves truth of first-
order formulas if disjunction, existentials and equality preserve Iop-limits (Theorem 38).

Particularly interesting is that p is a first-order fibration, in other words, models first-order
logic. This result can be restricted to any subset of connectives, which allows us to extend
any logic with the later modality and its axioms. The adjunction between p and p shows
then that this yields a sound and complete axiomatisation of coinductive predicates. We
leverage this generality to devise a novel proof system for the probabilistic modal µ-calculus
and a language for productive probabilistic programming with coinductive types.

Another interesting aspect of the diagram is that one of the central constructions of [32]
(Lem. 3.5) appear here as the composition LE ˝R : ÐÝE Ñ E. In fact, the results in [32] tell us
under which conditions we can use the finite ordinals ω as index I to still obtain a sound
and complete proof system for coinductive predicates.

Organisation The framework is introduced in the following steps. First, we provide in
Section 2 a brief overview over fibrations, coinductive predicates and well-founded induction.
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23:4 Coinduction in Flow

Next, we describe in Section 3 the chain fibrations ÐÝp and p, construct the later modality and
give some basic results. Section 4 is devoted to show that the functor fibrations are fibred
Cartesian closed and to the Löb rule. In Section 5 we construct fixed points of so-called
locally contractive functors, both, on the whole fibration and on the fibres. Moreover, we
show how the final chain arises as locally contractive functor, and how this leads to the
proof rule “step” that we saw above. This allows us also to obtain proof rules on the final
chain for compatible up-to techniques. As promised, we prove in Section 6 that p is a
first-order fibration. Furthermore, we give the adjunctions from Figure 1 that relate the
various fibrations. The flexibility of the framework is then demonstrated by providing a
recursive proof system for probabilistic Lµ and a language for guarded recursive probabilistic
programming in Section 7. We conclude with a few remarks and future work in Section 8.

Related Work To a large part, the present paper generalises the work of Birkedal et al. [13]
from the codomain fibration SetÑ Ñ Set of sets to arbitrary fibrations. That [13] was so
restrictive is not so surprising, as the intention there was to construct models of programming
languages, rather than applying the developed techniques to proofs. Going beyond the
category of sets also means that one has to involve much more complicated machinery to
obtain exponential objects, see Section 4. Later, Bizjak et al. [14] extended the techniques
from [13] to dependent type theory, thereby enabling reasoning by means of recursive proofs in
a syntactic type theory. However, also this is again a very specific setting, which rules out the
main examples that we are interested in here. Similarly, also the parameterised coinduction
in categories [47] and in lattices [35] is too restrictive, as they only apply to, respectively,
propositional and to set theoretic settings. It might be possible to develop parameterised
coinduction in the setting of fibrations by using the companion [8, 51, 52], but we leave this
question for another time. Recursion is also central to cyclic proof systems [18, 21, 23, 59].
These are particularly useful in settings that require proofs by induction or coinduction
because cyclic proof systems ease proofs enormously compared to the invariant-based method
of (co)induction schemes. Nothing comes for free though: In this case checking proofs
becomes more difficult, as the correctness conditions are typically global for a proof tree and
not compositional. For the same reason, also soundness proofs are often rather complex. The
framework we study here gives rise to proof rules that require no further global condition
on proofs, which straightforwardly yields proof checking [5] and soundness. Higher-order
recursion has also been studied other categorical settings like topos theory [43, 37] or monoidal
categories [27, 31]. Unfortunately, these neither apply to our examples of interest, nor do
they provide the logical results and constructions that appear in this paper.

Finally, there is the realm of algorithmic proofs, where circular proofs have been used to
automatically prove identities of streams [53]. Otherwise, computer-supported coinduction is
usually limited to proof checking [28, 15, 22]. There have been limited approaches to combine
coinduction with resolution [61]. In [7], we were able to go beyond that by extending uniform
proofs to coinduction and using the framework presented in this paper as logical foundation.
This shows that the framework of this paper paves the way for algorithmic proof search.

2 Preliminaries

2.1 Fibrations
One of the central notions used in this paper are fibrations [10, 38, 66], as they are an elegant
way of capturing that variables in a (higher-order) predicate logic range over some type.
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§ Definition 1. Let p : E Ñ B be a functor, where E is called the total category and B the
base category. A morphism f : AÑ B in E is said to be Cartesian over u : I Ñ J , provided
that i) pf “ u, and ii) for all g : C Ñ B in E and v : pC Ñ I with pg “ u ˝ v there is a
unique h : C Ñ A such that f ˝ h “ g. For p to be a fibration, we require that for every
B P E and u : I Ñ pB in B, there is a cartesian morphism f : A Ñ B over u. Finally, a
fibration is cloven, if it comes with a unique choice for A and f , in which case we denote A
by u˚B and f by uB, as displayed in the diagram on the right. đ

C

u˚B B E

pC

I pB B

g

!h
uB

ppg

v
u

On cloven fibrations, we can define for each u : I Ñ J in
B a functor, the reindexing along u, as follows. Let us denote
by EI the category having objects A with ppXq “ I and
morphisms f : AÑ B with ppfq “ idI . We call EI the fibre
above I and the morphisms in EI vertical. The assignment
of u˚B to B for a cloven fibration can then be extended to
a functor u˚ : EJ Ñ EI . Moreover, one can show that there are natural isomorphisms
id˚I – IdEI and pv ˝ uq˚ – u˚ ˝ v˚ subject to some coherence conditions.

For a fibration p : E Ñ B and a functor F : C Ñ B, we can form a new fibration
F˚ppq : F˚pEq Ñ C by pulling p back along F , see [38]. The fibration F˚ppq is said to be
obtained by change-of-base. Given another fibration q : D Ñ A, a map of fibrations pÑ q is
a pair pF,Gq of functors F : A Ñ B and G : D Ñ E, with p ˝ G “ F ˝ q and such that G
preserves Cartesian morphisms. This means in particular for u : I Ñ J and A P EJ that for
Gpu˚Aq – pFuq˚pGAq. Finally, the fibration p is said to have fibred finite products, if every
fibre has finite products and these products are preserved by reindexing.

Let C be a Cartesian closed category. We denote for f : Y Ñ X by xf y : 1 Ñ XY the code
of f . Recall [41] that a functor F : C Ñ C is strong if there is natural family of morphisms
stFX,Y : XY Ñ FXFY , s.t. stFX,Y ˝ xf y “ xFf y. A lifting pF,Gq : p Ñ p is strong if both F
and G are strong, and p stG “ stF .

As the definition of fibrations and the associated notions are fairly abstract, let us give
a few examples. There are four examples that we shall use to illustrate different aspects
of the theory: predicates over sets, quantitative predicates, syntactic logic and categories
as trivial fibrations. Another example is the fibration of set families to model dependent
types, but we leave this aside for now. We begin with the simplest example, namely that of
predicates. Despite its simplicity, it is already quite useful because it allows us to reason
about predicates and relations for arbitrary coalgebras in Set.

§ Example 2 Predicates. The fibration Pred Ñ Set of predicates has as objects in its
total category Pred predicates pP Ď Xq over a set X. Each fibre PredX has a final object
1X “ pX Ď Xq and the fibred binary products are given by intersection. We note that fibred
constructions, like the above products, are preserved by a change-of-base, see [38, Lem. 1.8.4].
Hence, one can also apply the results in this paper to, for example, the fibration of (binary)
relations Rel Ñ Set, which is given by pulling Pred Ñ Set back along the diagonal functor
δ : Set Ñ Set with δpIq “ I ˆ I. đ

Often, one is not just interested in merely logical predicates, but rather wants to analyse
quantitative aspects of system. Such predicates will be the foundation for the probabilistic
µ-calculus. The following example extends the predicate fibration from Ex. 2 to quantitative
predicates, which will give us a convenient setting to reason about quantitative properties.

CVIT 2016
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§ Example 3. We define the category of quantitative predicates qPred as follows.

qPred “
#

objects: pairs pX, δq with X P Set and δ : X Ñ r0, 1s
morphisms: f : pX, δq Ñ pY, γq if f : X Ñ Y in Set and δ ď γ ˝ f

It is easy to show that the first projection qPred Ñ Set gives rise to a cloven fibration, for
which the reindexing functors are given for u : X Ñ Y by u˚pY, γq “

`

X,λx. γpupxqq
˘

. For
brevity, let us refer to an object pX, δq in qPredX just by its underlying valuation δ. One
readily checks that in qPred fibred products can be defined by pδ ˆ γqpxq “ mintδpxq, γpxqu
and coproducts as maximum. Fibred final objects are given by the constantly 1 valuation. đ

The original motivation for the work presented in this paper was to abstract away from
the details that are involved in constructing a syntactic logic for a certain coinductive relation
in [6]. In [6], the author developed a first-order logic that features the later modality to
reason about program equivalences. This logic was given in a very pedestrian way, since the
syntax, proof system and models were constructed from scratch. The proofs often involved
phrases along the lines of “true because this is an index-wise interpretation of intuitionistic
logic”. In the following example, we show how a first-order logic can be presented as a
fibration.

§ Example 4 Syntactic Logic. Suppose we are given a typed calculus, for example the
simply typed λ-calculus or even the category Set of sets, and a first-order logic, in which
the variables range over the types of the calculus. More precisely, let Γ be a context with
Γ “ x1 : A1, . . . , xn : An, where the xi are variables and the Ai are types of the calculus. We
write then Γ , t : A if t is a term of type A in context Γ, Γ , ϕ if ϕ is formula with variables
in Γ, and Γ $ ϕ if ϕ is provable in the given logic. This allows us to form a fibration as
follows. First, we define C to be the syntactic category that has context Γ as objects and
tuples t of terms as morphisms ∆ Ñ Γ with ∆ , ti : Ai. Next, we let L be the category that
has pairs pΓ, ϕq with Γ , ϕ as objects, and a morphism p∆, ψq Ñ pΓ, ϕq in L is given by a
morphism t : ∆ Ñ Γ in C if ∆ $ ψ Ñ ϕrts, where ϕrts denotes the substitution of t in the
formula ϕ. The functor p : L Ñ C that maps pΓ, ϕq to Γ is then easily seen to be a cloven
fibration, see for example [38]. Let us assume that the logic also features a truth formula J,
conjunction ^ and implication Ñ, which are subject to the usual proof rules of intuitionistic
logic. We note that p has fibred finite products given by J and conjunction. đ

The final example will allow us to apply the framework of this paper to any category.

§ Example 5 Trivial Fibration. Let 1 be the final category with one object ˚ and only the
identity on ˚. Then any category C can be seen as fibration ! : C Ñ 1, such that fibred
products etc. are just normal product. đ

2.2 Coalgebras and Coinductive Predicates
Let us now introduce the second central notion of this paper: coinductive predicates. For
that, we first need the notion of coalgebra.

§ Definition 6. Let F : C Ñ C be a functor. A coalgebra is a morphism c : X Ñ FX. Given
coalgebras c : X Ñ FX and d : Y Ñ FY , a homomorphism from c to d is a morphism
h : X Ñ Y with Fh ˝ c “ d ˝ h. We can form a category CoAlgpF q of coalgebras and their
homomorphisms and we call a final object in this category a final coalgebra. đ
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Coinductive predicates are easiest introduced by taking for a moment a more abstract
perspective. Recall that we introduced fibrations as a way to talk abstractly about predicates,
relations etc. Now we use this view to define coinductive predicates over a given coalgebra
for an arbitrary notion of predicate.

§ Definition 7. Let p : E Ñ B be a cloven fibration and F : B Ñ B an endofunctor. We say
that a functor G : E Ñ E is a lifting of F , if p ˝ G “ F ˝ p. A G-invariant in a coalgebra
c : X Ñ FX in B in c is a pc˚ ˝Gq-coalgebra in EX . Further, a G-coinductive predicate in
c is a final pc˚ ˝Gq-coalgebra. We often denote the carrier of the G-coinductive predicate
in c by νpc˚ ˝Gq, see [32]. A compatible up-to technique for c˚ ˝G is a functor T : E Ñ E
with a natural transformation T ˝ c˚ ˝Gñ c˚ ˝G ˝ T , see [16, 55]. đ

Let us illustrate the notion of coinductive predicate in an example.

§ Example 8. In this example, we show how the semantics of the modalities of the probabilistic
modal µ-calculus (pLµ) can be modelled as liftings. Given a set X, we say that a function
ρ : X Ñ r0, 1s to the unit interval is a (finitely supported) probability distributions on X, if
the support supp ρ “ tx | ρpxq ‰ 0u is finite and

ř

xP supppρq ρpxq “ 1. One can then define
a functor D : Set Ñ Set that maps a set to the set of all probability distributions on X.
An (unlabelled) Segala system [64] or probabilistic transition system (PTS) is a coalgebra
for the functor S given by S “ P ˝ D, in which states have non-deterministic transition
into probability distributions. We can now give liftings Sl and S♦ of S to qPred, which
correspond to the box and diamond modality, respectively, of pLµ:

Slpδ : X Ñ r0, 1sqpD P SpXqq “
ľ

dPC

ÿ

xP supp d
δpxq ¨ dpxq

S♦pδ : X Ñ r0, 1sqpD P SpXqq “
ł

dPC

ÿ

xP supp d
δpxq ¨ dpxq

Suppose now that we have a PTS c : X Ñ SpXq at hand, then c˚ ˝ Sl : qPredX Ñ qPredX
yields the expected semantics of the box modality [45]. đ

2.3 Well-Founded Induction
One of the central notions throughout this paper is that of well-founded induction. We will
use a rather general form, which is based on classes, rather than sets.

§ Definition 9. Let A be a class and ă a binary relation on A. We say that the relation ă
is well-founded, if the well-founded induction principles holds for all P Ď A: If α P A and
p@β ă α. α P P ùñ β P P q, then α P P .

Given a well-founded order, we can form as usual a category from the induced partial
order ď with α ď β if α ă β or α “ β. Typical examples, to which the presented framework
applies, are the set ω of finite ordinals with the successor relation; the set of ordinals below
any limit ordinal with their usual order; and the class of all ordinals Ord.

Recall that ordinals can be constructed as zero, successor and limit ordinals. We say that
I is a classical ordinal category, if every α P I is either zero, a successor or a limit.

3 Descending Chains in Fibrations

It is well-known that a final coalgebra of a functor F , hence also coinductive predicates, can
be constructed as limit of αop-chains for some limit ordinal α if such limits exist and are

CVIT 2016
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preserved by F [39, 71]. This observation is essential to the proof approach given in this
paper, as we rely essentially on the fact that maps into a coinductive predicate, thus proofs,
can alternatively be given as maps into this αop-chain. In the following, we introduce the
necessary machinery to leverage this fact. This will allow us to construct from a first-order
logic, given by a fibration, a new logic of descending chains that admits the same logical
structure as the given fibration and admits recursive proofs for coinductive predicates.

3.1 Categories of Diagrams
Before we analyse the final chain of a functor, we introduce general diagrams and establish
properties of these. We fix an index category I and let rI,Cs for a category C be the
category of functors from I to C, also called the category of I-indexed diagrams in C. Given
a functor F : C Ñ D, we define a functor rI, F s : rI,Cs Ñ rI,Ds on categories of diagrams
by rI, F s pσq “ F ˝ σ. Since rI,´s preserves composition of functors and applies to natural
transformations, we obtain a strict 2-functor rI,´s : Cat Ñ Cat. We use this to define
for a morphism f : X Ñ Y in C, a morphism rI, f s : KX ñ KY in rI,Cs where KX is the
constant functor sending any object in I to X: Note that there is a natural transformation
Kf : KX ñ KY , which is given by Kf,i “ f . Thus, we can put rI, f s “ rI,Kf s.

The assignment of diagrams and lifting functors not only preserves 2-structure, but also
fibrational structure.

§ Lemma 10. The functor rI,´s extends to a fibred functor on the fibration Fib Ñ Cat.

Also adjunctions are preserved in the transition to diagrams.

§ Lemma 11. If F : C Ñ D and G : D Ñ C with F % G, then rI, F s % rI, Gs.

3.2 Descending Chains and the Later Modality
In this section, we extend the development in [13] to fibrations. We will give some intuition
for the later modality and prove some basic results.

§ Assumption 12. In the remainder of the paper, we assume that I is the category induced
by a well-founded class I.

In the construction of final coalgebras, one considers Iop-indexed diagrams, which give
rise to a functor Cat Ñ Cat with
ÐÝÝ
p´q “ rIop,´s , (1)

as in the last section. The category of descending chains in C is then the category ÐÝC,
the objects of which we denote by σ, τ, . . . More explicitly, σ P ÐÝC assigns as a functor
σ : Iop Ñ C to each α P I an object σα P C and to each pair α and β with β ď α a morphism
σpβ ď αq : σα Ñ σβ in C.

E ÐÝE

B ÐÝB

p
ÐÝp

K

By the above discussion, we obtain by Lem. 10 that the functor
ÐÝp : ÐÝE Ñ

ÐÝB given by post-composition is a fibration. Since (co)limits
are constructed point-wise in functor categories, the fibration ÐÝp inherits
(co)limits from p. We obtain another fibration by change-of-base along the
constant functor K : B Ñ

ÐÝB that sends an object I P B to the constant chain KI : Iop Ñ B
as in the diagram on the right. We note the following result, which allows us to apply, for
instance, Lem. 11 to functors between fibres of a given fibration.

§ Lemma 13. We have that EI –
ÐÝEI –

ÐÝEKI .
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Many constructions in this paper require only limits over a bounded part of Iop.

§ Definition 14. Let J be a category and denote for i P J by i Ó J the coslice category under
i. We say that C has bounded J-limits, if for every i P J all pi Ó Jq-limits exist in C.

With this definition, we can now introduce the later modality, which is the central
construction that underlies the recursive proofs that we develop in this paper.

§ Theorem 15. Suppose that p has fibred bounded Iop-limits. There are functors Ż : ÐÝB Ñ
ÐÝB

and § : ÐÝE Ñ
ÐÝE given on objects by

pŻ cqα “ lim
βăα

cα and p§σqα “ lim
βăα

σα,

together with a natural transformations nextŻ : Id ñ Ż and next : Id ñ §. The pair p§, Żq
forms a map of fibrations ÐÝp Ñ ÐÝp and we have ÐÝp pnextq “ nextŻ. Moreover, § preserves
fibred finite limits. Finally, if I is a classical ordinal category, then § has a left-adjoint đ.

We note that because § : ÐÝE Ñ
ÐÝE maps σ P ÐÝEc to §σ P

ÐÝEŻ c, we can define a restricted
version §c : ÐÝEc Ñ

ÐÝEc of the later modality that leaves the index chain untouched by putting

§c “ pnextŻ
cq

# ˝ § and nextc “ pnextŻ
cq

# next.

Also §c has a left-adjoint if I is classical and if p is a bifibration.
Another special case is obtained for the chains with constant index.

§ Theorem 16. The later modality is a strong fibred functor § : pÑ p with a vertical natural
transformation next : Id ñ §, that is, ppnextq “ id.

Since the intention is to use Theorem 16 to extend a logic, let us present the results
as proof rules. The first rule is given by the strength of § and the last rule for product
preservation can be applied in both directions, indicated by double lines.

monσ,τ : στ Ñ §σ§ τ
f : τ Ñ σ

next ˝ f : τ Ñ §σ

f : τ Ñ p§σq ˆ p§σ1q

f̌ : τ Ñ §pσ ˆ σ1q

The following assumption ensures that the above proof rules are available throughout the
remainder of this paper.

§ Assumption 17. p is a cloven fibration with fibred finite limits and bounded Iop-limits.

So far, we have established the fibrations and the later modality in the overview diagram
in Figure 1. What remains are the adjunctions that relate the fibrations.

§ Theorem 18. If E has fibred Iop-limits, then K : E Ñ E has a fibred right adjoint LE,
given by LEpσq “ limαPI σα. If B has Iop-limits, then K : B Ñ

ÐÝB and I : E ÑÐÝE have right
adjoints LB and R, given by LBpcq “ limαPI cα and R “ π#, where πβ : limαPI cα Ñ cβ are
the limit projections and p´q# is reindexing in ÐÝp .

4 Cartesian Closure and the Löb Rule

Up to this point, we have only shown the existence of the next and monotonicity rule that we
used in the example in the introduction. What is missing is the recursion given in form of the
Löb rule. The goal of this section is to establish the recursion mechanism by utilising so-called
Löb induction, which is based on the later modality that we introduced in Sec. 3.2. To state
and prove the Löb induction, we need exponential objects in our fibration ÐÝp : ÐÝE Ñ

ÐÝB of
chains. In the first part of this section, we show how to construct these from exponential
objects in p : E Ñ B. The second part is the devoted to establishing the Löb rule.

CVIT 2016
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4.1 Fibred Cartesian Closure of Diagrams
A fibred Cartesian closed category (fibred CCC) is a fibration p : E Ñ B in which every fibre
is Cartesian closed and reindexing preserves this structure, see [38, Def. 1.8.2]. In a fibred
CCC we can model in particular implication, which is what we will need to formulate the
Löb rule below. Given a fibred CCC, we show now that the fibration of diagrams is also a
fibred CCC. Since the construction of exponential objects in categories of diagrams does not
depend on working with a well-founded index category, we will formulate the results in this
section for an arbitrary index category I, like we did in Sec. 3.1.

ş

iPI Spi, iq Spj, jq

Spi, iq Spi, jq

πj

πi Spu,idq

Spid,uq

Let S : Iop ˆ I Ñ C be a functor. The end of S is an
object

ş

iPI Spi, iq in C together with a universal extranatural
transformation π :

ş

iPI Spi, iq Ñ S. Concretely, this means
that π is a family of morphisms indexed by objects in I,
such that the diagram on the right commutes for all u : iÑ j. Moreover, given any other
extranatural transformation α : X Ñ S there is a unique f : X Ñ

ş

iPI Spi, iq with πi ˝ f “ αi
for every i P I. It is well-known that ends can be computed as certain limits in C. By
analysing carefully the necessary limits, we obtain the following result.

§ Theorem 19. Let I be a category and p : E Ñ B a cloven fibration that has fibred finite
limits, fibred exponents and fibred bounded I-products. Then rI, ps : rI,Es Ñ rI,Bs is again a
fibred CCC. The exponential object of F,G P rI,EsU is given by

`

GF
˘

piq “

ż

v : iÑj

`

Upvq˚Gpjq
˘Upvq˚ F pjq

.

§ Assumption 20. In the remainder we additionally assume that p : E Ñ B is a fibred CCC.

From Assumption 17 and 20, we get that ÐÝp is a fibred CCC. Note that change-of-base
also preserves fibred exponentials, hence the fibration that we obtained by pulling ÐÝp back
along the diagonal in Sec. 3.2 is also a fibred CCC, see [38, Ex. 1.8.8] and [66].

§ Example 21. Fibred exponentials exist in PredX with QP “ tx P X | x P P ùñ x P Qu.
The fibration ÐÝÝÝPred consists then of descending chains of predicates. In particular, if σ P
ÐÝÝÝPredX , then σ is a chain with σ0 Ě σ1 Ě ¨ ¨ ¨ . Note now that each fibre PredX is a poset,
hence equalisers are trivial and (finite) limits are just given as (finite) products. Hence,
Thm. 19 applies and we obtain that ÐÝÝÝPred is a fibred CCC. Since equalisers are trivial, it is
easy to see that the exponential for σ, τ P ÐÝÝÝPredX can be defined as follows.

pτσqn “
č

mďn
τσnn Ď X

Since fibred exponentials are preserved by a change-of-base, see [38, Lem. 1.8.4], they also
exist in the fibration of relations Rel Ñ Set and the associated fibration ÐÝÝRel ÑÐÝÝSet. đ

§ Example 22. Recall that we defined in Ex. 3 a category of quantitative predicates. We
note that this fibration is a fibred CCC with exponents given by

pδ ñ γqpxq “

#

1, δpxq ď γpxq

γpxq, otherwise
.

Again, each fibre qPredX is a complete lattice and so ÐÝÝÝÝqPred is a fibred CCC for any I. đ

§ Example 23. In Ex. 4, we defined a fibration p : L Ñ C for a first-order logic with conjunction
and implication. From the implication we obtain that p is a fibred CCC. Moreover, since
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each fibre is a pre-order, equalisers are again trivial. If I is the poset ω of finite ordinals,
then p is a fibred CCC. Explicitly, for chains ϕ,ψ of formulas in pA above a type A, the
exponent ψ ñ ϕ in ÐÝp is given by a finite conjunction:

pψ ñ ϕqn “
ľ

mďn

ψm Ñ ϕm. đ

4.2 The Löb Rule
One purpose of the later modality is that it allows us to characterise maps in ÐÝp , so-called
contractive maps, of which we can construct fixed points.

§ Definition 24. A map f : τ ˆ σ Ñ σ in ÐÝEc is called g-contractive if g : τ ˆ §c σ Ñ σ with
f “ g ˝ pidˆnextσq. We call s : τ Ñ σ a fixed point or solution for f , if s “ f ˝ xid, sy. đ

We can now show that there is a operator in ÐÝp that allows us to construct fixed points.

τ§
c τ τ

σ§
c τ

σ§
c σ σ

l:obcτ
hid

id§c h l:obcσ

h

§ Theorem 25. For every σ P
ÐÝEc there is a unique morphism

l:obcσ : σ§
c σ Ñ σ in ÐÝEc, dinatural in σ, such that for all g-contractive

maps f the map l:obcσ ˝ λg is a solution for f . Dinaturality means
thereby that for all h : σ Ñ τ the diagram on the right commutes.

From Thm. 25, we obtain the Löb proof rule. This rule allows us to introduce recursion
into proofs, by giving us the proof goal σ as an assumption guarded by the later modality.

f : τ ˆ §c σ Ñ σ

l:obcσ ˝ λf : τ Ñ σ
with l:obcσ ˝ λf “ f ˝ pidˆnextσq ˝ xid, l:obcσ ˝ λfy

5 Locally Contractive Functors and Coinduction

One of the central notions of Birkedal et al. [13] is that of locally contractive functors. Such
functors admit fixed points in the topos of trees and are closed under various constructions
like composition and products. Locally contractive functors are used in [13] as a different way
of solving recursive domain equations, which is where the name “synthetic domain theory”
comes from. In this section, we restate the definition of contractive functors, and generalise
the fixed point construction and the closure properties to the fibrations ÐÝp and p.

In the following, we use the natural transformation compX,Y,Z : XY ˆ ZX Ñ ZY that
composes internal morphisms. We will refer to the isomorphism §σ ˆ § τ Ñ §pσ ˆ τq as δ§.

§ Definition 26. A functor F : ÐÝC Ñ
ÐÝC is called locally contractive if F is strong, there

is a natural transformation CFσ,τ : §pστ q Ñ FσFτ with stFσ,τ “ CFσ,τ ˝ nextστ , and fulfils
CFσ,σ ˝ §xidy “ xidy and comp ˝ pCFσ,τ ˆ CFγ,σq “ CFγ,τ ˝ § comp ˝ δ§. A lifting pF,Gq : ÐÝp ÑÐÝp

is locally contractive if pF,Gq is strong, F and G are locally contractive and ÐÝp CG “ CF .

The next theorem records the essential closure properties of locally contractive functors.

§ Theorem 27. Let F,G : C Ñ C be functors. If F or G is locally contractive, then F ˝G
is; if F and G are locally contractive, then F ˆG is. Both, p§, Żq : ÐÝp ÑÐÝp and § : pÑ p are
locally contractive. Finally, the constant functor λτ. σ is locally contractive for any σ P ÐÝE.

The proof of the following theorem proceeds essentially in the same way as the one given
in [13] by first establishing for all α P I and β ă α that locally contractive functors map for
any β-isomorphism f to an α-isomorphism Gf above the corresponding α-iso F pÐÝp fq.

CVIT 2016
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§ Theorem 28. Any locally contractive lifting pF,Gq has a unique fixed point in ÐÝE.

In Section 7, we will need the following version on fibres for the semantics of pLµ.

§ Theorem 29. For any c P ÐÝB and locally contractive functor F : ÐÝEc Ñ
ÐÝEc a unique fixed

point of F exists in ÐÝEc.

5.1 The Final Chain and Up-To Techniques
Having laid the ground work, we come to the objects of interest: coinductive predicates. The
following definition captures the usual construction of the final chain. Recall that ÐÝÝp´q is a
functor Cat Ñ Cat. Thus, from Φ: EI Ñ EI , we obtain ÐÝΦ : EI Ñ EI by Lemma 13.

§ Definition 30. Given a functor Φ: EI Ñ EI , we define the final chain of Φ to be the fixed
point νp§ÐÝΦq of the locally contractive functor § ˝

ÐÝΦ.

We can now construct an adjunction between Φ-invariants and coalgebras for §
ÐÝΦ, cf. [40].

This is slightly more expressive version of the usual construction of final coalgebras.

§ Proposition 31. Suppose Φ: EI Ñ EI preserves Iop-limits. Then the adjunction KE % LE

lifts to an adjunction K̂E % L̂E between the categories CoAlgpΦq and CoAlg
`

§
ÐÝΦ
˘

of Φ- and
§
ÐÝΦ-coalgebras. In particular, νΦ – L̂Epν§

ÐÝΦq, where ν§
ÐÝΦ is the unique fixed point of §

ÐÝΦ.

Proposition 31 will play a central role in recursive proofs, as it allows us to unfold the
final chain and thereby to make progress in a recursive proof. Just as important as unfolding
is the ability to reason inside syntactic contexts, use transitivity of relations etc. in a proof.
Such properties are captured through up-to techniques, see Def. 7.

§ Theorem 32. Let T and Φ be functors EI Ñ EI . If there is a natural transformation
ρ : TΦ ñ ΦT , then there is a map pρ : ÐÝT ν

`

§
ÐÝΦ
˘

Ñ ν
`

§
ÐÝΦ
˘

in EI .

§ Remark 33. Pous and Rot [52] prove a result similar to Thm. 32, namely that a monotone
function T on a complete lattice is below the companion of Φ if and only if there is a map
ÐÝ
T ν

`

§
ÐÝΦ
˘

Ñ ν
`

§
ÐÝΦ
˘

. This is equivalent to Thm. 32 because the companion is compatible. đ

From Proposition 31 and Theorem 32 we obtain the following proof rules, where the last
can as well be read as a soundness and completeness result.

f : τ Ñ §
ÐÝΦ
`

ν§
ÐÝΦ
˘

f : τ Ñ ν§
ÐÝΦ

ρ : TΦ ñ ΦT f : τ ÑÐÝ
T ν

`

§
ÐÝΦ
˘

ÐÝρ ˝ f : τ Ñ ν
`

§
ÐÝΦ
˘

KAÝÑ ν
`

§
ÐÝΦ
˘

AÝÑ νΦ

The last result in this section allows us to obtain compatible up-to techniques on fibres
from global up-to techniques.

§ Theorem 34. Let pF,Gq : pÑ p be a map of fibrations,n c : I Ñ FI a coalgebra in B, and
T : E Ñ E a lifting of the identity IdE. Define Φ :“ c˚ ˝G : EI Ñ EI to be the predicate
transformer associated to c, see Definition 7. If there is a vertical natural transformation
ρ : TGñ GT , then there is a vertical natural transformation ρc : TΦ ñ ΦT .

6 Chains in First-Order Fibrations

The goal of this section is to show that the fibration p : E Ñ B of Iop-chains with constant
index is a first-order fibration (FO fibration) if p : E Ñ B is an FO fibration. This allows us
to construct out of a given FO logic another FO logic that features the later modality.
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6.1 Products, Coproducts and Quantifiers for Descending Chains
Because of Lem. 13, we can apply many construction easily point-wise to chains with constant
index. For instance, we can lift products and coproducts in the following sense.

§ Theorem 35. If for u : I Ñ J in B the coproduct
š

u : EI Ñ EJ along u exists, then the
coproduct

š

u : EI Ñ EJ along u is given by ÐÝÝ
š

u. Similarly, the product
ś

u along u is ÐÝÝ
ś

u.

§ Example 36. Both Pred and qPred to have products and coproducts along any function
in Set. For instance, products in qPred along functions u : X Ñ Y are given by

ź

u
pδ : X Ñ r0, 1sqpyq “ inftδpxq | x P X,upxq “ yu.

In a syntactic logic, Ex. 4, one has that L Ñ C products and coproducts along projections
pΓ, x : Aq Ñ Γ are universal and existential quantification over A, respectively. Arbitrary
(co)products can then be defined in terms of the equality relation in the logic, cf. [38]. By
Thm. 35, all these products and coproducts lift to the fibrations of descending chains. đ

Let us denote for I P B the later modality on EI by §I . We can then establish the
following essential properties about the interaction of the later modalities and (co)products,
which are analogue to those in [13, Thm. 2.7]. This theorem allows one to distribute in
proofs quantifiers over the later modality.

§ Theorem 37. The following holds for fibred products and coproducts in p.
There is an isomorphism §J ˝

ś

u –
ś

u ˝ §I .
There is a natural transformation ι :

š

u ˝ §I ñ §J ˝
š

u. Moreover, if u is inhabited,
that is, has a section v : J Ñ I, then ι has a section ιv.

For u : I Ñ J in B, we can present the central results of this section as proof rules:

f : τ Ñ u˚ σ

f̌ :
š

u τ Ñ σ

f : τ Ñ
š

up§
I σq

ι ˝ f : τ Ñ §Jp
š

u σq

f : u˚ τ Ñ σ

f̌ : τ Ñ
ś

u σ

f : τ Ñ §Jp
ś

u σq

f̌ : τ Ñ
ś

up§
I σq

6.2 First Order Fibration of Descending Chains
As the name suggests, a first-order fibration models first-order logic with equality. Such an
FO fibration is a fibration p : E Ñ B, which is a fibred pre-ordered lattice and fibred CCC,
and has products and coproducts, which satisfy the Beck-Chevalley and Frobenius conditions,
along all morphisms in B, see [38, Def. 4.2.1] for details. We now show that not only is the
fibration of constant-index chains in p an FO fibration, but is also strongly related to p.

§ Theorem 38. If p : E Ñ B is an FO fibration, then p : E Ñ B is as well an FO fibration.
Furthermore, if the fibred coproducts and coproducts along morphisms preserve Iop-limits,
then LE : E Ñ E preserves all the FO structure except for implication. For implication, truth
is preserved, i.e., for all σ, τ P EI there is a morphism Lpστ q Ñ LσLτ . If τ “ KX for some
X P EI , then this morphism is an isomorphism. Finally, K is a fully faithful functor.

That preservation of exponentials fails can be seen by taking σ, τ P rωop,PredNs to be
τn “ Nzt1, . . . , nu and σn “ t0u. Then Lpστ q “ t0u but LσLτ “ N.

7 Examples

In this section, we show the framework in action. Specifically, we show how a novel proof
system for the probabilistic modal µ-calculus pLµ can be obtained, and we show a language
and its semantics for probabilistic productive coinductive programming.
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(Pr)
§ γ, ψ $ ψ assumption

§ γ, ψ $ ϕpψq
ϕ positive + (Next)

§ γ, ψ $ ϕp§ψq

(Pr)
§ γ, ψ $ §pψ Ñ νX.ϕpXqq

(Mon)
§ γ, ψ $ §ψ Ñ § νX.ϕpXq

ϕ positive
§ γ, ψ $ ϕp§ νX.ϕpXqq

(Step)
§ γ, ψ $ νX.ϕpXq

(Ñ-I)
§ γ $ γ (Löb)
$ γ

Figure 2 ϕpXq positive in X, ψ Lµ-formula, γ “ ψ Ñ νX.ϕpXq with assumption ψ Ñ ϕpψq

7.1 Recursive Proofs for the Probabilistic Modal µ-Calculus
The probabilistic modal µ-calculus pLµ has exactly the same syntax as the modal µ-calculus
Lµ. However, formulas are interpreted as probability distributions [36]. We extend the
coinductive fragment of pLµ here with the later modality and thereby obtain the following
formulas over sets At and Var of propositional variables P and fixed point variables X

ϕ,ψ ::“ P | P | X | J | K | νX.ϕ | §ϕ | lϕ | ♦ϕ | ϕ[ ψ | ϕ\ ψ | ϕÑ ψ,

where X must occur positively in ϕ when forming νX.ϕ. Given a formula ϕ with no or one
free variable1 X, a Segala system c : QÑ SpQq and an interpretation I : QÑ qPredAt, we
use Theorem 27 to define a locally contractive functor xrϕsy : PrednQ Ñ PredQ with n “ 0, 1,
where we only display the interesting cases. The remaining cases are given in Appendix A.

xrP sy “ KpIpP qq xrXsy “ § xrνX.ϕsy “ νxrϕsy xrlϕsy “ c# ˝Sl ˝ xrϕsy

This definition and the previous development gives us immediately the following rules are
sound for this interpretation, where double lines are rules that can be used in both directions.

∆ $ ϕr§ νX.ϕ{Xs
(Step)

∆ $ νX.ϕ

∆ $ ϕ (Next)∆ $ §ϕ

∆ $ §pϕÑ ψq
(Mon)∆ $ §ϕÑ §ψ

∆, §ϕ $ ϕ (Löb)∆ $ ϕ

∆ $ l §ϕ

∆ $ § lϕ

∆ $ ♦ §ϕ

∆ $ §♦ϕ
+ propositional and modal rules

In Figure 2, we show how Park’s rule can be proven from these rules. Theorem 38 gives us
that these rules are sound and their semantics are complete for the standard semantics of
formulas that only have constant premises, i.e. pure modal formulas, in implications.

Let us make two final remarks about this example. First, note that the implication is
an internalisation of the ordering on quantitative predicates and thus has, a priori, nothing
to do with probabilities. In particular, we have xrP sy ‰ xrP Ñ Ksy. Second, the proof rules
give rise to a constructive and recursive proof system for pLµ. This is insofar interesting,
as that the completeness proof for Kozen’s axiomatisation for Lµ is non-constructive, and
non-probabilistic version of the above presented proof system may give new insights, cf. [24].
Also an analogous version of our cut-free proof system for Horn clause theories [7] may be
shed new light on cut-free proofs for (p)Lµ, cf. [2].

1 We restrict ourselves to this case for simplicity. Supporting several variables is a direct generalisation.
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7.2 Probabilistic Productive Coinductive Programming
In this last example, we show how one can obtain a new programming language for higher-order
probabilistic programming with coinductive types, in which all programs are terminating.
This is in contrast to the language provided in [69], where full recursion is essential to
coinductive programming. Full recursion introduces, however, non-terminating and non-
productive programs, which makes reasoning about programs unnecessarily difficult [68],
especially in the probabilistic setting. As such, the total programming language, which we
are about to introduce, provides us with coinductive, probabilistic types, while retaining the
good properties of terminating and productive programs.

The essential ingredient are so-called quasi-Borel spaces that were introduced by Heunen
et al. [34] as a setting for higher-order probabilistic programming. In particular, the category
qBS of quasi-Borel spaces and their morphisms is (co)complete and Cartesian closed,
see [34, 69] for details. From the framework, we obtain that qBS “ rωop,qBSs is as well a
(co)complete CCC with later modality and Löb rule. This allows us to provide a probabilistic
higher-order programming language with coinductive types.

This language has types and terms that are given in Appendix B. One coinductive example
given in [69] is that of a random walk, which produces a stream of random positions for a
given standard deviation σ. We may define the type Rω of R-valued streams as fixed point
type by Rω “ fixX.R ˆ §X. A random walk can be produced by the following guarded
recursive program RW : RÑ RÑ Rω.

RW “ λσ. fix f : §pRÑ Rωq. λx. in xx, f f next pnormal xx, σyqy

The details of how the above types and terms can be interpreted in qBS are given in
Appendix B. Since qBS is complete, we thus obtain an interpretation of the types and terms
in qBS, which corresponds to the expected final coalgebra semantics, see Proposition 31.

8 Conclusion and Future Work

In this paper, we have established a framework that allows us to reason about coinductive
predicates in many cases by using recursive proofs. At the heart of this approach sits the
so-called later modality, which was comes from provability logic [9, 63, 65] but was later used
to obtain guarded recursion in type theories [3, 4, 14, 48] and in domain theory [12, 13]. This
modality allows us to control the recursion steps in a proof without having to invoke parity
or similar conditions [19, 25, 59, 62], as we have seen in the examples in Sec. 7. Moreover,
even though Birkedal et al. [13] obtained similar results, their framework is limited to Set-
valued presheaves, while our results are applicable in a much wider range of situations. In
particular, we were able to devise a novel probabilistic programming language that guarantees
productivity on coinductive types.

So what is there left to do? For once, we have not touched upon how to automatically
extract a syntactic logic and models from the fibration ÐÝL Ñ ÐÝC obtained in Ex. 23. This
would subsume and simplify much of the development in [6]. Next, we only proved only the
existence of quantifiers that range over fixed domains. It would be useful to extend this
construction to indexed domains to, for example, obtain Kripke models abstractly. However,
such a construction would be similar to that of exponents in Thm. 19 and thus quite involved.
Finally, also a closer analysis of the relation to proof systems obtained through parameterised
coinduction, the companion or cyclic proof systems may shed some light on the strength of
the proof approach presented in this paper.
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A Interpretation of the Probabilistic Modal µ-Calculus

Given a formula ϕ with no or one free variable X, a Segala system c : Q Ñ SpQq and an
interpretation I : QÑ qPredAt, we use Theorem 27 to define a locally contractive functor
xrϕsy : PrednQ Ñ PredQ with n “ 0, 1, where ♥Q “ JQ,^Q, . . . are the corresponding fibred
connectives in qPredQ:

xrP sy “ KpIpP qq xrP sy “ Kp1´ IpP qq xrXsy “ § ˝ Id
xrJsy “ JQ xrKsy “ KQ xrνX.ϕsy “ νxrϕsy

xr§ϕsy “ § ˝ xrϕsy xrlϕsy “ c# ˝Sl ˝ xrϕsy xr♦ϕsy “ c# ˝S♦ ˝ xrϕsy

xrϕ[ ψsy “ xrϕsy ^Q xrψsy xrϕ\ ψsy “ xrϕsy _Q xrψsy xrϕÑ ψsy “ xrϕsy ñQ xrψsy

B Types and Terms for Guarded Probabilistic Programming

Type, context and term formation rules for guarded probabilistic programming:

X P ∆
∆ , X : Ty

∆ , A : Ty
∆ , §A : Ty

∆ , A : Ty X appears under § in A
∆ , fixX.A : Ty

∆ , R : Ty
∆ , A : Ty ∆ , B : Ty

∆ , AˆB : Ty
∆ , A : Ty ∆ , B : Ty

∆ , AÑ B : Ty

¨ Ctx
Γ Ctx x R Γ ∆ , B : Ty

Γ Ctx

x : A P Γ
Γ $ x : A

Γ $ t : A
Γ $ next t : §A

Γ $ t : §pAÑ Bq Γ $ s : §A

Γ $ tf s : §B

Γ, x : §A $ t : A
Γ $ fix x. t : A

Γ $ t : ArfixX.A{Xs
Γ $ in t : fixX.A

Γ $ t : fixX.A
Γ $ out t : ArfixX.A{Xs

Γ, x : A $ t : B
Γ $ λx. t : AÑ B

Γ $ t : AÑ B Γ $ s : A
Γ $ t s : B

Γ $ t : A Γ $ s : B
Γ $ xt, sy : AˆB

Γ $ t : AˆB
Γ $ fst t : A

Γ $ t : AˆB
Γ $ snd t : B

a P Q
Γ $ a : R Γ $ normal : Rˆ RÑ R

Interpretation of types, context and terms over qBS:

xr∆ , A : Tysy : qBS∆
Ñ qBS

xrΓ Ctxsy P qBS
xrΓ $ t : Asy : xrΓsy Ñ xrAsy
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xrXsy “ πX xr§Asy “ § ˝xrAsy

xrfixX.Asy “ νxrAsy xrRsy “ KpRq
xrAˆBsy “ xrAsy ˆ xrBsy xrAÑ Bsy “ xrAsy ñ xrBsy

xr¨sy “ 1 xrΓ, x : Asy “ xrΓsy ˆ xrAsy

xrxsy “ πx xrnext tsy “ next ˝ xrtsy
xrtf ssy “ ev ˝ xmon ˝ xrtsy, xrssyy xrfix x. tsy “ l:ob ˝ λxrtsy
xrin tsy “ ξ´1 ˝ xrtsy xrout tsy “ ξ ˝ xrtsy

xrλx. tsy “ λxrtsy xrt ssy “ ev ˝ xxrtsy, xrssyy
xrxt, sysy “ xxrtsy, xrssyy xrfst tsy “ π1 ˝ xrtsy

xrsnd tsy “ π2 ˝ xrtsy xrasy “ λγ.Kpaq

xrnormalsy “ Kpnormalq

Here, normal refers to the normal distribution given as map RˆRÑ R in qBS, see [69].
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