

TD de Sémantique et Vérification IV– Topological Aspects of Linear Time Properties Tuesday 26th February 2019

Henning Basold henning.basold@ens-lyon.fr

In this set of exercises, we will discuss topological characterisations of safety and liveness properties.

Topological Spaces

- A topological space is a pair (X, \mathcal{U}) of a set X and a subset \mathcal{U} of $\mathcal{P}(X)$, called the open sets of X, such that
 - 1. $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$;
 - 2. for any set *I* and family $\{U_i \in \mathcal{U}\}_{i \in I}$, also $\bigcup_{i \in I} U_i \in \mathcal{U}$; and
 - 3. for all $U, V \in \mathcal{U}$, also $U \cap V \in \mathcal{U}$.

A set $U \in \mathcal{U}$ is called *open* and elements $x \in X$ are called points. If \mathcal{U} is clear from the context, we often refer to X is the topological space.

- Given a point $x \in X$, we say that N is a *neighbourhood* of x if there is an open set U, such that $x \in U$ and $U \subseteq N$. The collection of all neighbourhoods of x is denoted by N_x .
- Given a topological X, we say that $F \in X$ is *closed*, if $X \setminus F$ is open.

Exercise 1.

Show that

- 1. \emptyset and *X* are closed;
- 2. for any set *I* and family $\{F_i \text{ closed}\}_{i \in I}$, also $\bigcap_{i \in I} F_i \text{ closed}$; and
- 3. for all closed F and G, also $U \cup V$ is closed.

For any set $S \subset X$, we define the *closure* \overline{S} of S by

$$\overline{S} = \bigcap \{F \subseteq X \mid F \text{ closed and } S \subseteq F\},\$$

which makes sense by the previous exercise.

Exercise 2.

- 1. Show that $\overline{S} = \{x \in X \mid \forall N \in \mathcal{N}_x. N \cap S \neq \emptyset\}.$
- 2. Show that *S* is closed iff $\overline{S} = S$.

Metric Spaces

- A *metric space* is a pair (X, d), where X is a set and d is a map $d: X \times X \to \mathbb{R}_{\geq 0}$, such that for all $x, y, z \in X$
 - 1. d(x, y) = 0 iff x = y (positive definiteness);
 - 2. d(x, y) = d(y, x) (symmetry); and
 - 3. $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality).

The map *d* is then called a *metric*.

• Given a metric space (X, d), $x \in X$ and $\varepsilon > 0$, we define the ε -ball $B_{\varepsilon}(x)$ around x by

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}.$$

Exercise 3.

Let (X, d) be a metric space and define $\mathcal{U} \subseteq \mathcal{P}(X)$ by

$$\mathcal{U} = \{ U \subseteq X \mid \forall x \in U. \exists \varepsilon > 0. B_{\varepsilon}(x) \subseteq U \}.$$

- 1. Show that the thus defined (X, \mathcal{U}) is a topological space.
- 2. Show that for any $S \subseteq X$ that we have $\overline{S} = \{x \in X \mid \forall \varepsilon > 0. B_{\varepsilon} \cap S \neq \emptyset\}$.

Let Σ be a finite set, called an alphabet. Previously, Σ was given by $\mathcal{P}(AP)$. However, now the internal structure of Σ is not relevant, which is why we work with an arbitrary alphabet. The set of infinite sequences over Σ is denoted by Σ^{ω} as before. Let $d: \Sigma^{\omega} \times \Sigma^{\omega} \to \mathbb{R}_{\geq 0}$ be given by

$$d(\sigma,\tau) = \begin{cases} 0, & \sigma = \tau \\ 2^{-\min\{k \in \mathbb{N} \mid \sigma(k) \neq \tau(k)\}}, & \sigma \neq \tau \end{cases}$$

Let us also denote by $\sigma|_n$ the prefix of length *n* of σ .

Exercise 4.

- 1. Show that (Σ^{ω}, d) is a metric space. (*Hint: It will be beneficial here and later to establish a different characterisation of* $d(\sigma, \tau) < 2^{-n}$ *in terms of prefixes of length n for* $n \in \mathbb{N}$.)
- 2. Show that the closed sets of Σ^{ω} are exactly the safety properties. (*Hint: Use the characterisation of safety properties from the previous exercise and the above characterisation of closed sets. You can also assume, without loss of generality, that any given \varepsilon > 0 is of the form \frac{1}{2^n}.)*
- 3. A set $D \subseteq X$ in a topological space X is called *dense*, if $\overline{D} = X$. Show that the dense subsets of Σ^{ω} are exactly the liveness properties.

Limits and Cauchy Sequences

Given a metric space (X, d), we say that a sequence $(x_n)_{n=0}^{\infty}$ in X with $x_n \in X$ converges to $x \in X$, if

$$\forall \varepsilon > 0. \exists N \in \mathbb{N}. \forall n \ge N. d(x_n, x) < \varepsilon$$

We say that *x* is the *limit* of $(x_n)_{n=0}^{\infty}$ and write $x = \lim_{n \to \infty} x_n$. It is easily verified that limits are unique, and that $x = \lim_{n \to \infty} x_n$ iff $\forall N \in \mathcal{N}_x$. $\exists N \in \mathbb{N}$. $\forall n \ge N$. $x_n \in N$.

A special type of sequences are Cauchy sequences. We call a sequence $(x_n)_{n=0}^{\infty}$ in X a Cauchy sequence, if

$$\forall \varepsilon > 0. \exists N \in \mathbb{N}. \forall n, m \ge N. d(x_n, x_m) < \varepsilon.$$

The metric space X is called *complete*, if every Cauchy sequence in X converges.

Exercise 5.

- 1. Let (X, d) be a metric space and $S \subseteq X$ Show that \overline{S} consists of all those points that are the limit of a sequence in S.
- 2. Show that the space (Σ^{ω}, d) is Cauchy complete.