
Master d’Informatique Fondamentale – 2019
Semantics and Verification (M1)

�
�

�

TD de Sémantique et Vérification

I– Modelling Concurrent Systems

Henning Basold
henning.basold@ens-lyon.fr

In this first set of exercises, we will discuss the modelling of concurrent systems as circuits, transition systems
and program graphs. In particular, we will discuss the interleaving of parallel systems.

Recommendation: The exercises are all purely pen and paper exercises. However, it is quite fun to implement
notions from the course and the exercises. At the very end, you may obtain this way your very own model checker.
This week, you may implement transition systems, their execution and the interleaving operators. Note that your
implementation will not be evaluated as part of the course.

Preliminaries: Interleaving Operators
In this preliminary section, we provide the definitions of the different interleaving operators from the book.

Definition 1 (Interleaving of Transition Systems). Let TS i = (S i,Acti,→i, Ii,APi, Li) be transition systems for
i = 1, 2. The interleaved transition system is given by

TS 1 9 TS 2 = (S 1 × S 2,Act1 ∪ Act2,→, I1 × I2,AP1 ∪ AP2, L),

where L〈s1, s2〉 = L1(s1) ∪ L2(s2) and the transition relation→ is defined by the following two rules.

s1
α
−→1 s′1

〈s1, s2〉
α
−→ 〈s′1, s2〉

s2
α
−→2 s′2

〈s1, s2〉
α
−→ 〈s1, s′2〉

Definition 2 (Interleaving of Program Graphs). Let PGi = (Loci,Acti,Effecti, ↪→i,Loc0,i, g0,i) be program graphs
for i = 1, 2. The interleaved program graph is given by

PG1 9 PG2 = (Loc1 × Loc2,Act1] Act2, ↪→,Loc0,1 × Loc0,2, g01 ∧ g0,2),

where Effect(α, η) = Effecti(α, η) for α ∈ Acti and the transition relation ↪→ is defined by the following two rules.

`1
g:α
↪−−→1 `

′
1

〈`1, `2〉
g:α
↪−−→ 〈`′1, `2〉

`2
g:α
↪−−→2 `

′
2

〈`1, `2〉
g:α
↪−−→ 〈`1, `

′
2〉

Definition 3 (Handshaking). Let TS i = (S i,Acti,→i, Ii,APi, Li) be transition systems for i = 1, 2 and let H be a
set of actions with H ⊆ Act1 ∩ Act2 and τ < H. The synchronised transition system is given by

TS 1 ‖H TS 2 = (S 1 × S 2,Act1 ∪ Act2,→, I1 × I2,AP1 ∪ AP2, L),

where L〈s1, s2〉 = L1(s1) ∪ L2(s2) and the transition relation→ is defined by the following three rules.

s1
α
−→1 s′1

α < H
〈s1, s2〉

α
−→ 〈s′1, s2〉

s2
α
−→2 s′2

α < H
〈s1, s2〉

α
−→ 〈s1, s′2〉

s1
α
−→1 s′1 s2

α
−→2 s′2

α ∈ H
〈s1, s2〉

α
−→ 〈s′1, s

′
2〉

If H = Act1 ∩ Act2, then we abbreviate TS 1 ‖H TS 2 by TS 1 ‖ TS 2.

Note: We have that 9 = ‖∅.

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2019 1/4

henning.basold@ens-lyon.fr

Program Graphs and Atomicity
The first part of the exercise is about different representations of programs as program graphs and the effect of
separating tests and assignments. Suppose we are given the following program Inc.

Inc: while true do if x < 200 then x B x + 1

We may associate two different program graphs, the atomic AInc and the non-atomic NInc, to this program:

Inc

x < 200 : x B x + 1

and tInc aInc

x < 200 : nop

true : x B x + 1

The first program graph forces the atomic execution of the test and the assignment, while the second program
graph separates these two. Since tests and the body of a while-loop are typically more complex, the second
program graph is more realistic. These program graphs show by themselves the same behaviour. However, when
combined with other processes that access the same variable, then the separation of test and assignment into the
two states tInc and aInc matters, as we will see in the following exercise.

Exercise 1.
Let the two programs Dec and Res be given as follows.

Dec: while true do if x > 0 then x B x − 1

Res: while true do if x = 200 then x B 0

1. Give the atomic and non-atomic program graphs associated to the programs Dec and Res.

2. Show that 0 ≤ x ≤ 200 is an invariant in the interleaving AInc 9 ADec 9 ARes.

3. Show that there is an execution trace in the interleaving NInc9NDec9NRes, in which x becomes negative.

Mutual Exclusion

Exercise 2.
Consider the following mutual exclusion algorithm that was proposed 1966 as a simplification of Dijkstra’s
mutual exclusion algorithm in case there are just two processes:

boolean array b = [0; 1];
integer k = 1, i, j;
/* This is the program for computer i, which may be either 0 or 1, computer

j , i is the other one, 1 or 0 */
C0: b(i) B false;
C1: if k , i then
C2: if ¬b(j) then goto C2;

else k B i; goto C1;
else critical section;
b(i) B true;
remainder of program;
goto C0;

Here C0, C1, and C2 are program labels, and the word “computer” should be interpreted as process.

1. Give the program graph representations for a single process. (A pictorial representation suffices.)

2. Give the reachable part of the transition system of P1 ‖ P2 .

3. Check whether the algorithm indeed ensures mutual exclusion, that is, check whether that there is no
reachable state in which both processes are in their critical section.

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2019 2/4

Sequential Hardware Circuits

In this part of the exercise, we deal with a particularly simple kind of computational system: sequential
hardware circuits. Such a circuit has n inputs given by a set X of names, m outputs in Y and may store
internally previous results in k registers in R. For simplicity, we assume that all three sets are disjoint. The
circuit operates on Boolean values (0, 1), and computes in each (discrete) time step the output and new register
values depending on the inputs and the previous register values. Such two circuits are displayed below.

r1

AND

OR
NOT

x1 y1

r2

OR

AND
x2 y2

Each circuit has one input, output and register. For the first circuit, we have X1 = {x1}, Y1 = {y1} and R1 = {r1},
while for the second we have X2 = {x2}, etc. To describe circuits formally, let B be the set B = {0, 1} of
Boolean values. We define valuations for a given set U to be the set of functions from U into B:

Val(U) = {σ | σ : U → B}.

In what follows, we will also need to restrict valuations. Thus, given V ⊆ U and σ ∈ Val(U), we let
σ|V ∈ Val(V) be the valuation σ : V → B with σ|V (x) = σ(x). A circuit is now given by a map

f : Val(X] R)→ Val(Y] R).

For example, the first circuit is given a the map f1 : Val({x1, r1}) → Val({y1, r1}) that is defined by the two
cases f1(σ)(y1) = σ(x1) ∨ ¬σ(r1) and f1(σ)(r1) = σ(x1) ∧ σ(r1).

Given an initial valuation ρ0 ∈ Val(R), we can associate a transition system (S ,Act,−→, I,AP, L) to such a
circuit as follows. The states S are valuations of inputs and registers, that is, S = Val(X] R); actions are
irrelevant, hence Act = {τ}; the initial states set the registers to their initial values:

I = {σ | σ|R = ρ0};

transitions model exactly the computations given by f :

σ −→ τ iff f (σ)
∣∣∣
R = τ|R.

Finally, the atomic proposition are all variables AP = X] Y] R and the labelling is given by those variables
that are true at a given state:

L(σ) =
{
x ∈ X

∣∣∣ σ(x) = 1
}
∪
{
r ∈ R

∣∣∣ σ(r) = 1
}
∪
{
y ∈ Y

∣∣∣ f (σ)(y) = 1
}
.

For convenience, we simplify the graphical presentation of the states in the above described TS. Suppose
σ ∈ Val(X1] R1) with σ(x1) = 1 and σ(r1) = 0, then we draw the state σ in the TS as follows.

x1 = 1 r1 = 0

{x1, y1}

Exercise 3.
Consider the two sequential hardware circuits from above.

1. Give the map that describes the second circuit.

2. Assuming that the initial values of the registers are r1 = 0 and r2 = 1, give the associated transition
systems of both hardware circuits in graphical notation.

3. Determine the reachable part of the interleaving of these transition systems.

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2019 3/4

Properties of Interleaving

Exercise 4.
Give an example of program graphs PG1 and PG2, such that TS (PG1) 9 TS (PG2) has evaluations as states
that are impossible in TS (PG1 9 PG2) Hint: In the interleaving TS (PG1) 9 TS (PG2) the variables of PG1
and PG2 are renamed and thus not shared.

Exercise 5.
Show that the handshaking operator ‖ is associative. That is, show for arbitrary transition systems TS 1, TS 2,
TS 3 that (TS 1 ‖ TS 2) ‖ TS 3 and TS 1 ‖ (TS 2 ‖ TS 3) are essentially the same transition system.

Semantics and Verification (M1), Master d’Informatique Fondamentale – 2019 4/4

