
DR
AF
T

Do
no
t d
ist
rib
ute

Logic Rondo
An Introduction to Logic for Humans and Computers

Henning Basold

Base revision 3f4832c, (HEAD -> main) from 2023-04-24

cba Copyright © 2020–2023 Henning Basold, under a Cre-
ative Commons Attribution-ShareAlike 4.0 International License:
https://creativecommons.org/licenses/by-sa/4.0/.

Typeset with XƎLATEX

cb “Robot” on page 70 by William Hollowell licensed under Creative Com-
mons BY, URL: https://thenounproject.com/term/r2d2/10452/
cb “obstacle” on page 70 by Annette Spithoven licensed under Creative
Commons BY, URL: https://thenounproject.com/term/obstacle/
211167
cb “Heart” on page 70 by Bohdan Burmich licensed under Creative Com-
mons BY, URL: https://thenounproject.com/term/heart/396287

https://creativecommons.org/licenses/by-sa/4.0/
https://thenounproject.com/term/r2d2/10452/
https://thenounproject.com/term/obstacle/211167
https://thenounproject.com/term/obstacle/211167
https://thenounproject.com/term/heart/396287

Contents

1. Introduction 1

2. Introduction to Propositional Logic 3
2.1. Motivation . 3
2.2. Syntax of Propositional Logic 5
2.3. Parse Trees . 9
2.4. Formula Iteration and Induction 10

3. Semantics of Propositional Logic 15
3.1. Truth Values . 16
3.2. Boolean Semantics of Propositional Logic 18
3.3. Back to Truth Tables . 20
3.4. Entailment, Satisfiability, Tautologies 22
3.5. Semantic Deduction . 25

4. Proof Theory of Propositional Logic 29
4.1. Deductive Systems . 31
4.2. Natural Deduction . 32
4.3. Fitch-Style Natural Deduction 41
4.4. Soundness and Consistency 46
4.5. Classical Logic and Completeness 47

5. Automatic Deduction for Propositional Logic 51
5.1. Methods of Semantic Deduction 53
5.2. Algebra of Boolean Logic . 54
5.3. Conjunctive Normal Forms . 56
5.4. Horn Clause Theories . 62

6. Introduction to First-Order Predicate Logic 69
6.1. The Need for a Richer Language 69
6.2. The Language of First-Order Logic 76

iv Contents

7. Proof Theory of First-Order Predicate Logic 85
7.1. Substitution in First-Order Logic 85

7.1.1. The Difficulty of Names and Variables 85
7.1.2. De Bruijn Trees . 86
7.1.3. Axiomatising Terms and Substitutions 88

7.2. Natural Deduction for FOL . 93
7.2.1. The Intuitionistic System ND1 93
7.2.2. Fitch-Style Deduction for ND1 96
7.2.3. The Classical System cND1 97

7.3. Exercises . 97

8. Semantics of First-Order Logic 99
8.1. Models of First-Order Logic . 99
8.2. Valuations and the Interpretion of FOL 103
8.3. Entailment and Satisfiability for FOL 108
8.4. Soundness of Natural Deduction for FOL 111

9. Extensions and Limits of First-Order Logic 117
9.1. First-Order Logic with Equality 117

9.1.1. Semantics of FOL with Equality 123
9.1.2. Natural Deduction for FOL with Equality 125

9.2. Completeness . 131
9.3. Compactness and its Consequences 132

9.3.1. Expressiveness of First-Order Logic 133
9.4. Exercises . 136

10. Incompleteness and Undecidability 139

11. First-Order Horn Clauses and Automatic Deduction 143
11.1. Automatic Deduction and the Cut-Rule 143
11.2. First-Order Horn Clauses and Logic Programming 145
11.3. Uniform Proofs . 151

Solutions 159

A. Greek Letters 177

B. Tools 179
B.1. Sets and Maps . 179
B.2. Induction on Natural Numbers 180
B.3. Trees and Induction . 183
B.4. Formal Languages . 186

Contents v

C. Three-Valued Logic 191

D. Logic Programming 193

List of Notation 195

1. Introduction

2. Introduction to Propositional
Logic

2.1. Motivation

Isaac: Ok, I see why you would want to study logic. But where do we start?

Clara: I have an idea. Let us go to the cradle of philosophy and mathematics
in Europe.

Aristotle: Who are you, entering my house with that metal construction?

Isaac: I’m not a metal construction! I’m a living and breathing robot!

Aristotle: By Zeus! It can speak!

Isaac: More than that: without my Trans-O-Matic you would not be able to
understand me or my friend.

Aristotle: A robot, mh? What is that supposed to mean?

Clara: Of course, you cannot know. You may think of an αὐτόματον (auto-
maton) as Hephaestus created them, only that a robot can make de-
cisions for itself and act like a human, all within limits certainly.

Aristotle: How fascinating! May I keep you here for studying my friend?

Isaac: Isaac is the name and I would prefer to be studied, if you don’t mind.
Rather, Clara and I are trying to understand the roots of my being to-
gether. We decided to start of quest with studying the logic underlying
my artificial brain andmy decisions. But we are not sure where to start.
That’s why we are here with you, one of the founders of formal logic.

Aristotle: I see, I see. Start where all logic starts: with simple deduction. Take,
for example, the following deduction. “If it rains and Socrates has no
umbrella, then he gets wet. Socrates has no umbrella and is not wet.
Therefore, it does not rain.”

4 2. Introduction to Propositional Logic

Clara: Do you always have to use old male Philosophers as examples?

Aristotle: These are very illustrative examples, are they not?

Clara: Well… Never mind! The point is thus, that we infer knowledge from
hypotheses and facts?

Aristotle: Yes, exactly. We shall therefore begin with the study of a simple
logic that allows us to express the relation between propositions and
infer knowledge from these relations. Let me introduce you to the syn-
tax of a logic, as modern logic more than 2000 years from now will
understand it.

This logic is called propositional logic, and comprises propositional variables
and logical connectives that allow us to express relations between these vari-
ables as formulas. In section 2.2, we will see how these formulas are formed
precisely and how we can use them to formalise hypotheses and facts.

For the time being, we will help Isaac to identify the relevant fragments of
Aristotle’s example. Let us highlight in the example the propositions that
can be either true or false.

“If it rains and Socrates has no umbrella, then he gets wet.
Socrates has no umbrella andhe does not getwet. Therefore,
it does not rain.”

If we write instead

• 𝑟 for it rains,

• 𝑢 for Socrates has no umbrella, and

• 𝑤 for he gets wet,

then we can easily rewrite the first sentence to

“If 𝑟 and 𝑢, then 𝑤.”

and can read it still in exactly the same way by replacing 𝑟, 𝑢 and 𝑤 by the
corresponding phrases. We call 𝑟, 𝑢 and 𝑤 propositional variables, as they
stand for propositions that can be either true or false. This is very important
to keep in mind: we reason about such variables independently of their truth,
and arguments need to be able to account for any possibility!

You will have noticed that the second sentence cannot directly written with
the three propositional variables because it says “he does not get wet”, while
we only have the variable 𝑤 that stands for “he gets wet”. We will allow

2.2. Syntax of Propositional Logic 5

ourselves to write “not” in front of a variable to negate what it says, that is,
“not 𝑤” stands for “he does not get wet”. In natural language, words have to
appear in one or another order. This can create ambiguities, which is exactly
what formal logic tries to prevent. With this in mind, we can write the second
and third sentence as

“𝑢 and not 𝑤. Therefore, not 𝑟.”
What is left of the original sentence are only the words “if”, “then”, “and”,
“therefore” and “not”. These are logical connectives, and we will introduce
formal notations for them soon.

But let us appreciate for a moment that we have replaced in the original ex-
ample certain phrases by variables and obtained an argument that relies only
on the structure of the sentences, rather than their meaning. For instance, we
could reinterpret the variables like so:

• 𝑟 — Isaac’s battery is empty,

• 𝑢 — no charger is in reach, and

• 𝑤 — Isaac stops working,

This gives us another argument that is clearly valid:

“If Isaac’s battery is empty and no charger is in reach, then
Isaac stops working. No charger is in reach and Isaac does
not stop working. Therefore, Isaac’s battery is not empty.”

2.2. Syntax of Propositional Logic

Syntax is the pillar of formal logic that allows us to express propositions un-
ambiguously. As we saw earlier, it consists for propositional logic of two parts:
propositional variables and logical connectives that can be put together into
formulas. Propositional variables are syntactic entities that represent propos-
itions, but have no intrinsic meaning and only serve as placeholders. We shall
assume to be given a fixed set of such variables.
Assumption 2.1
Assume that PVar is a countable set of propositional variables. Elements of
PVar are denoted by lower-case letters, possibly with index: 𝑝, 𝑞, … , 𝑝0, 𝑝1, …
As for the logic connectives, we will introduce symbols and formulas that
allow us to unambiguously express propositions. For instance, we will write

6 2. Introduction to Propositional Logic

∧ for “and” and ¬ for “not”. With these notations and the variables 𝑢 and 𝑤
from above, the phrase

“Socrates has no umbrella and he does not get wet.”

becomes
𝑢 ∧ ¬𝑤 .

Note that there are cases, where it is not clear how a sentence has to be read
andwemay have to use parentheses to disambiguate the reading. For example,
we will write → for “if …then …”. Then the sentence

“If it rains and Socrates has no umbrella, then he gets wet.”

can be written as
(𝑟 ∧ 𝑢) → 𝑤 .

However, such parentheses can get in the way and wewould like to have some
reading conventions. We read, for example, the proposition 𝑢∧¬𝑤 intuitively
already as 𝑢 ∧ (¬𝑤). Thus, part of the definition of formulas will also be a
reading convention that allows us to unambiguously determine the structure
of formulas.

Definition 2.2

The well-formed formulas (wf) 𝜑 of propositional logic are generated
by the following context free grammar, in which 𝑝 ranges over the pro-
positional variables PVar.

𝜑 ∶∶= 𝑝 ∣ ⊥ ∣ 𝜑 ∧ 𝜑 ∣ 𝜑 ∨ 𝜑 ∣ 𝜑 → 𝜑 ∣ (𝜑)

Ambiguities in the grammar are resolved by the use of parentheses and
the following reading conventions.

• ∧ and ∨ have precedence over →
• all connectives associate to the right

The set of all propositional wff is denoted by PForm. We denote ele-
ments of PForm by small Greek letters 𝜑, 𝜓, 𝛾, … possibly with a sub-
script index.

As reading and understanding formulas can be difficult, especially on first
sight, let me provide some help. In table 2.1, all the connectives with their
name, pronunciation and intuitive meaning are gathered. The name is how
we will refer to a connective by itself, outside of formulas. To pronunciation

2.2. Syntax of Propositional Logic 7

Connective Name Pronunciation Intuitive Meaning
⊥ Absurdity bottom ⊥ never holds
∧ Conjunction 𝜑 and 𝜓 both hold
∨ Disjunction 𝜑 or 𝜓 𝜑 or 𝜓 or both hold
→ Implication 𝜑 implies 𝜓 if 𝜑 holds, then 𝜓 holds

Table 2.1.: Logical connectives of propositional logic

we will use, of course, the pronunciation column. If you have trouble with
Greek letters, then have a look at appendix A. Finally, the last column indicates
how the connectives can be understood intuitively. Keep in mind though that
this is only an intuition and the interpretation can vary radically for different
applications and semantics, one of which we will discuss in chapter 3.

“But wait”, Clara intervenes, “we are missing the negation, aren’t we?” Yes
indeed, we are. However, our intuition would dictate that the formula ¬𝜑
should hold only if 𝜑 does not hold. Or, in other words, whenever 𝜑 holds,
something went wrong and we discovered an absurd situation. We can ex-
press this by the formula 𝜑 → ⊥, saying that 𝜑 implies absurdity. Similarly,
we can also express other common logical connectives in terms of the basic
connectives.

Definition 2.3: Derived connectives

We define three derived connectives as short-hand notation for the for-
mula in second column of the following table.

Connective Definition Name
¬𝜑 𝜑 → ⊥ Negation
⊤ ¬⊥ Truth or Top

𝜑 ↔ 𝜓 (𝜑 → 𝜓) ∧ (𝜓 → 𝜑) Bi-implication

We also adopt the following reading conventions: negation has preced-
ence over ∨ and ∧, thus also over →; and bi-implication has the same
precedence as →.

Let us now come back to the original example.

8 2. Introduction to Propositional Logic

Formula With parentheses
𝑝 → 𝑞 → 𝑟 𝑝 → (𝑞 → 𝑟)
𝑝 ∧ 𝑞 ∧ 𝑟 𝑝 ∧ (𝑞 ∧ 𝑟)
𝑝 ∨ 𝑞 ∨ 𝑟 𝑝 ∨ (𝑞 ∨ 𝑟)
𝑝 ∧ 𝑞 → 𝑟 (𝑝 ∧ 𝑞) → 𝑟
𝑝 ∨ 𝑞 → 𝑟 (𝑝 ∨ 𝑞) → 𝑟
𝑝 → 𝑞 ∧ 𝑟 𝑝 → (𝑞 ∧ 𝑟)

Table 2.2.: Leaving out parentheses by using the precedences of connectives

Example 2.4

The deduction that it did rain by experimenting with Socrates’ misery
consists of the following three formulas.

𝑟 ∧ 𝑢 → 𝑤 and 𝑢 ∧ ¬𝑤 and ¬𝑟

Putting these all together as one deduction, we obtain:

(𝑟 ∧ 𝑢 → 𝑤) ∧ (𝑢 ∧ ¬𝑤) → ¬𝑟

Note that the first two formulas are put together with a conjunction,
while the last comes after an implication. This way, we have resolved
all the ambiguity in the original deduction. The sentence starting with
“Therefore” signifies the right-hand side, the conclusion of an implic-
ation and everything before are the assumptions that are made in the
deduction.

You should also appreciate that we can leave out parentheses by using our
reading conventions. Without them, the formula in example 2.4 would look
like this:

(((𝑟 ∧ 𝑢) → 𝑤) ∧ (𝑢 ∧ (¬𝑤))) → (¬𝑟)

What an abomination! I wish, I had these tools in the debates with my con-
temporary philosophers in the ancient Greek times.

Table 2.2 shows some more example, in which the reading conventions allow
us to leave out parentheses Note that there is no convention about mixing ∧
and ∨, as this would cause more confusion than it helps. For example, the
formula 𝑝 ∧ 𝑞 ∨ 𝑟 is considered to be ambiguous and should be written either
as (𝑝 ∧ 𝑞) ∨ 𝑟 or 𝑝 ∧ (𝑞 ∨ 𝑟).

2.3. Parse Trees 9

2.3. Parse Trees

Isaac: I have the feeling that there may still be some ambiguity. How can I
know in which order I have to process a formula?

Aristotle: Feelings? How …?

Isaac: Hey, no need to insult me!

Aristotle: My apologies! But you are a curious thing and I would like to ask
you so many questions. In any case, there is a way to make everything
absolutely unambiguous by two-dimensional trees, the kind you have
seen as data structures.

Formula Top-Level Connective Direct Subformulas
𝑝 𝑝 –
⊥ ⊥ –

𝜑 ∧ 𝜓 ∧ 𝜑, 𝜓
𝜑 ∨ 𝜓 ∨ 𝜑, 𝜓
𝜑 → 𝜓 → 𝜑, 𝜓

Table 2.3.: Top-Level Connectives and Direct Subformulas

Definition 2.5

The top-level connective and direct subformulas of formulas are given as
in table 2.3. A formula is called atomic if it has no direct subformulas,
that is, if it is of the shape ⊥ or 𝑝 for 𝑝 ∈ PVar.
Given a formula 𝜑, the parse tree of 𝜑 is a tree, in which

i) the root is labelled by the top-level connective of 𝜑, and

ii) the children of the root are parse trees of the direct subformulas
of 𝜑.

When we picture such trees, we typically draw a circle for every node and
write the label inside this node. This allows to picture, for example, the for-
mula 𝑝 ∧ 𝑞 as

∧

𝑝 𝑞

10 2. Introduction to Propositional Logic

Our formula from earlier can serve as a more elaborate example.

Example 2.6

Recall the formula

(𝑟 ∧ 𝑢 → 𝑤) ∧ (𝑢 ∧ ¬𝑤) → ¬𝑟

from example 2.4. The parse tree of this formula is given as follows.

→

∧

→

∧

𝑟 𝑢

𝑤

∧

𝑢 →

𝑤 ⊥

→

𝑟 ⊥

Note that the parse tree does not contain negations because this is a
derived connective. Instead, it is represented by the defining formula.
For instance, ¬𝑟 becomes 𝑟 → ⊥ in the parse tree.

With parse trees, we can clearly circumvent any ambiguities.

2.4. Formula Iteration and Induction

Isaac: What a great contribution of computer science to the world! But what
If I would like to make any formal statements or definitions for formu-
las? Are parse trees then not a bit too informal?

Aristotle: In fact, they are not. As parse trees give a unique representation
for formulas, we can derive a proof principle that is familiar from the
natural numbers.

Clara: Are you speaking about induction?

Aristotle: Indeed, I am. However, let me state first the iteration principle for
formulas, as this allows us to define maps on formulas.

2.4. Formula Iteration and Induction 11

Theorem 2.7: Principle of Formula Iteration

Let 𝐴 be a set together with 𝑓⊥ ∈ 𝐴 and four maps

𝑓𝑃 ∶ PVar → 𝐴 𝑓∧ ∶ 𝐴 × 𝐴 → 𝐴
𝑓∨ ∶ 𝐴 × 𝐴 → 𝐴 𝑓→ ∶ 𝐴 × 𝐴 → 𝐴 ,

where 𝐴 × 𝐴 is the set-theoretic product (appendix B.1). Then there is
a unique map 𝑓 ∶ PForm → 𝐴, such that the following equations hold.

𝑓(⊥) = 𝑓⊥ 𝑓(𝜑 ∧ 𝜓) = 𝑓∧(𝑓(𝜑), 𝑓(𝜓))
𝑓(𝑝) = 𝑓𝑃 (𝑝) 𝑓(𝜑 ∨ 𝜓) = 𝑓∨(𝑓(𝜑), 𝑓(𝜓))

𝑓(𝜑 → 𝜓) = 𝑓→(𝑓(𝜑), 𝑓(𝜓))

Proof. The idea of the proof is simple. Given the element 𝑓⊥ and the four
maps, we define 𝑓(𝜑) by traversing the parse tree 𝑇 depth-first from left to
right. This, in turn, is done by iteration on the height of the tree 𝑇 .

For atomic formulas, 𝑇 has height 0 and we can directly define 𝑓(𝜑) = 𝑓⊥
(𝜑 = ⊥) or 𝑓(𝜑) = 𝑓𝑃 (𝜑) (𝜑 ∈ PVar). If 𝜑 is not atomic, for example, if
𝜑 = 𝜑1 ∧ 𝜑2, then 𝑇 is labelled at the root with ∧ and the root has trees
𝑇1 and 𝑇2 as children. These children are themselves parse trees of smaller
height and we can assume 𝑓(𝜑𝑘) to be given. Thus, we can define 𝑓(𝜑) =
𝑓∧(𝑓(𝜑1), 𝑓(𝜑2)). Clearly, 𝑓 fulfils the required equations.

If we are given a map 𝑔 ∶ PForm → 𝐴 that also fulfils the equations, then
we can prove that 𝑓 = 𝑔 also by induction on the height of parse trees. For
atomic formulas 𝜑, we clearly have 𝑔(𝜑) = 𝑓(𝜑). If 𝜑 has a parse tree of
height 𝑛 + 1, say, 𝜑 = 𝜑1 ∧ 𝜑2, then we can assume as induction hypothesis
that 𝑔(𝜑𝑘) = 𝑓(𝜑𝑘) for 𝑘 = 1, 2. But then

𝑔(𝜑) = 𝑓∧(𝑔(𝜑1), 𝑔(𝜑2) = 𝑓∧(𝑓(𝜑1), 𝑓(𝜑2) = 𝑓(𝜑).

Thus, by induction on the tree height of 𝜑, we have that 𝑔(𝜑) = 𝑓(𝜑) for all
formulas 𝜑 and thereby that 𝑓 is unique.

Just like for natural numbers (theorem B.2), the usual induction principle can
be obtained as a special case of the iteration principle.

12 2. Introduction to Propositional Logic

Corollary 2.8: Formula Induction

Let 𝑃 be a property of formulas, that is, 𝑃 ⊆ PForm. If

i) 𝑃 contains all atomic formulas (PVar ⊆ 𝑃 and ⊥ ∈ 𝑃), and

ii) for all formulas 𝜑: if 𝑃 contains all direct subformulas of 𝜑, then
𝜑 ∈ 𝑃 ,

then 𝑃 contains all formulas (PForm ⊆ 𝑃). We refer to item i) as the
base case and to item ii) as the induction step.

As you can see, formula iteration and induction follow directly from the fact
that formulas can be represented as parse trees with finite height. However,
formula iteration and induction are much easier to use than induction on the
height of trees because we can directly refer to the structure of the tree. This
is why induction principles like that in corollary 2.8 are also referred to as
structural induction.

What can we use these principles for? For example, we can use it to find all
subformulas, and not just the direct ones, of a given formula.

Definition 2.9

Let 𝜑 be a formula. The set of subformulas of 𝜑 is given by the
following iterative definition.

Sub(𝑝) = {𝑝}
Sub(⊥) = {⊥}

Sub(𝜑1 ∧ 𝜑2) = {𝜑1 ∧ 𝜑2} ∪ Sub(𝜑1) ∪ Sub(𝜑2)
Sub(𝜑1 ∨ 𝜑2) = {𝜑1 ∨ 𝜑2} ∪ Sub(𝜑1) ∪ Sub(𝜑2)

Sub(𝜑1 → 𝜑2) = {𝜑1 → 𝜑2} ∪ Sub(𝜑1) ∪ Sub(𝜑2)

By “iterative” in definition 2.9 we mean that formula iteration can in principle
be used to define Sub. This is not difficult but rather tedious, just in the same
way it is tedious to define the factorial function on natural numbers by itera-
tion (see appendix B.2). But we can very easily understand how Sub operates
in terms of parse trees. Suppose 𝜑 is given by the following parse tree, in
which rectangles represent again parse trees.

2.4. Formula Iteration and Induction 13

∧

𝜑1 𝜑2

Then the subformulas of 𝜑 are the whole formula 𝜑 itself and the subformulas
of the formulas that are represented by the smaller parse trees. In other words,
we can list all subformulas by recursively walking through the parse tree.

Example 2.10

Let 𝜑 = ¬𝑝 ∧ 𝑞 → 𝑝 → 𝑠. Then we formally obtain the subformulas
of 𝜑 by

Sub(𝜑) = {𝜑} ∪ Sub(¬𝑝 ∧ 𝑞) ∪ Sub(𝑝 → 𝑠)
= {𝜑} ∪ {¬𝑝 ∧ 𝑞, ¬𝑝, 𝑝, ⊥, 𝑞} ∪ {𝑝 → 𝑠, 𝑝, 𝑠}
= {𝜑, ¬𝑝 ∧ 𝑞, ¬𝑝, 𝑝, ⊥, 𝑞, 𝑝 → 𝑠, 𝑠} ,

where we use that

Sub(¬𝑝 ∧ 𝑞) = {¬𝑝 ∧ 𝑞} ∪ Sub(¬𝑝) ∪ Sub(𝑞)
= {¬𝑝 ∧ 𝑞} ∪ {¬𝑝} ∪ Sub(𝑝) ∪ Sub(⊥) ∪ Sub(𝑞)
= {¬𝑝 ∧ 𝑞} ∪ {¬𝑝} ∪ {𝑝} ∪ {⊥} ∪ {𝑞}
= {¬𝑝 ∧ 𝑞, ¬𝑝, 𝑝, ⊥, 𝑞} .

If we look at the parse tree of 𝜑, then the subformulas are evident be-
cause every node contributes as subformula the formula that is repres-
ents.

→

∧

→

𝑝 ⊥

𝑞

→

𝑝 𝑠

This gives us the following list of distinct subformulas by traversing

14 2. Introduction to Propositional Logic

the tree depth-first from left to right.

¬𝑝 ∧ 𝑞 → 𝑝 → 𝑠 𝑝 → 𝑠 𝑠
¬𝑝 ∧ 𝑞 𝑞
¬𝑝 ⊥
𝑝

Clara: These are a lot of formalities for expressing very simple things! Is all
of this really necessary?

Aristotle: If you know how computers work, then you should be able to ap-
preciate the clarity of representing formulas as parse trees and formula
induction as recursive visits of trees already. A more elaborate answer
would be that we have seen throughout history everything from mis-
understandings to lies because assertions have been misunderstood,
wrong or implicit assumptions have been made etc. The formal lan-
guage of propositional logic does away with all of this, as there is no
ambiguity in assertions being made. If someone makes a mistake, then
you can find that by inspecting the claimed formula.

Isaac: Just by looking at the formula? What if I don’t know what the propos-
itional variables should mean or how one part of a formula relates to
another?

Aristotle: Very well observed, my little brass friend!

Isaac: Brass friend⁇?

Aristotle: To get a proper answer to your question, I will have to refer you to
another logician, one who studied the meaning of formulas rigorously.

3. Semantics of Propositional
Logic

Peirce: Who on Earth are you two fellows bursting into my house and dis-
turbing my studies! Is this tin can another concoction by Newcomb or
the Southerners to disturb me?

Clara: Our apologies for coming in uninvited, Professor Pierce. My friend
Isaac and I set out to learn logic, and we were told that you may help
us with that.

Peirce: That is certainly possible. How may I help you?

Clara: My friend Isaac here is a robot and his functioning is founded in pure
logic, but we don’t understand it.

Peirce: Are you saying that this creation adheres to reason?

Isaac: Even better, all my decisions are based on what I can deduce from the
facts that I know.

Peirce: …, which makes you inherently limited.

Isaac: Does it? I would like to understand that better.

Peirce: Good, you are following the first rule of logic: the desire to learn.1 Let
us see, where do we start?

Clara: We paid a visit to Aristotle and learned about the syntax of proposi-
tional logic.

1“Upon this first, and in one sense this sole, rule of reason, that in order to learn you must
desire to learn, and in so desiring not be satisfied with what you already incline to think,
there follows one corollary which itself deserves to be inscribed upon every wall of the city
of philosophy: Do not block the way of inquiry.”, from C.S. Peirce, F.R.L. First Rule of Logic,
1899.

16 3. Semantics of Propositional Logic

Peirce: How did you …? I guess this whole encounter is illogical in any case.
Well, if you know about syntax, then you know already how to avoid
the fallacies of natural language. But do you knowwhat formulas mean
and how they relate?

Clara: Kind of, I think we know intuitively what they mean. But how they
relate is unclear, at least to me.

Peirce: In that case, let us talk about semantics and understand the signs of
logical formulas. Once we have that, we can talk about the relation of
formulas and how Isaac may attempt logical deduction.

3.1. Truth Values

For every propositional formula, we can try to understand under what con-
ditions it represents a correct or incorrect, a true or false, proposition. This is
simplest way of assigning truth values to formulas.

𝑝 𝑞 𝑝 ∧ 𝑞
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.1.: Truth table of conjunction

Example 3.1

Let 𝜑 be the formula 𝑝 ∧ 𝑞 for some propositional variables 𝑝 and 𝑞.
What would the truth value of 𝜑? Is 𝜑 true or false? That depends
entirely on the truth values of 𝑝 and 𝑞, since propositional variables
have no intrinsic meaning. Let us, for simplicity, write 0 instead of
false and 1 instead of true. We could choose another notation, but this
particular notation is short and will turn out to be beneficial, not the
least because it corresponds to bits and voltage levels in your circuits,
Isaac!
Now think about the case that 𝑝 and 𝑞 are both true, thus we assume
they have both 1 as truth value. What would be the truth value of the
conjunction 𝑝 ∧ 𝑞? Clearly, as 𝑝 and 𝑞 are true, so should be 𝑝 ∧ 𝑞 (read
∧ out as “and”). Thus, if 𝑝 and 𝑞 have the truth value 1, the 𝜑 should

3.1. Truth Values 17

have as well the truth value 1.
How about that case that one of them, say 𝑞, is false and has the truth
value 0? Then we end up with the question whether “true and false”
should be true or false. As it is not possible that something is true and
false at the same time, we deduce that 𝑝 ∧ 𝑞 is false in this case and the
formula 𝜑 has the truth value 0.
We can continue like this and prepare the small table 3.1. This table lists
all the possible values that the variables 𝑝 and 𝑞 can take, together with
the truth value of 𝑝∧𝑞 that results from these values. Thus, the first two
columns list all possibilities, while the last column is computed [Ane12]
or deduced from the first column.

?
Supposewe prepare a truth table for the formula 𝑝∧𝑞∧𝑟 with three dif-
ferent propositional variables. How many rows would the table have?

Surely, we could devise truth tables for all kinds of formulas by hand, but what
are truth tables in general and how do they relate to the meaning of formulas?
To understand this, let us consider each row of the truth table in table 3.1
separately. Every row assigns truth values to the variables that appear in the
formula and then determines the truth values of the overall formula. Note that
it does not matter what other variables, which do not appear in the formula,
have as truth value. The following definition can be thought of formalising
the values of variables in one row of a truth table.

Definition 3.2

We define the set of truth values 𝔹 by 𝔹 = {0, 1}. A valuation is a
map 𝑣 ∶ PVar → 𝔹, that is, an assignment of unique truth values to all
propositional variables.

You will have noticed that definition 3.2 leads to infinite truth tables. This is of
course rather inconvenient on paper and we will rectify this later. However,
in theoretical investigations this definition is easy to work with.

18 3. Semantics of Propositional Logic

3.2. Boolean Semantics of Propositional Logic

“Was the reason to introduce truth tables not to determine the truth value of
formulas?”, Isaac wonders. “But definition 3.2 only speaks about the values
assigned to variables, doesn’t it?”. Absolutely, and the next step is to calculate
from a valuation the truth value of a formula. For this, we will use that 0 and
1 are ordered as numbers, that is, we have 0 ≤ 1, 0 ≤ 0 and 1 ≤ 1. Us-
ing this information, we can reduce the calculation of truth values to familiar
operations on numbers.

Definition 3.3

We define the semantic implication as binary operation ⟹∶ 𝔹 ×
𝔹 → 𝔹 on truth values 𝑥, 𝑦 ∈ 𝔹 by the following case distinction.

𝑥 ⟹ 𝑦 = {1, 𝑥 ≤ 𝑦
0, otherwise

Given a valuation 𝑣, we define the Boolean propositional semantics
of formulas iteratively as follows.J−K𝑣 ∶ PForm → 𝔹J𝑝K𝑣 = 𝑣(𝑝)J⊥K𝑣 = 0J𝜑 ∧ 𝜓K𝑣 = min{J𝜑K𝑣, J𝜓K𝑣}J𝜑 ∨ 𝜓K𝑣 = max{J𝜑K𝑣, J𝜓K𝑣}J𝜑 → 𝜓K𝑣 = J𝜑K𝑣 ⟹ J𝜓K𝑣

𝑥 𝑦 𝑥 ⟹ 𝑦
0 0 1
0 1 1
1 0 0
1 1 1

Table 3.2.: Values of Semantic Implication

Clara: Wait, wait, Professor … Why do we need the semantic implication and
what are these strange double brackets?

Peirce: The semantic implication is not strictly necessary, but it clarifies the
intention in the semantics of the syntactic implication. Also, it makes

3.2. Boolean Semantics of Propositional Logic 19

it easier to understand how implication works, as we can make a table
with all possible arguments of the operation and the results, see table 3.2.

Clara: Is this not a truth table?

Peirce: It indeed looks suspiciously like one and the truth table for implication
would have exactly the same entries.

Clara: So why do we need the semantic implication then?

Peirce: Look at the definition, it tells you that the semantic implication is only
true if the antecedent, the first argument 𝑥, has a truth value that is
below that of the consequent 𝑦. In particular, if 𝑥 is true, 𝑦 must be true.
By just looking at the truth table, you must be particularly confused by
the first row, but our definition says that implication is just the same as
the order of numbers!

Clara: Ok, but what about these funny brackets?

Peirce: These double brackets, called Scott brackets in honour of Dana Scott,
are commonly used in denotational semantics. They take in a syntactic
object, here formulas, and map that to an element of the semantic do-
main, here the truth values in 𝔹. These brackets have two important
features: First, they define a map, which means that every formula gets
assigned a unique truth value. Second, they are defined by iteration on
formulas. This means that the truth value of a formula is determined
by the truth of its direct subformulas.

Isaac: That reminds me of the principle of iteration that Aristotle explained
to us.

Peirce: Very well observed! In fact, the definition of subformulas has pro-
ceeded in exactly the same way as the definition of the semantics.

But enough chatter! Let us discuss us some examples.

Example 3.4

Let 𝑝, 𝑞 ∈ PVar and let 𝑣 ∶ PVar → 𝔹 be the valuation defined by
𝑣(𝑝) = 𝑣(𝑞) = 1 and 𝑣(𝑟) = 0 for all other 𝑟 ∈ PVar. Then we have

J𝑝 ∧ 𝑞K𝑣 = min{J𝑝K𝑣, J𝑞K𝑣} = min{𝑣(𝑝), 𝑣(𝑞)} = min{1, 1} = 1 .

You could have read this, of course, already off table 3.1. So let us try some-
thing more complex.

20 3. Semantics of Propositional Logic

Example 3.5

Suppose 𝑝 and 𝑞 are distinct variables and we define a valuation 𝑣 by
𝑣(𝑝) = 0, 𝑣(𝑞) = 1 and 𝑣(𝑟) = 0 for all other 𝑟 ∈ PVar. Then the
semantics of the formula 𝑝 ∨ (𝑞 → 𝑝) → 𝑞 → 𝑝 with respect to 𝑣 are
given as follows.

J𝑝 ∨ (𝑞 → 𝑝) → 𝑞 → 𝑝K𝑣
= J𝑝 ∨ (𝑞 → 𝑝)K𝑣 ⟹ J𝑞 → 𝑝K𝑣
= J𝑝 ∨ (𝑞 → 𝑝)K𝑣 ⟹ (J𝑞K𝑣 ⟹ J𝑝K𝑣)
= J𝑝 ∨ (𝑞 → 𝑝)K𝑣 ⟹ (𝑣(𝑞) ⟹ 𝑣(𝑝))
= max{𝑣(𝑝), 𝑣(𝑞) ⟹ 𝑣(𝑝)} ⟹ (𝑣(𝑞) ⟹ 𝑣(𝑝))
= max{0, 1 ⟹ 0} ⟹ (1 ⟹ 0)
= max{0, 0} ⟹ 0
= 0 ⟹ 0
= 1

3.3. Back to Truth Tables

Isaac insists: “Ok, we can calculate now the semantics of formulas for some
valuations. But what about truth tables? These seem to be rather convenient.”
They are indeed! The following theorem shows that we can reduce the calcu-
lation of the semantics to truth tables. Have you noticed in the examples 3.4
and 3.5 that the valuations were defined to be 0 on the variables that did not
occur in the formulas? In fact, we could have given them any value, as they
did not appear in the formulas. We also say that the semantics of formulas is
locally determined.

Theorem 3.6: Local Determination

Let 𝜑 be a formula. If 𝑣1 and 𝑣2 are valuations, such that 𝑣1(𝑝) = 𝑣2(𝑝)
for all variables 𝑝 ∈ var(𝜑) that appear in 𝜑, then J𝜑K𝑣1

= J𝜑K𝑣2
.

Proof. We proceed by induction on formulas. In the base cases 𝑝 and ⊥, we
have J𝑝K𝑣1

= 𝑣1(𝑝) = 𝑣2(𝑝) = J𝑝K𝑣2

3.3. Back to Truth Tables 21

and J⊥K𝑣1
= 0 = J⊥K𝑣2

.
For the induction step, we assume that the induction hypothesis (IH) holds for
𝜑1 and 𝜑2, that is, J𝜑𝑘K𝑣1

= J𝜑𝑘K𝑣2
for 𝑘 = 1, 2. We then have

i) for the conjunction that

J𝜑1 ∧ 𝜑2K𝑣1
= min{J𝜑1K𝑣1

, J𝜑2K𝑣1
} by definition

= min{J𝜑1K𝑣2
, J𝜑2K𝑣2

} by IH
= J𝜑1 ∧ 𝜑2K𝑣2

by definition

ii) the analogous argument for disjunction, and

iii) for implication that

J𝜑1 → 𝜑2K𝑣1
= J𝜑1K𝑣1

⟹ J𝜑2K𝑣1
by definition

= J𝜑1K𝑣2
⟹ J𝜑2K𝑣2

by IH and because ⟹ is a map
= J𝜑1 → 𝜑2K𝑣2

by definition

Thus, for all formulas 𝜑, the semantics J𝜑K𝑣1
and J𝜑K𝑣2

agree, meaning that
they are determined only by the variables that appear in 𝜑.

The result of theorem 3.6 allows us to provide the semantics of any formula 𝜑
in terms of truth tables. To this end, we make a table that has one column for
every variable that appears in 𝜑 and one column for the semantics of 𝜑. The
rows of the table will be determined by all the possible values that the variables
can attain and the evaluation of the semantics of 𝜑 under a valuation that is
compatible with values of the variables in a row. For instance, suppose that
only the variables 𝑝 and 𝑞 appear in 𝜑. The truth table would then start like
this, where 𝑣 is any valuation with 𝑣(𝑝) = 𝑣(𝑞) = 0:

𝑝 𝑞 𝜑
0 0 J𝜑K𝑣
⋮ ⋮ ⋮

We are now able to construct a truth table for some more complex example.

22 3. Semantics of Propositional Logic

Example 3.7

Recall that we calculated the semantics of 𝑝 ∨ (𝑞 → 𝑝) → 𝑞 → 𝑝
in example 3.5 for a specific valuation. Using the above recipe, we
can now construct the truth table for this formula. It can be helpful
for complex formula like this one to also add columns for subformulas
and determine their semantics first. Like this, the overall calculation
becomes apparent from the table. We indicate this by drawing a single
vertical line between the columns of the variables and the subformulas,
which in turn are separated by a double vertical line from the formula.
For the above formula, we then obtain the following truth table.

𝑝 𝑞 𝑞 → 𝑝 𝑝 ∨ (𝑞 → 𝑝) 𝑝 ∨ (𝑞 → 𝑝) → 𝑞 → 𝑝
0 0 1 1 1
0 1 0 0 1
1 0 1 1 1
1 1 1 1 1

3.4. Entailment, Satisfiability, Tautologies

“Great, now we understand what formulasmean! But hold on, there seems to
be something funny going on in example 3.7: all the rows in the table have
the same truth value for the formula”, Isaac inquires. “Is this correct?” It
is! Such formulas have a special status and we call them tautologies. Before
we go there, let me introduce you to another formulation of the semantics
for formulas that is convenient whenever we want to state that a formula is
true.

Definition 3.8

For Γ a set of formulas, that is Γ ⊆ PForm, and a valuation 𝑣 we define
the semantics of Γ by

JΓK𝑣 = min{J𝜓K𝑣 | 𝜓 ∈ Γ}

with JΓK𝑣 = 1 if Γ = ∅. For a formula 𝜑, we say that Γ entails 𝜑,
written as Γ ⊨ 𝜑, if we have for all valuations 𝑣 that JΓK𝑣 ≤ J𝜑K𝑣.
The set Γ contains the premises of the entailment. In the case that Γ is
empty, we write ⊨ 𝜑 instead of ∅ ⊨ 𝜑.

3.4. Entailment, Satisfiability, Tautologies 23

Compare this to the definition of the semantic implication, which holds if and
only if the antecedent is below the consequent. You will see that, intuitively,
Γ ⊨ 𝜑 holds if the conjunctions of all formulas in Γ implies 𝜑. It might be
the case that Γ is not a finite set, in which case we cannot form such a con-
junction, but the entailment works even in this case. Even though an infinite
set Γ entails a formula 𝜑, only a finite amount of formulas contributes to the
entailment. Proving this needs, however, tools that are not yet available to
us.

What we can do though is to use definition 3.8 to deduce formulas from given
premises. The following theorem 3.9 provides some rules that simplify the
deduction process.

Theorem 3.9

For all formulas 𝜑 and 𝜓 and Γ ⊆ PForm the following holds.

• if 𝜑 ∈ Γ, then Γ ⊨ 𝜑
• if Γ ⊨ ⊥, then Γ ⊨ 𝜑
• Γ ⊨ 𝜑 ∧ 𝜓 iff Γ ⊨ 𝜑 and Γ ⊨ 𝜓
• Γ ⊨ 𝜑 ∨ 𝜓 iff Γ ⊨ 𝜑 or Γ ⊨ 𝜓 (or both)

• Γ ⊨ 𝜑 → 𝜓 iff, whenever Γ ⊨ 𝜑 holds, then Γ ⊨ 𝜓
• Γ ⊨ 𝜑 → 𝜓 iff Γ ⊭ 𝜑 or Γ ⊨ 𝜓 (or both)

• Γ ⊨ ¬𝜑 iff Γ ⊭ 𝜑

Proof. We can analyse all the cases separately. For instance, suppose 𝜑 ∈ Γ.
By definition 3.8, we have for any valuations 𝑣 that

JΓK𝑣 = min{J𝜓K𝑣 | 𝜓 ∈ Γ} ≤ J𝜑K𝑣 ,

which proves our claim.

We shall also prove the case of conjunction. Let 𝑣 be a valuation. ThenJΓK𝑣 ≤ J𝜑 ∧ 𝜓K𝑣 = min{J𝜑K𝑣, J𝜓K𝑣}
iff JΓK𝑣 ≤ J𝜑K𝑣 and JΓK𝑣 ≤ J𝜓K .

As this holds for any valuation Γ ⊨ 𝜑 ∧ 𝜓 iff Γ ⊨ 𝜑 Γ ⊨ 𝜓.

All the other cases are proven analogously.

24 3. Semantics of Propositional Logic

“Wait, there are two items for the implication?”, Clara objects. Yes, this is quite
special about the Boolean semantics. The implication can be expressed in this
semantics by using negation and disjunction. But don’t be misled, there are
also other possible semantics of propositional logic, like Kripke semantics, that
we will unfortunately not touch upon here. In these semantics, implication
cannot be expressed with negation and disjunction.

But we are digressing. Let us come back to the formula from example 3.7
that was always true. There are a few classifications of formulas and rela-
tions between formulas that allow us to say how to prove propositions, which
means to establish that such propositions are true. As you may imagine, this
is not always possible.

Definition 3.10

Let 𝜑, 𝜓 ∈ PForm. We say that

• 𝜑 is satisfiable if there is a valuation 𝑣 with J𝜑K𝑣 = 1. Otherwise,
we say that 𝜑 is unsatisfiable;

• 𝜑 is a tautology if ⊨ 𝜑, that is, ∅ ⊨ 𝜑; and

• 𝜑 and 𝜓 are semantically equivalent, written 𝜑 ≡ 𝜓, if for all
valuations 𝑣, J𝜑K𝑣 = J𝜓K𝑣.

Let me give you some examples to bring this list of terminology to life.

Example 3.11

1. Let 𝑣(𝑝) = 𝑣(𝑞) = 1 and 𝑣(𝑟) = 0 otherwise. Then J𝑝 ∧𝑞K𝑣 = 1
and therefore 𝑝 ∧ 𝑞 is satisfiable.

2. Let 𝜑 = 𝑝 ∧ ¬𝑝. Then for any valuation 𝑣, we have

J𝜑K𝑣 = min{𝑣(𝑝), 𝑣(𝑝) ⟹ 0} = {min{0, 1}, 𝑣(𝑝) = 0
min{1, 0}, 𝑣(𝑝) = 1} = 0

and thus 𝜑 is unsatisfiable.

3. The formula 𝑝 → 𝑝 is a tautology: Let 𝑣 be any valuation. Then

J𝑝 → 𝑝K𝑣 = 𝑣(𝑝) ⟹ 𝑣(𝑝) = {1, 𝑣(𝑝) ≤ 𝑣(𝑝)
0, otherwise

} = 1

3.5. Semantic Deduction 25

4. Finally, we have 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝: For any valuation 𝑣 we have that

J𝑝 ∧ 𝑞K𝑣 = min{𝑣(𝑝), 𝑣(𝑞)} = min{𝑣(𝑞), 𝑣(𝑝)} = J𝑞 ∧ 𝑝K𝑣

3.5. Semantic Deduction

Pierce’s excursion has left Isaac is confused: “I can see what tautologies and
satisfiable formulas are, but how does definition 3.10 relate to deducing pro-
positions?” First of all, you will appreciate that semantic equivalence says
that two formulas have the same meaning and that one can be replaced by the
other, whenever we speak about the semantics of formulas. For instance, all
tautologies are semantically equivalent.

More importantly, however, we have not talked about the entailment relation
Γ ⊨ 𝜑 between sets of formulas Γ and formulas 𝜑, yet. The idea is that we
may want to make some assumptions, like 𝑟 ∧𝑢 → 𝑤 and 𝑢∧¬𝑤, and deduce
a formula like ¬𝑟. “Ooh, that looks familiar! We have seen something like
this before in example 2.4 during our discussion with Aristotle.”, Clara’s eyes
sparkle in delight. Yes, you can see proofs with assumptions in two ways:
either you prove that

(𝑟 ∧ 𝑢 → 𝑤) ∧ (𝑢 ∧ ¬𝑤) → ¬𝑟

is a tautology, or you prove the entailment

{𝑟 ∧ 𝑢 → 𝑤, 𝑢 ∧ ¬𝑤} ⊨ ¬𝑟 .

Theorem 3.12

Let Γ, Δ ⊆ PForm and 𝜑, 𝜓 ∈ PForm. Then the following holds.

i) If Γ ⊆ Δ and Γ ⊨ 𝜑, then Δ ⊨ 𝜑. (Monotonicity)

ii) If Γ ⊨ 𝜑 and Γ ∪ {𝜑} ⊨ 𝜓, then Γ ⊨ 𝜓. (Transitivity or semantic
cut)

iii) Γ ⊨ 𝜑 → 𝜓 iff Γ ∪ {𝜑} ⊨ 𝜓. (Semantic deduction)

iv) If Γ ⊨ 𝜑 and Γ ⊨ 𝜑 → 𝜓, then Γ ⊨ 𝜓. (Modus ponens)

26 3. Semantics of Propositional Logic

Proof. Let Γ, Δ ⊆ PForm and 𝜑, 𝜓 ∈ PForm. For a valuation 𝑣, we will write
Γ𝑣 = {J𝜓K𝑣 | 𝜓 ∈ Γ} to simplify notation.

i) Suppose that Γ ⊆ Δ and Γ ⊨ 𝜑. We obtain from that first assumption
that Γ𝑣 ⊆ Δ𝑣 and thus JΔK𝑣 = minΔ𝑣 ≤ minΓ𝑣 = JΓK𝑣 (note
the reversed order). Combined with the second assumption, we getJΔK𝑣 ≤ JΓK𝑣 ≤ J𝜑K𝑣 and thus Δ ⊨ 𝜑 as desired.

ii) Suppose that Γ ⊨ 𝜑 and Γ ∪ {𝜑} ⊨ 𝜓, and let 𝑣 be a valuation. We get

JΓK𝑣
= min{JΓK𝑣, J𝜑K𝑣} by the assumption JΓK𝑣 ≤ J𝜑K𝑣
≤ J𝜓K𝑣 by the second assumption

and thus Γ ⊨ 𝜓.

iii) This item requires an intermediate result that is left as an exercise: For
all 𝑥, 𝑦, 𝑧 ∈ 𝔹, we have that

𝑥 ≤ 𝑦 ⟹ 𝑧 iff min{𝑥, 𝑦} ≤ 𝑧 .

Using this result and by applying the definition 3.8 twice, we obtain

JΓK𝑣 ≤ J𝜑 → 𝜓K𝑣 = J𝜑K𝑣 ⟹ J𝜓K𝑣
iff JΓ ∪ {𝜑}K𝑣 = min(Γ ∪ {𝜑})𝑣 = min{JΓK𝑣, J𝜑K𝑣} ≤ J𝜓K𝑣

and thus Γ ⊨ 𝜑 → 𝜓 iff Γ ∪ {𝜑} ⊨ 𝜓.

iv) This follows from items ii) and iii).

Clara gets excited: “We should be able to use theorem 3.12 to formalise Aris-
totle’s syllogism, shouldn’t we?”. Yes indeed, this is possible.

Example 3.13

Let us define Γ = {𝑟 ∧ 𝑢 → 𝑤, 𝑢 ∧ ¬𝑤} and show that the entailment

Γ ⊨ ¬𝑟

holds. By definition of negation and theorem 3.12.iii), we can instead
prove Γ ∪ {𝑟} ⊨ ⊥. We shall denote Γ ∪ {𝑟} henceforth by Γ1. By
applying theorem 3.9 repeatedly, we obtain

Γ1 ⊨ 𝑢 and Γ1 ⊨ 𝑟

3.5. Semantic Deduction 27

and therefore
Γ1 ⊨ 𝑢 ∧ 𝑟 .

Since 𝑟 ∧ 𝑢 → 𝑤 ∈ Γ1 we can use modus ponens (theorem 3.12.iv)) to
obtain

Γ1 ⊨ 𝑤 . (3.1)

On the other hand, we can apply theorem 3.9 to obtain

Γ1 ⊨ ¬𝑤 (3.2)

because 𝑢∧¬𝑤 ∈ Γ1. By applying modus ponens to eqs. (3.1) and (3.2),
we find that Γ1 ⊨ ⊥ and thus Γ ⊨ ¬𝑟.

Isaac: This is all good and well, but example 3.13 has too much natural lan-
guage for my taste! How could this kind of reasoning underlie any of
my inner workings?

Clara: Indeed, the reasoning requires quite some ingenuity, no offence Isaac,
and does not lend itself to automatic computation.

Isaac: No offence taken!

Clara: Even for me, the reasoning is hard to follow.

Peirce: You are absolutely right and I would advise not to carry out deduc-
tions this way. Even though the principles established in theorems 3.9
and 3.12 are useful, they do not tell us how to organise proofs.

Clara: Then we should learn how to organise deductions! Can you help us to
do that?

Peirce: I’m afraid that your time here is up and you I will have to refer you to
two other logicians. The first logician will introduce you to the exciting
world of proof theory, which offers powerful tools to organise formal
deductions and make them computer-verifiable. The other logician is
more interested in letting computers figure out deductions automatic-
ally. This is an ideal task to test the limits of your computingmachinery,
Isaac.

Then, off you go! I wish you farewell and great continuation of your
voyage!

4. Proof Theory of Propositional
Logic

Isaac: What is going on here? Who are all these people sitting in the fields,
on the hills and in the garden of this villa?

Peano: Welcome to my home! These are the women working in the cotton
mills of Torino. They are asking for their rights: limiting working days
to 10 hours, lunch breaks, costs for working material should be covered
by the factory owner etc. etc.

Clara: Professor Peano, what a pleasure to meet you! These are indeed very
reasonable requests.

Isaac: It seems that some of these requests have been reversed in our time.

Clara: Yes, that is unfortunately true. I guess that we could at some point use
logic and computers to prove that rights will remain unstable, unless
workers control their workspace and students control their educational
institution.

Peano: What a wonderful idea! Although, students used to be in charge at
the Universities of Bologna and Paris in the Middle Ages. In any case,
what brings you two to my home?

Clara: Our visits to Aristotle and Charles Sanders Peirce have taught us how
to formalise propositions as formulas and how semantically derive for-
mulas from sets of assumptions. However, this left us a bit dissatisfied.

Peano: In which way?

Clara: Deductions via entailment depend on a particular semantics, which is
contrary to the idea that understanding logic lies in understanding the
differences of meaning through studying different models.

Isaac: And deductionsmadewith entailment still use a lot of natural language.

30 4. Proof Theory of Propositional Logic

Peano: In short, you are looking for is a formal syntax for proofs, not only for
formulas.

Clara: Indeed, I haven’t thought about it that way.

Peano: Formal proofs are what has guided my Formulario project. Please,
come to my terrace and enjoy the worm evening with me over a glass
of wine. I will tell you about a system that was conceived by Gerhard
Gentzen [Gen35], with whom I disagree politically, but who paved the
way for natural approaches to deduction.

Let us begin with what an informal, but rigorous, proof consists of. One of the
main issues, which had been identified already by the Indian logicians [Gan04,
Sec. 3.6 and Chap. 4], is that we need to be absolutely clear about the assump-
tions that we make and what we want to prove. Otherwise, we can easily
prove anything, like the existence of any kind of god, without providing any
actual evidence. Once this is stated, we can go state the proof method and
steps. You may enumerate the ingredients of a proofs thus as follows, but be
careful that this list is only an informal statement and may vary. It might be
beneficial to learn about proofs also from other people [Sol13].

I) Fix the background theory (axioms, definitions, deduction rules etc.)

II) State all the assumptions of the proposition (“Suppose that …”)

III) State the proposition to be proved

IV) State the proof method (“By induction on …”, “By contraposition …”)
and provide the proof steps that deduce the proposition from the as-
sumptions (involving the background theory)

Peano: You have seen informal proofs already on your journey, I understand,
and you should be able to match the above scheme to those proofs.
Only that it will be difficult to pin down the exact background theory
used in those proof. How can we, therefore, be sure that those proofs
are correct?

Isaac: If they were is unambiguous format, then I could check all the steps
and, assuming that the computations did not gowrong anywhere, could
say with certainty that they are correct.

Clara: That would be great! But at the same time I would like to be able read
and write these proofs easily, as I would like to communicate them still
with other humans.

4.1. Deductive Systems 31

Peano: This is a very good point! Before we get to such natural deduction sys-
tems, let me first start with making proofs unambiguous and introduce
you to deductive systems.

4.1. Deductive Systems

Over time, logicians have developed a vast range of deduction methods. What
I would like to focus on here are deductive systems that formalise proofs of
syntactic formulas without, a priori, referring to semantics. Here is a list,
certainly incomplete, of such methods.

• Axiomatic proof theory

• Natural deduction

• Sequent calculus

• Tableaux methods

• Uniform and focalised proofs

• Algebraic proof theory

• Type theory

• Category theory

The methods marked in this list are based on a tree representation of proofs.
This makes them easy to understand, while still being suitable for automation.
We typically refer to the study of those as Structural Proof Theory.

In order to use a deductive systems in the formalisation of proofs, as outlined
above, we have to

I) fix a deductive system 𝐼 with background theory,

II) list our assumptions Γ,

III) represent the proposition as formula 𝜑, and

IV) construct a proof for 𝜑 from Γ in 𝐼 , which is written as

Γ ⊢𝐼 𝜑 .

We call this relation a (hypothetical) judgement [PD01].

32 4. Proof Theory of Propositional Logic

“Why hypothetical?”, Isaac is puzzled. Becausewe cannot expect to find proofs
for any combination of Γ and 𝜑. You may read Γ ⊢𝐼 𝜑 as the result that we
wish to prove and we will be able to say that this judgement holds, once we
have found a proof.

Now the question is of course how a deductive system looks like and we will
soon get to that. But we should first understand that not any deductive system
may be useful. For example, we may find a deductive system questionable if
it allows us to prove that all cats fly or 1 + 1 = 1 in the natural numbers. As
a first step, we may require that it is not possible to prove anything absurd in
𝐼 , that is,

⊢𝐼 ⊥ is not provable in 𝐼 . (Consistency)

This requirement is, unfortunately, often to weak or maybe even undesirable
in some situations [Gan04; PTW18]. Thus, we usually give a reference that de-
termines which judgements may be provable. Fortunately, you know already
such a reference: the Boolean semantics. We thus require that

if Γ ⊢𝐼 𝜑 is provable, then Γ ⊨ 𝜑 . (Soundness)

This says that any valid judgement must also give a valid entailment in the
semantics. At this point, you may rightfully ask if we should not also ask that
any valid entailment should give a proof. This is a quite strong requirement
that many people lost a lot of sweat over:

if Γ ⊨ 𝜑 then Γ ⊢𝐼 𝜑 is provable. (Completeness)

Completeness is not only difficult to prove but it can also fail; sometimes spec-
tacularly, sometimes for mundane reasons. It has inspired in any case the
work of generations of logicians!

4.2. Natural Deduction

Clara: Fine, we know now what deductive systems are and what we desire of
them, but how does such a system look like concretely?

Peano: No worries, we get to that. We will start with a deductive system that
is very natural [Pra06] in the sense that deductions in that system cor-
respond to intuitive reasoning and, more importantly, deductions can
be reduced to very direct proofs. This latter sense of natural enables
automatic deduction methods, but that is for another time. For the mo-
ment, let us think about how we would naturally prove propositions.

4.2. Natural Deduction 33

The deductive system that will allows this is Gentzen’s system of natural de-
duction. This system is based on judgements of the form Γ ⊢ 𝜑, where Γ is a
list of (propositional) formulas and 𝜑 is a single formula.

Conjunction Let us begin with the case of conjunction and suppose that
we want to prove 𝜑 ∧ 𝜓. Intuitively, we would expect this proposition to be
true if 𝜑 and 𝜓 are separately true. In the terminology of deductive systems,
we should thus be able to derive from the judgements

Γ ⊢ 𝜑 and Γ ⊢ 𝜓

that the judgement
Γ ⊢ 𝜑 ∧ 𝜓

holds. As it is such an natural step, we will make it a deduction rule:

Γ ⊢ 𝜑 Γ ⊢ 𝜓
(∧I)Γ ⊢ 𝜑 ∧ 𝜓

This rules consists of hypotheses, the conclusion and a label to name the rule.
The hypotheses above the line are what we have to prove before we can apply
the rule. Once we have proved the hypotheses, we can deduce the conclusion
using the rule. We use labels to identify in proofs the rules that we use, which
helps both readability and allows us to verify proofs. In the case of the rule
above, we used the label (∧I) and read it as “conjunction introduction”. The
conclusion is a conjunction that has thus been introduced, hence the name of
the rule. You will have noticed that we used formulas 𝜑 and 𝜓 but did not say
what these formulas exactly are. In fact, the rule works for any formula and
we can see deduction rules as schemes that are agnostic to the structure of 𝜑
and 𝜓. With the rule (∧I), we are now able to prove conjunctions.

More generally, deduction rules are of the form

𝐽1 𝐽2 ⋯ 𝐽𝑛 (L)𝐽
where all the hypotheses 𝐽1, … , 𝐽𝑛 and the conclusion 𝐽 are judgements, and
L is a rule label. The label indicates whether we are introducing a connect-
ive, like (∧I) above, or are eliminating a connective, which means that the
connective appears among the hypotheses.

Why would we need to eliminate a connective? Suppose that we know, for
example from the assumptions of our proposition, that 𝜑 ∧ 𝜓 holds. In this

34 4. Proof Theory of Propositional Logic

case, we also know that 𝜑 and 𝜓 hold separately. This leads us to the following
two rules.

Γ ⊢ 𝜑 ∧ 𝜓
(∧E1)Γ ⊢ 𝜑

Γ ⊢ 𝜑 ∧ 𝜓
(∧E2)Γ ⊢ 𝜓

In these rules, the “E” stands for elimination and the number indicate which
of the conjuncts we would like to access.

Implication I hope that you recall that result called Modus Ponens from
theorem 3.12, which states that if Γ ⊨ 𝜑 → 𝜓 and Γ ⊨ 𝜑 holds, then also
Γ ⊨ 𝜓 holds. The intuition is that if we can prove the condition (antecedent)
of an implication, then we know that the conclusion of the implication holds.
To use this in natural deduction proofs, we turn this idea into a rule:

Γ ⊢ 𝜑 → 𝜓 Γ ⊢ 𝜑
(→E)Γ ⊢ 𝜓

But how can we prove an implication? The same theorem 3.12 gives us the
answer in item item iii) because it says that Γ ⊨ 𝜑 → 𝜓 holds if Γ ∪ {𝜑} ⊨ 𝜓
holds. As you can see, the theory Γ gets extended with 𝜑. The use of the
union of sets does not exactly match with our management of assumptions in
judgements as lists. The main difference is that lists can contain several times
the same formulas, while sets cannot. This is not strictly needed but becomes
important in automatic deduction. Let us, thus, write Γ, 𝜑 for the concatena-
tion of the list Γ and the formula 𝜑. This also saves us some braces! With this
notation for lists, we can now provide the introduction rule for implication.

Γ, 𝜑 ⊢ 𝜓
(→I)Γ ⊢ 𝜑 → 𝜓

What this rule does is to turn the obligation to prove an implication into an
obligation to prove 𝜓 with 𝜑 as extra assumption.

This raises the question how such an assumption can be used. Let us write
𝜑 ∶ Γ if the formula 𝜑 appears in the list Γ. The rule for using an assumption
allows us to pick any formula from Γ and use it as proven proposition.

𝜑 ∶ Γ
(Assum)Γ ⊢ 𝜑

Isaac: These are various rules for proving propositions, but how does this help
us to organise proofs any better than the semantic deduction did?

4.2. Natural Deduction 35

Peano: Think about what a deduction is: a chain of reasoning steps.

Clara: Like a list of rules?

Peano: Almost, except that some rules have more than one hypothesis and
we will have to use trees instead of lists.

Definition 4.1: Natural deduction for propositional logic

The system ND of natural deduction for propositional logic is given by
the rules in fig. 4.1, where Γ is a list of formulas and 𝜑, 𝜓 and 𝛿 are
formulas. We write the judgement Γ ⊢ 𝜑 as ⊢ 𝜑 is Γ is the empty list.

𝜑 ∶ Γ
(Assum)Γ ⊢ 𝜑

Γ ⊢ ⊥ (⊥E)Γ ⊢ 𝜑

Γ ⊢ 𝜑 ∧ 𝜓
(∧E1)Γ ⊢ 𝜑

Γ ⊢ 𝜑 ∧ 𝜓
(∧E2)Γ ⊢ 𝜓

Γ ⊢ 𝜑 Γ ⊢ 𝜓
(∧I)Γ ⊢ 𝜑 ∧ 𝜓

Γ ⊢ 𝜑
(∨I1)Γ ⊢ 𝜑 ∨ 𝜓

Γ ⊢ 𝜓
(∨I2)Γ ⊢ 𝜑 ∨ 𝜓

Γ ⊢ 𝜑 ∨ 𝜓 Γ, 𝜑 ⊢ 𝛿 Γ, 𝜓 ⊢ 𝛿
(∨E)

Γ ⊢ 𝛿
Γ, 𝜑 ⊢ 𝜓

(→I)Γ ⊢ 𝜑 → 𝜓
Γ ⊢ 𝜑 → 𝜓 Γ ⊢ 𝜑

(→E)Γ ⊢ 𝜓

Figure 4.1.: Deduction Rules of the natural deduction system ND

Figure 4.1 contains the rules for the two connectives that we did not discuss,
yet. The rule (⊥E) allows us to deduce anything from absurdity. This rule
is sometimes also referred to as the principal of explosion because, once ab-
surdity has been proven, anything is possible. Finally, there are the rules for
disjunction. It should be rather obvious why the introduction rules (∨I1) and
(∨I2) make sense, as 𝜑 ∨ 𝜓 holds whenever 𝜑 or 𝜓 holds. The elimination rule
(∨E) is a bit more complex. Underlying it is the idea that we want to prove 𝛿,
knowing that 𝜑 ∨ 𝜓 holds. As we cannot know which of the two it will be,
we have to make a case distinction and prove that 𝛿 holds in either case. If we
succeed, then 𝛿 can be deduced from 𝜑 ∨ 𝜓.

36 4. Proof Theory of Propositional Logic

Clara: This is like an if-then-else branch in programming, isn’t it?

Peirce: Indeed, branching or case distinction are very closely related to the
elimination of disjunction. You can think of it this way: The rule builds
a proof of 𝛿 that takes a proof of 𝜑∨𝜓 as input. To proceed, you make a
case distinction on this input and check whether it proves 𝜑 or 𝜓. You
can then use this information to prove 𝛿 for both cases separately.

Clara: Mh, that would suggest that we can write proofs as programs.

Peirce: It does! And you may be delighted to hear that the aforementioned
area of type theory concerns itself with interpreting proofs as pro-
grams. Very fascinating, but we shall continue for the moment with
natural deduction.

The missing piece of the puzzle is a way of assembling the rules together into
complex proofs.

Definition 4.2

Let Γ be a list of formulas and 𝜑 a formula. We call the pair Γ ⊢ 𝜑 a
(hypothetical) judgement of ND. A deduction (or proof tree) for Γ ⊢ 𝜑 is
a finite tree, such that

i) each node is labelled with a judgement and a rule label, such
that the children of the node are labelled with the hypotheses of
that rule;

ii) the root of the tree is labelled with Γ ⊢ 𝜑; and

iii) the leaves of the tree are (necessarily) labelled with (Assum).

We say that 𝜑 holds under hypotheses Γ in ND, if there is a deduction
of Γ ⊢ 𝜑. A formula 𝜑 is a theorem if ⊢ 𝜑 holds.

Definition 4.2 may look intimidating at first sight, but it really just formal-
ises our intuition of proofs. To illustrate this, let us go through some simple
examples.

Example 4.3

In this example, we show how the (Assum)-rule and (→I)-rule can be
used together to deduce ⊢ 𝑝 → 𝑞 → 𝑝. The formula 𝑝 → 𝑞 → 𝑝
also allows us to “store” knowledge and is one of the building blocks of

4.2. Natural Deduction 37

combinatory logic in form of the K-combinator. Here is the proof tree
for the deduction: 𝑝 ∶ 𝑝, 𝑞

(Assum)𝑝, 𝑞 ⊢ 𝑝
(→I)𝑝 ⊢ 𝑞 → 𝑝
(→I)⊢ 𝑝 → 𝑞 → 𝑝

As writing 𝜑 ∶ Γ in (Assum) is tedious, we allow ourselves to leave this out
whenever 𝜑 ∶ Γ obviously holds. Moreover, as the label (Assum) is also quite
long, we will typically shorten the rule to

Γ ⊢ 𝜑

if the application of (Assum) is obvious. In non-obvious cases, we will still
indicate the occurrence of 𝜑 in Γ.

Example 4.4

We deduce 𝑝 ∧ 𝑞 → 𝑟 ⊢ 𝑝 → 𝑞 → 𝑟. This process is also known
as Currying. As the judgements can get quite lengthy, let us name the
assumptions throughout the proof by defining Γ = 𝑝 ∧ 𝑞 → 𝑟.

𝑝 ∧ 𝑞 → 𝑟 ∶ Γ
Γ, 𝑝, 𝑞 ⊢ 𝑝 ∧ 𝑞 → 𝑟

Γ, 𝑝, 𝑞 ⊢ 𝑝 Γ, 𝑝, 𝑞 ⊢ 𝑞
(∧I)Γ, 𝑝, 𝑞 ⊢ 𝑝 ∧ 𝑞

(→E)Γ, 𝑝, 𝑞 ⊢ 𝑟
(→I)Γ, 𝑝 ⊢ 𝑞 → 𝑟
(→I)Γ ⊢ 𝑝 → 𝑞 → 𝑟

As you can see, we have simplified the application of (Assum) in the
two right leaves, but added some information on the left leaf to make
the proof easier to read.

“Aristotle gave us an example that Prof. Peirce said we could easily prove
with what we learn here.”, Clara says. “This example use negation and, if
I remember correctly, then negation was defined in terms of implication and
absurdity. Canwe thus use the deduction rules for those connectives to reason
about negation and prove the said example?”

Absolutely! But I would advise to make your life simpler and first establish
some specific rules for negation inside the system ND. These rules would not

38 4. Proof Theory of Propositional Logic

be part of the system itself but can be derived from it and can be used like
proof rules: they are admissible.

Definition 4.5

A rule 𝐽1 𝐽2 ⋯ 𝐽𝑛 (L)𝐽
is admissible, if there it is possible to construct from any deduction of
the judgements 𝐽1, … , 𝐽𝑛 a deduction for the judgement 𝐽 .

Nowwe canmake your life easier by providing admissible rules that determine
how negation can be handled in ND.

Theorem 4.6

The following two rules are admissible in ND.

Γ, 𝜑 ⊢ ⊥
(¬I)Γ ⊢ ¬𝜑

Γ ⊢ 𝜑 Γ ⊢ ¬𝜑
(¬E)Γ ⊢ 𝜓

Proof. Let 𝜑 and 𝜓 be formulas. First, we suppose that Γ, 𝜑 ⊢ ⊥ holds. We
then obtain immediately a proof tree

Γ, 𝜑 ⊢ ⊥
(→I)Γ ⊢ 𝜑 → ⊥

and thus a proof tree for (¬I) because ¬𝜑 is defined to be 𝜑 → ⊥.

Next, suppose that there are proof trees for Γ ⊢ 𝜑 and Γ ⊢ ¬𝜑. We can then
build the following proof tree by using again the definition of ¬𝜑 in terms of
𝜑 → ⊥.

Γ ⊢ 𝜑 Γ ⊢ ¬𝜑
(→E)Γ ⊢ ⊥ (⊥E)Γ ⊢ 𝜓

This shows that both, (¬I) and (¬E), are admissible in ND.

Using these two rules, we can easily prove judgements that involve negation.
In particular, we can prove the statement by Aristotle!

4.2. Natural Deduction 39

Example 4.7: It does not rain for Socrates

Let Γ = 𝑟 ∧ 𝑢 → 𝑤, 𝑢 ∧ ¬𝑤. The following is a proof for Γ ⊢ ¬𝑟.

Γ, 𝑟 ⊢ 𝑟 ∧ 𝑢 → 𝑤
Γ, 𝑟 ⊢ 𝑟

Γ, 𝑟 ⊢ 𝑢 ∧ ¬𝑤
(∧E1)Γ, 𝑟 ⊢ 𝑢

(∧I)Γ, 𝑟 ⊢ 𝑟 ∧ 𝑢
(→E)Γ, 𝑟 ⊢ 𝑤

𝑢 ∧ ¬𝑤 ∶ Γ
Γ, 𝑟 ⊢ 𝑢 ∧ ¬𝑤

(∧E2)Γ, 𝑟 ⊢ ¬𝑤
(¬E)Γ, 𝑟 ⊢ ⊥

(¬I)Γ ⊢ ¬𝑟

“I would like to see also some proofs that involve the elimination of disjunc-
tion.”, says Isaac. “Could we go over that as well?”

Most certainly. Here is an interesting example that shows that, if we can ex-
clude on alternative of a disjunction, then the other necessarily has to hold.

Example 4.8

We put Γ = 𝑝∨𝑞, ¬𝑞 and prove 𝑝∨𝑞, ¬𝑞 ⊢ 𝑝 by means of the following
deduction.

Γ ⊢ 𝑝 ∨ 𝑞 Γ, 𝑝 ⊢ 𝑝
Γ, 𝑞 ⊢ 𝑞

¬𝑞 ∶ Γ
(Assum)Γ, 𝑞 ⊢ ¬𝑞
(¬E)Γ, 𝑞 ⊢ 𝑝

(∨E)Γ ⊢ 𝑝
Note that (∨E) acts like a case distinction and we show in the second,
were we suppose that 𝑞 holds, that this case is absurd. This allows us
to show that Γ ⊢ 𝑝 must hold.

In the final example, we show that the negation of a disjunction is very similar
to the conjunction of the negation of the subformulas of the disjunction. This
is one side of one of de Morgan’s law, which holds in the Boolean semantics in
that ¬(𝜑∨𝜓) ≡ ¬𝜑∧¬𝜓. You can try to prove the other direction yourself.

40 4. Proof Theory of Propositional Logic

Example 4.9

We prove ¬(𝜑 ∨ 𝜓) ⊢ ¬𝜑 for all formulas 𝜑 and 𝜓. Let Γ = ¬(𝜑 ∨ 𝜓).

Γ, 𝜑 ⊢ ¬(𝜑 ∨ 𝜓)
Γ, 𝜑 ⊢ 𝜑

(∨I1)Γ, 𝜑 ⊢ 𝜑 ∨ 𝜓
(¬E)Γ, 𝜑 ⊢ ⊥

(¬I)Γ ⊢ ¬𝜑

“What about the equivalence ¬(𝜑 ∧ 𝜓) ≡ ¬𝜑 ∨ ¬𝜓?”, Clara wonders. That
equivalence is surprisingly more delicate! Keep it in mind until we come to
section 4.5. In that section, we will prove properties of proof trees and the
system ND. Let me, before we continue with examples, tell you how we can
do that. Recall that we showed in corollary 2.8 how properties of formulas can
be proved by formula induction. A similar result can also be stated for proof
trees.

Theorem 4.10: Proof tree induction

Let 𝑃 be a property of proof trees. Suppose further that

i) 𝑃 holds for all single-node proof trees labelled by (Assum) (𝑃
contains all instances of the rule (Assum)) and;

ii) for all proof trees 𝑇1, … , 𝑇𝑛 for judgement 𝐽1, … , 𝐽𝑛 that match
a rule (L) with conclusion 𝐽 , if 𝑃(𝑇1), … , 𝑃 (𝑇𝑛) hold, then 𝑃
also holds for the proof tree

𝐽1 ⋯ 𝐽𝑛 (L)𝐽

Under these conditions, the property 𝑃 holds for all proof trees.

Analogously to induction on natural numbers and formulas, we will refer to
item i) as base case and item ii) as the induction step. We will not go over this,
but you may imagine how theorem 4.10 can be proven by induction over the
tree height and by breaking proof trees down in subtrees.

4.3. Fitch-Style Natural Deduction 41

4.3. Fitch-Style Natural Deduction

Clara: The system ND seems to indeed formalise our intuition of proofs, as
we can clearly see the proof unfolding and check each step …

Isaac: … probably even automatically with a computer.

Clara: Indeed! However, I find it a bit worry-some that the trees grow so
much in width. How can I bigger proofs on an A4 page?

Why not consider using an interactive presentation of proof trees, in which
you can focus on parts of the tree? But if you insist on using paper, then there
are several ways to represent trees in a way that they only grow in one rather
than two dimensions. This makes it possible to represent large proof trees on
paper, albeit with two disadvantages:

1. the proofs are harder to read because the branches of proof trees will
be typically be scattered over the page, and

2. writing proofs requires either good planning or computer support.

With a bit of discipline and experience, the second issue will have negligible
impact. The first issue is more severe, but we shall introduce a format for
proofs that allows for a bit of two-dimensional structure and features numbered
references to help readability.

Consider, for example, the proof tree from example 4.4. This proof tree is
shown below on the left. Let us draw a tree that corresponds to this proof tree
but only has numbers as labels. You may find this tree on the right:

Γ, 𝑝, 𝑞 ⊢ 𝑝 ∧ 𝑞 → 𝑟
Γ, 𝑝, 𝑞 ⊢ 𝑝 Γ, 𝑝, 𝑞 ⊢ 𝑞

(∧I)Γ, 𝑝, 𝑞 ⊢ 𝑝 ∧ 𝑞
(→E)Γ, 𝑝, 𝑞 ⊢ 𝑟

(→I)Γ, 𝑝 ⊢ 𝑞 → 𝑟
(→I)Γ ⊢ 𝑝 → 𝑞 → 𝑟 7

6

5

4

32

1

As you can imagine, we can make a list of all the nodes and refer to them by
their numbers instead of drawing the edges. If you have ever implemented
trees with pointers or arrays, then this will be very familiar. Also, if you ever
read some classical text on mathematical logic, then you will see that proofs
are often represented in this way. But just listing the proof steps and using
numbered references misses the introduction of premises. For instance, we

42 4. Proof Theory of Propositional Logic

introduce a new assumption in node 7 that we will have to record. This leads
us to Fitch-style proofs, which combine numbered proof steps and so-called
flags that indicate the introduction of assumptions. Let me show you how the
above proof tree looks like in Fitch-style:

1 𝑝 ∧ 𝑞 → 𝑟
2 𝑝
3 𝑞
4 𝑝 ∧ 𝑞 ∧I, 2, 3
5 𝑟 →E, 1, 4
6 𝑞 → 𝑟 →I, 3–5
7 𝑝 → 𝑞 → 𝑟 →I, 2–6

Fitch-style proofs use as numbering schemes the line numbers of a proof, go-
ing from top to bottom. The mentioned flags are in line 1, 2 and 3, and we
say that we open flags in those lines. A flag indicates that everything proved
within it, requires the premises written on top of that flag. For instance, the
whole proof ranging from line 2 to 7 requires the premise 𝑝 ∧ 𝑞 → 𝑟 in line 1,
the proof ranging from line 3 to 6 requires the premise 𝑝 in line 2 and so forth.
We also indent flags a bit and retain some two-dimensional element, which
helps readability a lot. Except for premises made, we indicate on the right of
a Fitch-style proof the proof rule that we use to obtain the formula in that line
together with the involved line numbers.

Isaac: This is a very compact presentation of proofs! But why do we write
“2,3” in line 4 but “3–5” in line 6?

Peano: The answer lies in the proof rules that are used. Notice that (∧I) does
not introduce new premises and merely combines two proven formulas
into a conjunction. In contrast, the introduction of implication makes
a new hypothesis: to prove 𝑞 → 𝑟, we assume 𝑞 and deduce 𝑟. This
what the flag ranging from line 3 to 5 indicates. Thus, the conclusion
of 𝑞 → 𝑟 in 6 needs to refer to the whole sub-proof that ranges from
line 3 to 5.

Clara: In other words: Whenever we change our premises Γ and prove the
resulting hypothetical judgement, then we have to create a sub-proof
by opening a flag, and then we have to refer to that whole sub-proof?

4.3. Fitch-Style Natural Deduction 43

Peano: Precisely!

Clara: Looking back at the rules of ND in fig. 4.1, it appears that also the
(∨E)-rule changes the premises, but for two sub-proofs! How do we
deal with that?

Peano: In exactly the same way.

Recall that we proved 𝑝 ∨ 𝑞, ¬𝑞 ⊢ 𝑝 in example 4.8. First of all, note that this
judgement has two premises, which we will write on two separate lines in the
proof. The goal of the proof is then to prove 𝑝 from the these two premises:

1 𝑝 ∨ 𝑞
2 ¬𝑞
3 𝑝
4 𝑝 Assum, 3
5 𝑞
6 𝑝 ¬E, 5, 2
7 𝑝 ∨E, 1, 3–4, 5–6

The (∨E)-rule has been used in this proof on line 7 and refers to the disjunction
in line 1 that is eliminated and to the two sub-proofs in lines 3–4 and 5–6.

In general, a proof in Fitch-style for a hypothetical judgement 𝜑1, … , 𝜑𝑛 ⊢ 𝜓
will always have the following outline.

1 𝜑1

2 ⋮
𝑛 𝜑𝑛

𝑛 + 1 ⋮
𝛾
⋮

𝑚 𝛿
𝑚 + 1 ⋮
𝑘 𝜓 L

44 4. Proof Theory of Propositional Logic

Everything above the horizontal line that opens a flag are the assumptions
or hypotheses, which can be used inside the flag and will be discharged, once
the flag closes. For example, 𝜑1, … , 𝜑𝑛 are the assumptions under which 𝜓
holds, and 𝛾 is the assumption that is used to prove 𝛿. With line 𝑚, 𝛾 will
be discharged is no longer usable from line 𝑚 + 1 on. This corresponds to
proving the judgement 𝜑1, … , 𝜑𝑛, 𝛾 ⊢ 𝛿 by means of a rule like (→I), as we
did in the first Fitch-style proof above in lines 6 and 7. In the same proof, you
can also see that flags can be nested arbitrarily. Finally, every line, which is
not a hypothesis, needs to be given a label L that states used the rule and the
lines that contain the information necessary to apply this rule.

Peano: I refrain from giving you a precise definition of Fitch-style proofs be-
cause this is rather cumbersome. Instead, I trust that you are able to
understand intuitively how such proofs are formed

Clara: Is there no way to ensure that a Fitch-style proof is correct?

Peano: Of course, Fitch-style proofs are just a different way of writing ND-
proofs. Thus, if it is possible to translate a given Fitch-style proof into
ND, then it will be correct.

Isaac: Would it be possible to get one more example, on which I can apply my
learning algorithm?

Peano: Surely.

Example 4.11: It does not rain for Socrates — Fitch-style

In example 4.7, we have proved the judgement 𝑟∧𝑢 → 𝑤, 𝑢∧¬𝑤 ⊢ ¬𝑟

4.3. Fitch-Style Natural Deduction 45

using proof trees. Here is now the same proof in Fitch-style:

1 𝑟 ∧ 𝑢 → 𝑤
2 𝑢 ∧ ¬𝑤
3 𝑟
4 𝑢 ∧E, 2
5 𝑟 ∧ 𝑢 ∧I, 3, 4
6 𝑤 →E, 1, 5
7 ¬𝑤 ∧E, 2
8 ⊥ ¬E, 6, 7
9 ¬𝑟 ¬I, 3–8

You should be able to match all the steps to the original proof. One
small difference is that we do not indicate any longer which conjunct
we want to obtain from the application of the elimination rules for the
conjunction. However, it is easy to recover the indices by inspecting
the involved formulas. We will allow ourselves the same simplification
for the introduction rules of the disjunction.

?
Which of the following two Fitch-style proof attempts is correct? If
any, which hypothetical judgement does it prove?

1 𝑝
2 𝑞
3 𝑝 Assum, 1
4 𝑞 → 𝑝 →I, 2–3

1 𝑝
2 𝑟
3 𝑟 ∧ 𝑝 ∧I, 1, 2
4 𝑟 → 𝑝 ∧ 𝑟 →I, 2–3

46 4. Proof Theory of Propositional Logic

4.4. Soundness and Consistency

Isaac: Speaking of correctness, I found myself wondering why the natural
deduction proofs that we have constructed so far are correct.

Clara: Also, what does it even mean for a proof to be correct?

Peano: This is indeed a valid point that we have glossed over so far. Remem-
ber that you have seen the semantics of formulas in terms of Boolean
truth values. Using these semantics, you could say that a set of formu-
las entails another formula, written Γ ⊨ 𝜑. This means that, inside the
Boolean model, the formula 𝜑 is true whenever all the formulas in Γ
are true.

Clara: I guess, it is not a coincidence that the entailment symbol and the
judgement turnstile look very similar.

Peano: Indeed, the idea is that we can say that the deductive system ND is
correct with respect to the Boolean model, which means that if Γ ⊢ 𝜑
is provable, then Γ ⊨ 𝜑. This property is also called soundness.

Clara: Does this mean that we cannot generally say that deductive system is
correct?

Peano: No, soundness is always relative to a chosen model or a class of model
with some properties.

Here, we will focus on soundness relative to the Boolean model.

Theorem 4.12: Soundness of ND

If Γ ⊢ 𝜑 is derivable in ND, then Γ ⊨ 𝜑.

Proof. The proof proceeds by induction on proof trees for judgements.

i) In the base case, we have that Γ ⊨ 𝜑 must be deduced by (Assum) and
therefore that 𝜑 appears in Γ. Thus, Γ ⊨ 𝜑 by theorem 3.9.

ii) For the induction step, we proceed by case distinction on the applied
rule.

• Suppose that we have a proof tree for Γ ⊢ 𝜑 → 𝜓 labelled by
(→I). This means that the judgement Γ, 𝜑 ⊢ 𝜓 is also deriv-
able and the induction hypothesis gives us that Γ, 𝜑 ⊨ 𝜓. From
item iii) of theorem 3.12 we obtain Γ ⊨ 𝜑 → 𝜓, as desired.

4.5. Classical Logic and Completeness 47

• Suppose that we have a proof tree for Γ ⊢ 𝜑 labelled by (∨E) and
hypotheses Γ ⊢ 𝜓1 ∨𝜓2, Γ, 𝜓1 ⊢ 𝜑 and Γ, 𝜓2 ⊢ 𝜑. The induction
hypothesis gives us Γ ⊨ 𝜓1 ∨𝜓2, Γ∪{𝜓1} ⊨ 𝜑 and Γ∪{𝜓2} ⊨ 𝜑.
From the first hypothesis and theorem 3.9 we get that Γ ⊨ 𝜓1 or
Γ ⊨ 𝜓2 holds. In the first case, we use theorem 3.12.ii) (semantic
cut) and the second hypothesis Γ ∪ {𝜓1} ⊨ 𝜑 to obtain Γ ⊨ 𝜑.
The second case is analogous. Thus Γ ⊨ 𝜑 holds in either case
and we are done

• The cases for the other rules can be dealt with similarly and only
require a bit of work.

By induction on proof trees we get that Γ ⊢ 𝜑 implies Γ ⊨ 𝜑.

In particular, theorems proven ND are always true.

Corollary 4.13

If 𝜑 is a theorem of ND, that is ⊢ 𝜑 is derivable, then 𝜑 is a tautology:J𝜑K𝑣 = 1 for all valuations 𝑣.

A further important consequence is that natural deduction is consistent.

Corollary 4.14: Consistency

There is no deduction for ⊢ ⊥ in ND.

Proof. Suppose that ⊢ ⊥ is derivable. By corollary 4.13, we would have thatJ⊥K𝑣 = 1 for all valuations. This contradicts the definition of J⊥K𝑣 and there-
fore ⊢ ⊥ cannot be derivable.

4.5. Classical Logic and Completeness

Isaac: This is great news: that means we can prove any entailment using nat-
ural deduction and know that such a proof is correct by construction!

Peano: No! There is a misunderstanding here. It is correct to say that any
proof in ND guarantees that the proven judgements yields an entail-
ment in the Boolean model. However, it is not true that any entailment
can be proven! This is what we would call completeness.

48 4. Proof Theory of Propositional Logic

Clara: What is then all the fuzz about with the formal proofs if we cannot
even prove everything that is true?

Peano: There is a good reason to rule out certain true formulas, but we will
have to leave that for another time. For the moment, let me show you
how to fix the issue of completeness.

First, let us identify the issue.

Theorem 4.15

The judgement ⊢ ¬¬𝑝 → 𝑝 is not provable in ND, but ¬¬𝑝 → 𝑝 is a
tautology in the Boolean model.

Proof. We have for all valuations 𝑣 that

J¬¬𝑝 → 𝑝K𝑣 = (1 − (1 − J𝑝K𝑣)) ⟹ J𝑝K𝑣 = J𝑝K𝑣 ⟹ J𝑝K𝑣 = 1

and thus ¬¬𝑝 → 𝑝 is a tautology. To show that ⊢ ¬¬𝑝 → 𝑝 is not prov-
able in ND, we would need to provide a different model and show that ND is
also sound for that model, while the formula would not be a tautology in that
model. As we have already taken quite a bit of time, we shall leave it at that
now, but you can find some details in appendix C.

Theorem 4.15 tells us that there are entailments that hold in the Booleanmodel,
but are not provable. Is there a way to fix this? It turns out that it suffices to
turn the formula ¬¬𝑝 → 𝑝 into a proof rule to obtain a complete deductive
system.

Definition 4.16

The system cND (classical natural deduction) is obtained by adding to
the system ND the following rule for proofs by contradiction.

Γ, ¬𝜑 ⊢ ⊥
(Contra)Γ ⊢ 𝜑

The rule (Contra) formalises the commonly knowproof principle, called “proof
by contradiction”, that proceeds by proving that the assumption that a prop-
erty 𝜑 does not hold is absurd and then concluding that 𝜑 must therefore
hold.

4.5. Classical Logic and Completeness 49

With this rule, we can prove in the system cND every proposition that is true
in the Boolean model.

Theorem 4.17: Soundness and Completeness of cND

A hypothetical judgement Γ ⊢ 𝜑 is derivable in cND if and only if
Γ ⊨ 𝜑 holds in the Boolean semantics.

Proof. Soundness is proved like in theorem 4.12, only that we also have to
account for the (Contra)-rule. That this rule is correct follows essentially the-
orem 4.15. Completeness can be proved either by contradiction or by provid-
ing an algorithm that constructs a proof trees for hypothetical judgements
that correspond to valid entailments [Gal87, sec. 3.4.7].

Clara: Why is the proof-by-contradiction rule so special? It seems like a per-
fectly good proof principle to me.

Peano: There are people who doubt that it can be justified easily. For once,
there are perfectly reasonable semantics for propositional logic, inwhich
this proof principle is not valid (appendix C). But already on its own,
this proof principle is not very intuitive because it proves a positive
statement from a negative one. This is a story of its own and started a
whole school of logic called “constructive logic”, which is also closely
related to our earlier discussion of the interpretation of proofs as pro-
grams. I’m afraid though that this topic will take us too far and we will
have to stop here. Before you leave, let me briefly show you what cND
can prove.

Example 4.18

We can derive the law of excluded middle (LEM) in cND:

1 ¬(𝑝 ∨ ¬𝑝)
2 ¬𝑝 example 4.9, 1
3 ¬¬𝑝 symmetric example 4.9, 1
4 ⊥ ¬E, 2, 3
5 𝑝 ∨ ¬𝑝 Contra, 1–4

The LEM states that every formula has to be either true or false, which

50 4. Proof Theory of Propositional Logic

is exactly what we have in the Boolean model, and that a third possib-
ility is not allowed.

Peano: My friends, we had wonderful evening but I am getting tired now. It
seems that all the workers have gone home by now and I will have to
clean up my garden. But it was certainly worth it! (Peano laughs in
great content.)

Clara: Thank you so much for your time and patience Professor Peano. We
have greatly enjoyed our time with you and learned many things, even
beyond formal logic.

Isaac: If only all humans were as kind and generous as you are Professor, then
I may grow to like your kind.

Peano: I don’t know what you have seen in your future, but never lose hope
that the good in humans will prevail and a society of true solidarity will
emerge. You, as a robot, may have the chance to exist that long.

Isaac: I suppose that you have never seen the Film WALL-E?

Peano: Now, please excuse me. I wish you all the best for your journey!

Clara: Before we leave: do you have an idea what we should learn next about
logic?

Peano: I would suggest to expand your cultural horizon. Let me send you to
an interesting place and time. Goodbye!

Isaac and You: Goodbye, Professor!

5. Automatic Deduction for
Propositional Logic

[Clara and Isaac find themselves on a densely packed market, full of merchants
with tents, and people pushing and squeezing to move forward. Everybody is
wearing long colourful tunics in various colours, in white, blue and brown. The
air is hot and dry, infused with sand and smells. Music is flowing out of a corner
of the market, through the alleys. The drum fills the gaps between the people, the
flute dances between them and the lute moves makes Clara want to dance.]

al-Khwārizmī: العمى الدم !تحرق حاجة
Clara: What does he say?

Isaac: He says, “hajat tuharuq aldam! al’ama”. He seems to be very annoyed.

Clara: Incredible! All these smells: cardamon, cinnamon, pepper, and tur-
meric! Look at all these bags full of ingredients. Chickpeas, dates, fresh
figs, olives, melons! Hey, what instruments are the people at the corner
playing?

al-Khwārizmī: Thewind instrument is a Duduk, the guitar-like instrument an
Oud, and the drum is a Tombak. But these instruments are not an as
unusual appearance here, as you two are. May I help you?

Clara: We are indeed not from here. We are on a journey to learn about logic
and to understand the origins of my friend Isaac.

al-Khwārizmī: How is his origin related to logic?

Isaac: You see, I function purely by means of electronics and make decisions
based on logic reasoning.

al-Khwārizmī: Remarkable! You need to tell me more about this.

Clara: We do not fully understand his inner working ourselves, yet.

al-Khwārizmī: Then you have come to the right place. Welcome to Baghdad,
my friends! Please follow me.

52 5. Automatic Deduction for Propositional Logic

Isaac: This crowd is very dense! Let us try to keep up with him.

al-Khwārizmī: Do you see the bridge ahead? It will take us over the Tigris to
the Madīnat as-Salām, the City of Peace, where the palace is located.

Clara: The palace?

al-Khwārizmī: Yes, the palace is surrounded by houses, of which one hosts
my workplace in the House of Wisdom.

[The three cross the bridge and arrive at a gate that leads through massive stone
walls that surround the City of Peace.]

Isaac: Do we pass this gate?

al-Khwārizmī: Yes, please. Go right in!

Clara: Beautiful, all these trees that fill the area! And it is suddenly much
quieter. This is a welcome change.

al-Khwārizmī: Please come in. Welcome to the House of Wisdom.

Clara: Who are all these people?

al-Khwārizmī: They areworking on the translation and study ofmathematical
texts.

Clara: Isaac? Are you all right?

Isaac: Yes, my translation processor was just overloaded. I had to turn it to
single-languagemode. There are just toomany languages being spoken
in here.

al-Khwārizmī: Hohoho! Technology is not always a blessing!

Clara: Why were you so annoyed when we met you earlier on the Souk al-
Shorja market?

al-Khwārizmī: Ah, this donkey insisted that my calculations using Hindu nu-
merals are incorrect and that we should use the Roman system instead.
Such ignorance! You know, it is important to choose the right repres-
entation, as you will otherwise have great difficulties doing even the
simplest computations. But you are not here to listen to my complaints.
So let us explore how Isaac is able to carry out automatic deductions.

5.1. Methods of Semantic Deduction 53

5.1. Methods of Semantic Deduction

As you have learned in theorem 4.17, it is possible to reduce the task of prov-
ing Γ ⊢ 𝜑 in cND to showing that the entailment Γ ⊨ 𝜑 holds in the Boolean
semantics. How can we prove such an entailment? You could, of course, at-
tempt to use a truth table. This will work but requires potentially an enormous
amount of work because you have to go through all 2𝑛 possible combinations
of truth values, if Γ and 𝜑 have 𝑛 distinct propositional variables. Such would
be an attempt of a fool, someone who would try to calculate with Roman nu-
merals!

Instead, let us try to simplify the problem, at least in some cases. First of all,
notice for Γ = 𝜑1, … , 𝜑𝑛 that

Γ ⊨ 𝜑 iff 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑 is unsatisfiable (5.1)
iff ¬𝜑1 ∨ ⋯ ∨ ¬𝜑𝑛 ∨ 𝜑 is a tautology (5.2)

The first equivalence (5.1) is easy to prove and understand: Γ ⊨ 𝜑 holds if and
only if minJΓK𝑣 ≤ J𝜑K𝑣 for all valuations 𝑣. Suppose now 𝑣 is any valuation.
We then have that

minJΓK𝑣 ≤ J𝜑K𝑣 iff minJΓK𝑣 = 0 or J𝜑K𝑣 = 1
iff J𝜑1 ∧ ⋯ ∧ 𝜑𝑛K𝑣 = 0 or J¬𝜑K𝑣 = 0
iff min{J𝜑1 ∧ ⋯ ∧ 𝜑𝑛K𝑣, J¬𝜑K𝑣} = 0
iff J𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑K𝑣 = 0 .

Thus, 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑 is unsatisfiable exactly when Γ ⊨ 𝜑.

What does the equivalence (5.1) give us? Suppose we have an efficient al-
gorithm to decide whether a formula is satisfiable, then we could use this
algorithm to also efficiently decide the entailment Γ ⊨ 𝜑. The problem of de-
ciding whether a formula is satisfiable is also known as SAT and is, generally,
an NP-complete problem. This is not really better than writing truth tables!
However, there are certain classes formulas that can be efficiently checked for
satisfiability. We will see one such class in section 5.4.

The equivalence (5.2) could also be proven directly, but let me introduce you
to a different style of reasoning: equational reasoning.

54 5. Automatic Deduction for Propositional Logic

5.2. Algebra of Boolean Logic

As you know very well, we can use equations to prove relations of numbers.
For instance, for all (real) numbers 𝑎 and 𝑏, we know that 𝑎 + 𝑏 = 𝑏 + 𝑎. We
call this the law of commutativity. Such laws are vital to simplify calculations
and prove facts about numbers. For example, we can use commutativity to
rearrange and simplify calculations: 𝑎 + 𝑏 + (−𝑎) = 𝑎 + (−𝑎) + 𝑏 = 𝑏.
On other occasions, one needs to rearrange terms over real numbers to solve
problems. An examplemight be to find all numbers 𝑥, such that 𝑥2+𝑥−2 = 0.
Such 𝑥 are called roots. You could now go and find a formula to solve this
problem, but by the time you find the right formula, you may have already
solved this problem by doing a simple calculation:

𝑥2 + 𝑥 − 2 = 𝑥2 + 2𝑥 − 𝑥 − 2 = (𝑥 + 2)(𝑥 − 1) .
This immediately tells you that the roots are 𝑥 = −2 and 𝑥 = 1, as only then
the outcome of the multiplication can be zero. And that makes the laws of
arithmetic a powerful tool in solving problems with numbers.

Clara: What does this now have to do with logic?

al-Khwārizmī: Think about what it means for a formula 𝜑 to be a tautology.

Clara: The formula 𝜑 has to be evaluated to 1 under any valuation.

al-Khwārizmī: Indeed. And can you think of any other logic connective that
has this property?

Clara: The truth connective ⊤?

al-Khwārizmī: Perfect!

This means that we can reduce the question of whether a formula 𝜑 is a tau-
tology to asking whether 𝜑 ≡ ⊤. Now remember that we found the roots
by rearranging a term into a form, where the problem became easy. We will
do exactly that in section 5.3, but before we will need to discuss the algebraic
laws that govern propositional logic in the Boolean semantics.

Theorem 5.1: Algebraic Laws of Propositional Logic

The following semantic equivalences holds for all propositional formu-
las 𝜑, 𝜓, 𝛿 in the Boolean semantics.

𝜑 ∧ (𝜓 ∧ 𝛿) ≡ (𝜑 ∧ 𝜓) ∧ 𝛿 Associativity for ∧

5.2. Algebra of Boolean Logic 55

𝜑 ∨ (𝜓 ∨ 𝛿) ≡ (𝜑 ∨ 𝜓) ∨ 𝛿 Associativity for ∨
𝜑 ∨ (𝜓 ∧ 𝛿) ≡ (𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝛿) Distributivity ∨ over ∧
𝜑 ∧ (𝜓 ∨ 𝛿) ≡ (𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝛿) Distributivity ∧ over ∨

𝜑 ∧ 𝜓 ≡ 𝜓 ∧ 𝜑 Commutativity of ∧
𝜑 ∨ 𝜓 ≡ 𝜓 ∨ 𝜑 Commutativity of ∨
¬¬𝜑 ≡ 𝜑 Double negation elimination (DNE)

¬(𝜑 ∧ 𝜓) ≡ ¬𝜑 ∨ ¬𝜓 De Morgan’s law for ∧
¬(𝜑 ∨ 𝜓) ≡ ¬𝜑 ∧ ¬𝜓 De Morgan’s law for ∨

𝜑 ∧ 𝜑 ≡ 𝜑 Idempotence for ∧
𝜑 ∨ 𝜑 ≡ 𝜑 Idempotence for ∨

¬⊤ ≡ ⊥ and ¬⊥ ≡ ⊤ Complements
𝜑 → 𝜓 ≡ ¬𝜑 ∨ 𝜓 Reduction of →

Proof. The proof of all equivalences follows easily from the definitions and
properties of min and max. As as example, let us prove De Morgan’s law for
∧. To that end, suppose that 𝑣 is a valuation. We then have that

J¬(𝜑 ∧ 𝜓)K𝑣 = 1 − min{J𝜑K𝑣, J𝜓K𝑣}
= max{1 − J𝜑K𝑣, 1 − J𝜓K𝑣}
= J¬𝜑 ∨ ¬𝜓K𝑣 .

As this holds for any valuation, we obtain De Morgan’s law for ∧.

These laws seem very familiar from arithmetic, but be careful: the connectives
∧ and ∨ are treated as dual through De Morgan’s laws, unlike multiplication
and sum. Also, idempotence and implication have no analogue in arithmetic.
Nevertheless, we can use these laws as a powerful tool to rearrange and sim-
plify formulas. As a first test, let us prove the equivalence (5.2).

𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑 is unsatisfiable
iff 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑 ≡ ⊥
iff ¬(𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑) ≡ ¬⊥
iff ¬𝜑1 ∨ ⋯ ∨ ¬𝜑𝑛 ∨ 𝜑 ≡ ⊤ theorem 5.1
iff ¬𝜑1 ∨ ⋯ ∨ ¬𝜑𝑛 ∨ 𝜑 is a tautology

56 5. Automatic Deduction for Propositional Logic

?
Can you identify the laws used in the above proof?

As you can see, we can now can use algebraic and logical reasoning inter-
changeably. Moreover, (5.1) and (5.2) allow us to simplify the problem of de-
duction, if we are able to identify classes of formulas for which we can easily
decide whether they are tautologies or satisfiable.

5.3. Conjunctive Normal Forms

al-Khwārizmī: Do you remember how we found the roots of an arithmetical
term?

Clara: We rearranged it so that wemultiplied terms, for whichwe could easily
find roots.

al-Khwārizmī: Very good. Now how do you thinkwe can identify tautologies?

Isaac: Didn’t we say that 𝜑 is a tautology if 𝜑 ≡ ⊤?

al-Khwārizmī: That is correct. Now can you think of an arrangement in a
formula that allows you to break down the problem, like we did for
finding the roots?

Clara: The point was that if we multiply any number with zero, the result
will be zero, wasn’t it? It seems that this does not work of conjunction
because 𝜑 ∧ 𝜓 ≡ ⊥ does not necessarily hold if just 𝜑 ≡ ⊥ or 𝜓 ≡ ⊥.
For example, 𝑝∧¬𝑝 is contradictory but 𝑝 and ¬𝑝 on their own are not.

al-Khwārizmī: Excellent! We will indeed have to properly adapt the method
for polynomials to logic.

Our goal is to find a normal form of formulas, for which the tautology prob-
lem becomes simple. In the case of polynomials, we use products of irreducible
polynomials that make it easy to find roots by finding roots for each multi-
plicand. Since the Boolean semantics have precisely two truth values, we have
that 𝜑 ∧ 𝜓 ≡ ⊤ if and only if 𝜑 ≡ ⊤ and 𝜓 ≡ ⊤. This is analogous to the
product in polynomials, and what remains to find is something that corres-
ponds to irreducible polynomials.

5.3. Conjunctive Normal Forms 57

Definition 5.2

We say that a formula is in conjunctive normal form (CNF) if it can be
generated by the non-terminal 𝐶 in the following grammar.

𝐿 ∶∶= 𝑝 ∣ ¬𝑝
𝐷 ∶∶= 𝐿 ∣ 𝐿 ∨ 𝐷
𝐶 ∶∶= 𝐷 ∣ 𝐷 ∧ 𝐶

Formulas of the shape 𝐿 are called literals.

In this formula, the disjunctions 𝐷 play the role of irreducible polynomials.
We will see that it is easy to decide whether they are tautologies.

Note that the grammar is just a formal way of stating that any formula in
conjunctive normal form must be a conjunction of disjunctions of literals. But
the grammar also allows that we do not use conjunctions or disjunctions at
all, as the following example shows.

Example 5.3

Here are some formulas that are in CNF.

1. 𝑝
2. ¬𝑝
3. ¬𝑝 ∨ 𝑞 ∨ 𝑝
4. (¬𝑝 ∨ 𝑞 ∨ 𝑝) ∧ (𝑟 ∨ ¬𝑟)
5. (¬𝑝 ∨ 𝑞 ∨ 𝑝) ∧ (¬𝑝 ∨ 𝑟) ∧ 𝑞

However, in a CNF, we may not have negations of complex formulas:

¬(𝑟 ∨ 𝑞) and ¬¬𝑝 are not in CNF

We may also not use implication directly, as 𝑝 → 𝑞 is not in CNF.
However, 𝑝 → 𝑞 is semantically equivalent to ¬𝑝 ∨ 𝑞. Finally, the
disjunction may only appear between literals:

𝑝 ∨ (¬𝑞 ∧ 𝑟) is not in CNF

The goal is to transfer our knowledge from algebra to determine whether a

58 5. Automatic Deduction for Propositional Logic

formula is a tautology. Remember that we proceeded by first turning the
arithmetic term into a normal form, which consequently allowed us to find
roots easily. We repeat this here and show that we can determine for formu-
las in CNF easily whether they are tautologies and then that any formula can
be brought into this shape. Let us begin with the first part.

Theorem 5.4

1. A disjunction of literals 𝐿1 ∨⋯∨𝐿𝑛 is a tautology, if and only if
there are 𝑖 and 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and a propositional variable
𝑝, such that 𝐿𝑖 = 𝑝 and 𝐿𝑗 = ¬𝑝. We call (𝐿𝑖, 𝐿𝑗) a match.

2. Formula in conjunctive normal form 𝐷1 ∧⋯∧𝐷𝑚 is a tautology
if and only if every disjunct 𝐷𝑘 has a match.

Proof. 1. We prove both directions of the statement separately. One dir-
ection is easy: If the formula 𝐿1 ∨⋯∨𝐿𝑛 has a match, then it is clearly
a tautology by the law of excluded middle.

For the other direction, assume that 𝐿1∨⋯∨𝐿𝑛 is a tautology. Suppose,
towards a contradiction, that this formula has no matching literals. We
define a valuation 𝑣 by

𝑣(𝑝𝑘) = {0, 𝐿𝑘 = 𝑝
1, 𝐿𝑘 = ¬𝑝

Since all literals 𝐿𝑘 use either distinct variables or are the same, we
immediately have

J𝐿1 ∨ ⋯ ∨ 𝐿𝑛K𝑣 = max{0} = 0 .

This is in contradiction to the assumption that the formula is a tauto-
logy, and therefore we must have matching literals.

2. The follows immediately from our discussion that 𝜑 ∧ 𝜓 ≡ ⊤ if and
only if 𝜑 ≡ ⊤ and 𝜓 ≡ ⊤, and the result from item 1.

You should now be able to distil yourself an algorithm from theorem 5.4 that
decides whether a formula in CNF is a tautology in linear time [HR04].

5.3. Conjunctive Normal Forms 59

Example 5.5

Let us go through the formulas listed in example 5.3:

1. The formula 𝑝 as no matching literals

2. Neither does the formula ¬𝑝.
3. The formula ¬𝑝 ∨ 𝑞 ∨ 𝑝 has the match (¬𝑝, 𝑝) and is therefore a

tautology.

4. Also the formula (¬𝑝 ∨ 𝑞 ∨ 𝑝) ∧ (𝑟 ∨ ¬𝑟) is a tautology. The first
conjunct has again (¬𝑝, 𝑝) as match, while the second conjunct
has (𝑟, ¬𝑟) as match.

5. Finally, (¬𝑝 ∨ 𝑞 ∨ 𝑝) ∧ (¬𝑝 ∨ 𝑟) ∧ 𝑞 is not a tautology because
neither the second nor the third conjunct have matches.

And now comes the big step: We need to transform formulas into conjunctive
normal forms.

Theorem 5.6

Every propositional formula can be transformed into a semantically
equivalent (not necessarily unique) CNF.

Proof. A CNF for a formula 𝜑 can be computed by the following

1. Reduce all occurrences of implication (that do not correspond to nega-
tions) to negation and disjunction, using the last law in theorem 5.1.

2. Push all negations to literals by using De Morgan’s laws and DNE from
left to right. This gives, what we may call, a negation normal form that
only consists of literals, conjunction and disjunction.

3. Finally, we apply the distributivity of ∨ over ∧ from left to right to
obtain a conjunctive normal form.

Again, you can turn the proof of theorem 5.6 into an algorithm [HR04]. To do
so, it is important to note that we used the laws in theorem 5.1 only from left
to right! Were you to attempt to mix directions, then you would not reach
a normal form. Also, using commutativity is not a good idea because then
you may end up swapping formulas around for eternity. If you stick to these

60 5. Automatic Deduction for Propositional Logic

rules, then you end up with a strongly normalising rewriting system [Klo92].
And this is what will give you an algorithm.

But instead of going through the tedious process of proving this formally, let
us rather see how CNFs are computed on some examples.

Example 5.7

We shall compute a CNF of the formula (¬𝑝 ∧ 𝑞) → 𝑝 ∧ (𝑟 → 𝑞).

(¬𝑝 ∧ 𝑞) → 𝑝 ∧ (𝑟 → 𝑞)
≡ (¬𝑝 ∧ 𝑞) → 𝑝 ∧ (¬𝑟 ∨ 𝑞) Reduction of →
≡ ¬(¬𝑝 ∧ 𝑞) ∨ (𝑝 ∧ (¬𝑟 ∨ 𝑞)) Reduction of →
≡ (¬¬𝑝 ∨ ¬𝑞) ∨ (𝑝 ∧ (¬𝑟 ∨ 𝑞)) De Morgan
≡ (𝑝 ∨ ¬𝑞) ∨ (𝑝 ∧ (¬𝑟 ∨ 𝑞)) DNE
≡ ((𝑝 ∨ ¬𝑞) ∨ 𝑝) ∧ ((𝑝 ∨ ¬𝑞) ∨ (¬𝑟 ∨ 𝑞)) Distributivity
≡ (𝑝 ∨ ¬𝑞 ∨ 𝑝) ∧ (𝑝 ∨ ¬𝑞 ∨ ¬𝑟 ∨ 𝑞) Associativity

I have coloured for you the formulas that are shuffled around in the use
of distributivity. This should help to understand this, probably, most
difficult step. The application of associativity is not strictly necessary
but simplifies the resulting formula somewhat. Again not strictly ne-
cessary, but you may even simplify further:

⋯
≡ (𝑝 ∨ 𝑝 ∨ ¬𝑞) ∧ (𝑝 ∨ ¬𝑞 ∨ ¬𝑟 ∨ 𝑞) Commutativity
≡ (𝑝 ∨ ¬𝑞) ∧ (𝑝 ∨ ¬𝑞 ∨ ¬𝑟 ∨ 𝑞) Idempotence

This reasoning is correct, albeit not needed to obtain a CNF. You also
need to be aware that the use of commutativity here is, as we discussed
above, not necessarily something that can be directly automatised.
Rather, youwould need to develop another optimisation algorithm that
computes a minimal CNF.

I think that finding a negation normal form, by reducing implication, applying
DeMorgan’s laws and DNE should not pose a problem to you. The distributive
law is somewhat more complex. Let me therefore give you another example,
in which you have to apply it multiple times.

5.3. Conjunctive Normal Forms 61

Example 5.8

Suppose we were asked to find the CNF of ¬(𝑝 ∨ ¬𝑞) ∨ (𝑝 ∨ 𝑟 → 𝑠).
This first steps to find the negation normal form are simple:

¬(𝑝 ∨ ¬𝑞) ∨ (𝑝 ∨ 𝑟 → 𝑞)
≡ ¬(𝑝 ∨ ¬𝑞) ∨ (¬(𝑝 ∨ 𝑟) ∨ 𝑞) Reduce →
≡ (¬𝑝 ∧ ¬¬𝑞) ∨ ((¬𝑝 ∧ ¬𝑟) ∨ 𝑞) De Morgan
≡ (¬𝑝 ∧ 𝑞) ∨ ((¬𝑝 ∧ ¬𝑟) ∨ 𝑞) DNE

The next step is to apply the distributive law on the innermost com-
bination of conjunction and disjunction:

(¬𝑝 ∧ 𝑞) ∨ ((¬𝑝 ∧ ¬𝑟) ∨ 𝑞)
≡ (¬𝑝 ∧ 𝑞) ∨ ((¬𝑝 ∨ 𝑞) ∧ (¬𝑟 ∨ 𝑞)) Distributivity

So far so good. Now things get a bit more tricky, as you have to do
careful bookkeeping. As the formula has a conjunction between two
disjunctions, we will have to apply the distributive law twice! In the
first step, I will help again with some colour. You should be able to
match the formulas in the second step.

(¬𝑝 ∧ 𝑞) ∨ ((¬𝑝 ∨ 𝑞) ∧ (¬𝑟 ∨ 𝑞))
≡ ((¬𝑝 ∧ 𝑞) ∨ (¬𝑝 ∨ 𝑞)) ∧ ((¬𝑝 ∧ 𝑞) ∨ (¬𝑟 ∨ 𝑞)) Distr.
≡ (¬𝑝 ∨ ¬𝑝 ∨ 𝑞) ∧ (𝑞 ∨ ¬𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ ¬𝑟 ∨ 𝑞) ∧ (𝑞 ∨ ¬𝑟 ∨ 𝑞)

Distr.
≡ (¬𝑝 ∨ 𝑞) ∧ (𝑞 ∨ ¬𝑝) ∧ (¬𝑝 ∨ ¬𝑟 ∨ 𝑞) ∧ (𝑞 ∨ ¬𝑟)

Comm. & Idem.

The last step is again not necessary because the second to last line is
already a CNF, but simplifications are always welcome!

Clara: Using conjunctive normal forms to prove entailment seems very eleg-
ant and powerful. I have a feeling that there is a catch. The formula
that we obtained in example 5.7 seems rather big.

al-Khwārizmī: Well observed, my friend! The problem lies in the application
of distributivity to find a CNF of a formula. This law duplicates subfor-
mulas and can cause the computed CNF to be exponentially larger than
the original formula. Thus, even though you may be able to decide in

62 5. Automatic Deduction for Propositional Logic

linear time whether a formula in CNF is a tautology, the transformation
causes the running time to be still potentially exponential for general
formulas. Andwe have not even touched upon the SAT-problem, which
is NP-complete!

Isaac: That is all quite discouraging! But considering that it does not take
me years to make decisions, there must surely be a way to improve on
that…

al-Khwārizmī: There are numerous ways. For once, the SAT-problem can of-
ten be solved efficiently for problems that you find in reality, in contrast
to the ones that we would construct to show NP-completeness. But we
can also be smarter and think about the knowledge that you have and
how you use it to make decisions. Before that, I need a short break! Let
us go outside and have a tea in the gardens.

?
Let us call a subformula of shape 𝐷 in a CNF a disjunctive clause. How
many disjunctive clauses do CNFs for the formulas (𝑝1 ∧𝑞1)∨(𝑝2 ∧𝑞2)
and (𝑝1 ∧ 𝑞1) ∨ (𝑝2 ∧ 𝑞2) ∨ (𝑝3 ∧ 𝑞3), respectively, have?

5.4. Horn Clause Theories

[Al-Khwārizmī, Clara and Isaac go outside into the gardens of the City of
Peace. Trees line the many small houses and in the middle rises the Palace of
the Golden Gate with its green dome. Around are numerous people sitting and
holding a book in one hand, while writing with the other. The three sit down
on small carpets that al-Khwārizmī brought with him and drink tea from small
cups.]

Isaac: What are these people doing?

al-Khwārizmī: They are translating texts from China, India and Greece, inter-
pret them, critique them, add new insights.

Clara: Does that mean that they study throughout their life?

al-Khwārizmī: Of course! The key to progress is to understand, scrutinise and
question existing knowledge.

Let us now talk about how you can be smarter about representing logical
knowledge, thereby enabling Isaac to work.

5.4. Horn Clause Theories 63

Most of the knowledge that you gather can be divided into facts, things that
you know for sure, and inference rules, which allow deduction of new know-
ledge. If we restrict ourselves to formulas that follow this idea, so-called Horn
clauses, we obtain a fragment of propositional logic for which satisfiability can
be decided in linear time. This is great for knowledge representation and in-
ference, as you may find it in you, Isaac, or in expert systems that can be used
in medicine, or other areas where large knowledge bases have to be queried.
The caveat is, of course, that this fragment does not cover all of propositional
logic but suffices for most computations with knowledge.

Definition 5.9

We say that a propositional formula is a Horn clause or definite clause
if it is generated by the non-terminal 𝐷 of the following grammar.

𝐴 ∶∶= ⊥ ∣ ⊤ ∣ 𝑝 (Atoms)
𝐺 ∶∶= 𝐴 ∣ 𝐺 ∧ 𝐺 (Goals)
𝐷 ∶∶= 𝐺 → 𝐴 (Horn Clauses)

A finite set of Horn clauses is called a Horn theory or a (propositional)
logic program.

The idea is that a Horn theory represents a knowledge base, composed of in-
ference rules with premises, called goal here, and atomic conclusions. The
main restriction, compared to, say, natural deduction rules is that the conclu-
sion and premises must be atoms. Nevertheless, you can represent positive
facts by Horn clauses of the form

⊤ → 𝑝

and negative facts by
𝑝 ∧ 𝑞 → ⊥ .

It is also possible to have disjunctions in goals by using the equivalence

𝑝 ∨ 𝑞 → 𝑟 ≡ (𝑝 → 𝑟) ∧ (𝑞 → 𝑟) ,

which we can assemble as Horn theory {𝑝 → 𝑟, 𝑞 → 𝑟}

Let us see some concrete examples and counterexamples.

64 5. Automatic Deduction for Propositional Logic

Example 5.10

The following formulas are Horn clauses.

1. 𝑝 ∧ 𝑞 ∧ 𝑠 → 𝑝
2. 𝑞 ∧ 𝑟 → 𝑝
3. 𝑝 ∧ 𝑠 → 𝑠
4. 𝑝 ∧ 𝑞 ∧ 𝑠 → ⊥
5. ⊤ → 𝑠

Note that the second to last formula is semantically equivalent to the
formula

¬(𝑝 ∧ 𝑞 ∧ 𝑠)
which shows you how to represent the negation of facts. The last for-
mula is equivalent to 𝑠, and we can thus also represent simple facts as
Horn clauses. Putting any combination of these formulas together, we
obtain a Horn theory. For example,

{𝑝 ∧ 𝑞 ∧ 𝑠 → 𝑝, 𝑞 ∧ 𝑟 → 𝑝, 𝑝 ∧ 𝑠 → 𝑠}
and

{𝑝 ∧ 𝑞 ∧ 𝑠 → ⊥, 𝑞 ∧ 𝑟 → 𝑝, ⊤ → 𝑠}
are both Horn theories.
We can even represent negative facts with disjunction by using

¬(𝑝 ∨ 𝑞) ≡ ¬𝑝 ∧ ¬𝑞
and turning this into a Horn theory:

{¬𝑝, ¬𝑞} .
The other way around, we have

¬𝑝 ∨ ¬𝑞 ≡ ¬(𝑝 ∧ 𝑞) = 𝑝 ∧ 𝑞 → ⊥ ,
which is a Horn clause.
In contrast, if we do not know something definitively, then we cannot
represent this in Horn clauses. For instance,

𝑝 ∨ 𝑞
cannot be represented in Horn theories.

5.4. Horn Clause Theories 65

What makes Horn theories so interesting is that we can efficiently decide
whether a Horn theory is satisfiable. Wewill thus obtain an efficient algorithm
that decides whether a Horn theory Γ with Γ = {𝜑1, … , 𝜑𝑛}, seen as know-
ledge base, entails an atom by using eq. (5.1) from our earlier discussion:

Γ ⊨ 𝑝 iff ⋀ Γ ∧ ¬𝑝 is unsatisfiable,

where
⋀ Γ = 𝜑1 ∧ ⋯ ∧ 𝜑𝑛 .

This means that we can query a Horn theory Γ with a goal 𝑝 by checking
whether the Horn theory Γ ∪ {¬𝑝} is unsatisfiable.

How can we check whether a Horn theory Γ is satisfiable or not? The idea is
quite simple: we iterate over all clauses in Γ and use them to deduce whether
an atom can be derived, while remembering the atoms that we could already
derive. If we are in the end able to derive ⊥, then the theory is not satisfiable.
Otherwise, we can find this way a valuation that makes the Horn theory true.
Algorithm 1 formalises this idea.

Algorithm 1: HornSat
Input: Horn theory Γ
Output: Is ⋀ Γ satisfiable?
begin

let val be an array indexed by atoms in Γ to 𝔹, initialised to 0
everywhere
val[⊤] ⟵ 1
while there is a clause 𝐴1 ∧ ⋯ ∧ 𝐴𝑛 → 𝐴 ∈ Γ with val[𝐴] = 0 and
val[𝐴𝑘] = 1 for all 1 ≤ 𝑘 ≤ 𝑛 do

val[𝐴] ⟵ 1
end
if val[⊥] = 1 then

return No
else

return Yes
end

end

The following theorem assures us that algorithm 1 works correctly and is ef-
ficient.

66 5. Automatic Deduction for Propositional Logic

Theorem 5.11

The algorithm HornSat terminates for any Horn theory Γ within 𝑛 + 1
steps for 𝑛 being the number of distinct atoms in Γ, and it outputs Yes
only if ⋀ Γ is satisfiable.

This algorithm is easily implemented on a computer, but for humans it is useful
to use a table that shows the state of the val array.

Example 5.12

Let Γ be the Horn theory

{𝑝 ∧ 𝑞 ∧ 𝑠 → ⊥⏟⏟⏟⏟⏟⏟⏟
1

, 𝑞 ∧ 𝑠 → 𝑝⏟⏟⏟⏟⏟
2

, ⊤ → 𝑠⏟
3

, ⊤ → 𝑞⏟
4

} ,

where we numbered the clauses for easy reference. This is not neces-
sary, and if the clauses are short, then it is easier to leave out the num-
bering. The following table shows the steps taken by HornSat with the
content of val for each atom and the clause that is selected in the loop.

Step ⊤ 𝑝 𝑞 𝑠 ⊥ Clause
0 1 0 0 0 0
1 1 0 0 1 0 3
2 1 0 1 1 0 4
3 1 1 1 1 0 2
4 1 1 1 1 1 1

Since the algorithm stops with 1 in the column of ⊥, we find that the
theory Γ is not satisfiable. And indeed, any valuation has to assign 1
to 𝑠 and 𝑞 by clause 3 and 4, thus also to 𝑝 by clause 2 and therefore
contradicts the first clause.
Remember that we claimed that HornSat should allow us to prove en-
tailment. Indeed, if you read 𝑝 ∧ 𝑞 ∧ 𝑠 → ⊥ as ¬(𝑝 ∧ 𝑞 ∧ 𝑠) and put
Δ = {𝑞 ∧ 𝑠 → 𝑝, 𝑠, 𝑞}, then

Γ is unsatisfiable iff Δ ⊨ ¬(𝑝 ∧ 𝑞 ∧ 𝑠) .

The run of the algorithm above shows therefore that 𝑞 ∧𝑠 → 𝑝, 𝑠 and 𝑞
together entail 𝑝∧𝑞∧𝑠. An obvious fact, proven by a rather convoluted
but fully automatic procedure!

Let us contrast example 5.12 to an example, in which the algorithm terminates

5.4. Horn Clause Theories 67

without marking ⊥ as true in the end.

Example 5.13

Let Γ = {𝑝∧𝑞∧𝑠 → 𝑝, ⊤ → 𝑠, 𝑠 → 𝑞, 𝑠∧𝑞 → 𝑟}. The following table
shows again all the steps taken by HornSat and the val array evolves.

Step ⊤ 𝑝 𝑞 𝑠 𝑟 ⊥ Clause
0 1 0 0 0 0 0
1 1 0 0 1 0 0 ⊤ → 𝑠
2 1 0 1 1 0 0 𝑠 → 𝑞
3 1 0 1 1 1 0 𝑠 ∧ 𝑞 → 𝑟

After step 3, the algorithm terminates because no clause with a goal
marked as true and conclusion marked as false is available. Note that
we have used all clauses, except the first. This clause has 𝑝 in the goal
𝑝 ∧ 𝑞 ∧ 𝑠, which is marked with 0 and makes this clause thus unusable.
From the table, we can also read off a valuation 𝑣 that satisfies Γ:

𝑣(𝑝) = 0 𝑣(𝑞) = 1 𝑣(𝑠) = 1 𝑣(𝑟) = 1.

We find then immediately that

minJΓK𝑣 = min{1, 1, 1, 1} = 1.

al-Khwārizmī: I think this is as far as we will go today. The last few sun rays
are touching the walls and we haven’t even eaten, yet! May I invite you
to my home for dinner?

Clara: That would be lovely, a bit of rest before we continue our journey. May
I ask one last question?

al-Khwārizmī: Of course, of course!

Clara: We have learned on our previous stop about formal proofs. But why
do we need those, if we could let a computer prove everything for us?

al-Khwārizmī: This is a good question with many answers.

Let me give you three of them. And the first will be concerned with efficiency.
The following table lists what we have discovered together.

68 5. Automatic Deduction for Propositional Logic

Problem CNF Horn General wff
Satisfiability (SAT) NP Θ(𝑛) NP
Tautology (TAUT) Θ(𝑛) Θ(𝑛) NP
Conversion from wff 𝑂(2𝑛) Not always possible —

The notation Θ(𝑛) means thereby that these problems are bounded in com-
plexity linearly and asymptotically from below and above, while 𝑂(2𝑛) says
that there are formulas that have only an exponentially larger CNF. This table
tells you that the complexity situation is quite good, whenever you are presen-
ted with a formula in conjunctive normal form or a Horn theory. Outside of
these realms, the situation is pretty dire, although many clever algorithms
have been developed to improve the efficiency for the SAT-problem on CNFs.
In general, however, it might be a good idea to just provide a proof yourself,
possibly assisted by a computer that carries out the trivial steps and helps with
complex ones.

The second reason why formal proofs are still interesting is that they give
an insight into why a formula can be derived. This is important in many
applications of logic like, for instance, an artificial intelligence for which you
would like to be sure that it is working correctly and that you can change
when things go wrong. It is possible to automatically construct proofs for a
valid entailment, see theorem 4.17, but this process is far from efficient. There
are better ways to construct proofs for derivations from Horn theories, as you
will see later.

al-Khwārizmī: Finally, learning about proof theory now for the fairly simple
propositional logic will help you greatly with learning proof theory for
more a complex logic. But I’m taking the excitement away from your
journey! Let us celebrate our present achievements over our meal.

Isaac: Thank you very much for these insights!

Clara: Yes, thank you! I am looking forward to the meal and a bit of rest.

[Clara and Isaac follow al-Khwārizmī, leaving the City of Peace and the palace
behind. The sun has set and the clear sky shows an abundance of stars, as they
have never seen before.]

6. Introduction to First-Order
Predicate Logic

[Clara and Isaac are in front of a grey stone temple, made from of stacked
segments that narrow down with every level. Each segment is decorated with
ornaments and large arcs invite visitors to enter. Trees grow around and above
the temple. They provide shade and coolness, protecting from the hot midday sun.
Clara and Isaac sit down at the foot of one of the trees.]

Clara: We had quite the journey so far! What brings us here?

Isaac: During our dinner with al-Khwārizmī, I realised that, even though we
have learned how to reason with propositions, we do not know how to
reason about objects and elements of this world. How can we state that
objects have equal properties or relate in other ways?

Clara: What do you mean exactly?

Isaac: I can get up, and walk towards the temple without running into any
tree, person or other obstacle. This means I am able to reason about my
position relative to any number of obstacles and any size of an envir-
onment.

Clara: And you are saying that this is not possible with propositional logic?

Isaac: Look, let me give an example.

6.1. The Need for a Richer Language

[Isaac draws the board in fig. 6.1 in the sand between him and Clara.]

Clara: Do you think you are a star?

70 6. Introduction to First-Order Predicate Logic

1 2 3 4 5 6

4

3

2

1

Figure 6.1.: Robot trying to find a heart

Isaac: At least you recognise that this is a robot and what it wants! What
you see on this board is me, some obstacles and a goal that I am trying
to reach. In other words, we are trying to find a route from the initial
position to the goal.

Clara: Ok, let me attempt to solve this using propositional logic.

First, we introduce propositional variables for all the positions (𝑥, 𝑦) in
your drawing, where 𝑥 ranges from 1 to 6, and 𝑦 from 1 to 4.

r-x-y Robot in position (𝑥, 𝑦)
o-x-y Obstacle in position (𝑥, 𝑦)
g-x-y Goal in position (𝑥, 𝑦)

We can then specify, for example, that you are in position (2, 3) by
stipulating that the variable r-2-3 is true. Or something more complex:
The requirement that you should never collide with an obstacle can be
expressed by the following formula.

(r-1-1 → ¬o-1-1) ∧ (r-1-2 → ¬o-1-2) ∧ (r-1-3 → ¬o-1-3) ∧ ⋯ (6.1)

Oh, I see the problem! This specification consists of 24 conjuncts and
only works for this specific board size. Is there a better way to do this?

Isaac: I don’t know. My CPU is running hot! This is not the season for me to
be in India.

Clara: Shall we go inside? The temple should allow you to cool down.

6.1. The Need for a Richer Language 71

Isaac: Lets go!

[Clara and Isaac enter the temple through the main arc in the middle. Music
and discussions immediately enshroud and drag them in.]

Clara: These drums, lutes and pipes sound very familiar.

Isaac: The Muslim culture has expanded far to the east!

Raghunātha: I’m not here for Jalpa! This is a serious issue and there is no
place for wrangling! Let us continue this later …

Who are you two strange figures⁇

Clara: My friend Isaac and I came inside to cool down a bit from thinking
about a difficult logic problem.

Raghunātha: Logic? I hope you don’t mean the kind of logic employed in the
debate over there: arguing purely for winning and not for the good of
our society, and entirely neglecting facts and arguments?

Isaac: You seem to be upset …

Raghunātha: Please excuse my temper!

Clara: We are in fact here because we do not understand some aspect of
Isaac’s inner machinery.

Raghunātha: Is this a …?

Clara: Yes.

Raghunātha: Marvellous! Tell me, what is your problem?

[They explain to Raghunātha the problem that they had just discussed
outside the temple.]

Raghunātha: I see. Let us sit down in the quiet corner over there and enjoy a
friendly discussion over some refreshments.

What you need is a language for talking about the properties of objects and
not just propositions. This is the language of first-order predicate logic (FOL).
Predicates allow us to express properties of objects. For example, instead of
having a propositional variable for every position in fig. 6.1 and every prop-
erty of that position, we have just one predicate per property that classifies the
positions. Concretely, the variables r-x-y, o-x-y and g-x-y can be replaced in
FOL with predicates 𝑅, 𝑂 and 𝐺 on positions. For the moment, we will hide

72 6. Introduction to First-Order Predicate Logic

the 𝑥- and 𝑦-coordinates and just write 𝑝 for a position (𝑥, 𝑦). The predicates
𝑅, 𝑂 and 𝐺 on positions are then used and read as follows.

𝑅(𝑝) Robot in position 𝑝
𝑂(𝑝) Obstacle in position 𝑝
𝐺(𝑝) Goal in position 𝑝

You could now naively write the formula (6.1) in the same way, but then we
would have not gained anything. Instead, the power of predicate logic comes
from the fact that there are logical connectives that allow you to talk about
objects, which are in this case positions on the board. In particular, eq. (6.1)
states that Isaac should not collide with an obstacle on all positions:

For all positions 𝑝, if the robot is in 𝑝,
then there should be no obstacle in 𝑝. (6.2)

Clearly, we could use propositional connectives and the predicates 𝑅 and 𝑂 to
represent if the robot is in 𝑝, then there should be no obstacle in 𝑝 by the for-
mula 𝑅(𝑝) → ¬𝑂(𝑝). What remains is to find a formal representation for the
phrase “For all positions 𝑝”. First-order predicate logic uses a logical connect-
ive, called the universal quantifier, that provides exactly this representation.
This quantifier is written as ∀, a turned around A, and comes with an object
variable behind that it binds. We will also use a dot to separate the quanti-
fier with the bound variables from the remaining formula. The sentence (6.2)
becomes then this symbolic expression

∀𝑝. 𝑅(𝑝) → ¬𝑂(𝑝) , (6.3)

which we read as “for all 𝑝, if 𝑅(𝑝) then not 𝑂(𝑝)”.

Clara: Can you explain a bit more why we use the dot?

Raghunātha: It indicates the scope of the universal quantifier: the quanti-
fier and the object variable 𝑝 refer to everything on the right of the
dot. This helps to reduce the use of parentheses, as we would have to
write ∀𝑝. (𝑅(𝑝) → ¬𝑂(𝑝)) otherwise. You also see that people write
(∀𝑝)(𝑅(𝑝) → ¬𝑂(𝑝)), but the number of parentheses gets out of con-
trol with this approach. That’s why we use the dot with the convention
that everything on its right is in its scope.

Clara: What is actually an object variable?

6.1. The Need for a Richer Language 73

Raghunātha: Excellent questions! We will come to these soon. For the time
being, think of object variables as placeholders for objects of unknown
nature. These can be positions, numbers, letters in an alphabet or any
other mathematically presentable object.

Clara: Alright… Isaac and I began with the problem of finding a route on the
board fig. 6.1. Can we use FOL for this as well?

Raghunātha: Yes, of course! In fact, this is a problem that shows that FOL can
express things that are impossible to express with propositional logic.

Suppose, wewant to specify what a route from the starting position to the goal
is in fig. 6.1. If you attempt this in propositional logic, then you will find that
there are infinitely many possible routes, even for this finite board, because
the robot can run in loops. Therefore, a formula that describes how a route
looks like would have to be infinite in propositional logic, which is clearly
non-sense! Now, think about how you would describe a route: it is path on
the board leads from the starting point to the goal, with the crucial property
that

There is no obstacle anywhere on a path. (6.4)

Let us attempt to formalise (6.4) using FOL. First, we have to choose a way to
talk about paths. There are many possibilities to do that, but let us see a path
as a list of positions on the board that we can access by indices, just like arrays
in programming. Thus, we find at the index 0 the initial position of a path, at
index 1 the next position etc. Formally, we use three more predicates:

𝑃(𝑟) 𝑟 is a path
𝑁(𝑘) 𝑘 is an index (natural number)
𝑆(𝑟, 𝑘, 𝑝) Position 𝑝 occurs at index 𝑘 in 𝑟

Using these predicates, we can express that there is no obstacle on a path, as
in (6.4), by the following formula.

∀𝑟. 𝑃 (𝑟) → ∀𝑘. ∀𝑝. 𝑁(𝑘) ∧ 𝑆(𝑟, 𝑘, 𝑝) → ¬𝑂(𝑝) (6.5)

In words, this formula is read as

“For all paths 𝑟 and for all 𝑘 and 𝑝, if 𝑘 is an index and 𝑝 is the
position in 𝑟 at index 𝑘, then there is no obstacle at position 𝑝.”

Raghunātha: Easy, right?

Clara: Looks rather complicated! How does this work with the dots again?

74 6. Introduction to First-Order Predicate Logic

The easiest way is to imagine that you add parentheses around everything on
the right of the dot, until you get to some parentheses. If you do this, starting
from the outside, then you get the formula

∀𝑟. (𝑃(𝑟) → (∀𝑘. ∀𝑝. (𝑁(𝑘) ∧ 𝑆(𝑟, 𝑘, 𝑝) → ¬𝑂(𝑝)))) .

Isaac: So far so good. But now I would like to interpret, at least intuitively,
this formula. Suppose I assume that 𝑆(𝑟, 0, (2, 3)) is true, which is
the initial position on the board in fig. 6.1 and that 𝑆(𝑟, 1, (2, 2)) and
𝑆(𝑟, 1, (3, 3)) are true. Does this mean that I am in some kind of un-
decided quantum state, occupying both positions (2, 2) and (3, 3) after
the first step? Evenworse, in one case I hit my head against an obstacle!

Raghunātha: This is a very good observation and is a flaw in our naive form-
alisation.

Fortunately, first-order predicate logic has a way out. Notice that 𝑝 is uniquely
determined by 𝑟 and 𝑘 in 𝑆(𝑟, 𝑘, 𝑝), and thus 𝑆 is a map. In FOL, we allow
ourselves to write suchmaps in the form of so-called function symbols. For this
particular example, we can use one symbol 𝑠 with the following meaning.

𝑠(𝑟, 𝑘) returns the position at index 𝑘 in path r

We can then simplify eq. (6.5) to

∀𝑟. 𝑃 (𝑟) → ∀𝑘. 𝑁(𝑘) → ¬𝑂(𝑠(𝑟, 𝑘)) (6.6)

and thereby avoid that a path can be ambiguous. Note, however, that such
ambiguities might be wanted and that this is the crucial difference between
using predicates and functions:

• use a predicate (also called relation) 𝑆, if there can bemultiple positions
(or none) at index 𝑘 on the path 𝑟, and

• use a map 𝑠, if there is exactly one position for every index 𝑘 on all
paths 𝑟.

Isaac: Oh, isn’t there then a problem with the formula (6.6)?

?
Can you see what problem Isaac spotted? And would you have an idea
how to solve it? Hint: The predicate 𝑁 only ensures that 𝑘 is a natural
number, but does not relate 𝑘 to the length of the path 𝑟.

6.1. The Need for a Richer Language 75

Isaac: Ok, so that problem is solvable. We talked initially about routes, which
supposedly lead from the starting point to the goal, but nowwe diverted
to paths. How can we put this together?

Raghunātha: Which question is it that we are actually trying answer?

Clara: We began with the routing problem, which asks for a route from the
initial position of the robot to the heart.

Raghunātha: Yes indeed. It is important to realise that this problem asks for
the existence of a path. So far, we have only dealt with universal state-
ments, statements that require something to hold for all instances of an
object variable. But existence is qualitatively different.

To be precise, let us formulate the routing problem first in natural language:

There is a path leading from the initial to the goal position. (6.7)

The phrase “there is” indicates that we are looking for the existence of some-
thing. First-order predicate logic allows us to express such statements with
the so-called existential quantifier, written as “∃” (a turned around “E”). To
formulate the sentence (6.7) using this quantifier, let us use two more func-
tion symbols:

0 represents the number 0
𝑒(𝑟) last index in path 𝑟

With these function symbols, we can present the sentence (6.7) as the follow-
ing formula.

∃𝑟. 𝑃 (𝑟) ∧ 𝑅(𝑠(𝑟, 0)) ∧ 𝐺(𝑠(𝑟, 𝑒(𝑟))) (6.8)

This formula can be read like this:

∃𝑟. 𝑃 (𝑟)⏟
there is a path

∧ 𝑅(𝑠(𝑟, 0))⏟⏟⏟⏟⏟
starting at the robot position

∧ 𝐺(𝑠(𝑟, 𝑒(𝑟)))⏟⏟⏟⏟⏟
ending at the goal

With this at hand, you should be able to easily match the formula with the
informal sentence that describes the routing problem.

Clara: Whew! This seems all quite reasonable, but what is first-order predic-
ate logic then actually?

Raghunātha: I’m glad you should ask. Let us try to distil a formal definition
of first-order formulas.

76 6. Introduction to First-Order Predicate Logic

6.2. The Language of First-Order Logic

In propositional logic, we only deduced logical facts and we were thus content
with formulas that were made up of propositional variables and logical con-
nectives. In first-order predicate logic, or FOL, we additionally wish to reason
about the relations of objects. Thus, FOL will have two building blocks:

• terms , built from object variables and function symbols, and

• formulas , built from predicate symbols and logical connectives.

Terms will thereby be the syntactical representation of the objects that we aim
to reason about. As you can see, both terms and formulas mention symbols.
Looking back at the function and predicate symbols that we used in the form-
alisation of the routing problem, you will see that every symbol can be applied
to a certain number of arguments. For instance, 𝑠 was a symbol that can be
applied to two arguments, while 𝑂 only took one argument. We refer to the
number of arguments of a symbol as its arity. Formally, the symbols that can
appear in FOL formulas come from so-called signatures:

Definition 6.1

A first-order signature ℒ is a triple (ℱ, ℛ, ar) , where ℱ and ℛ are
disjoint sets (ℱ ∩ ℛ = ∅) and ar is a map ℱ ∪ ℛ → ℕ. The ele-
ments of ℱ are called function symbols and those of ℛ predicate
symbols or relation symbols. The map ar assigns to each symbols its
arity , which is the number of argument the symbol expects. We write
ℱ𝑛 = {𝑓 ∈ ℱ | ar(𝑓) = 𝑛} and ℛ𝑛 = {𝑃 ∈ ℛ | ar(𝑃) = 𝑛} . The
elements of ℱ0 are called constants.

Note that ℱ (and ℛ) is partitioned into the sets ℱ𝑛, that is, ℱ = ⋃𝑛∈ℕ ℱ𝑛
and ℱ𝑛 ∩ ℱ𝑚 = ∅ for 𝑚 ≠ 𝑛. This is because ar is a map and thus assigns to
every symbol a unique arity.

Let us illustrate this definition on the routing problem.

Example 6.2

The signature ℒ = (ℱ, ℛ, ar) of all symbols that we used in section 6.1

6.2. The Language of First-Order Logic 77

is given as follows.

ℱ = {𝑠, 0, 𝑒} ℛ = {𝑅, 𝐺, 𝑂, 𝑃 , 𝑁, 𝑆}
ar(0) = 0 ar(𝑒) = 1 ar(𝑠) = 2
ar(𝑅) = ar(𝐺) = ar(𝑂) = ar(𝑃) = ar(𝑁) = 1
ar(𝑆) = 3

Thus, this signature has 3 function, 6 predicate symbols, and 0 as the
only constant. The partitions of the signature are given by

ℱ0 = {0} ℱ1 = {𝑒} ℱ2 = {𝑠} ℱ3 = ∅
ℛ0 = ∅ ℛ1 = {𝑅, 𝐺, 𝑂, 𝑃 , 𝑁} ℛ2 = ∅ ℛ3 = {𝑆}

and for 𝑘 > 3 by ℱ𝑘 = ℛ𝑘 = ∅.

Clara: The signature from example 6.2 has only a finite number of symbols.
Is this missing in definition 6.1?

Raghunātha: No, you can have arbitrarily large signatures. For instance, the
set {𝑛 | 𝑛 ∈ ℕ} could be a perfectly valid set of function symbols. The
usefulness of such a large signature is, however, another question. It is
often better to represent natural numbers in the language of FOL, but
for that we need to first talk about terms.

Definition 6.3

Let ℒ be a signature (ℱ, ℛ, ar) and Var a (countable) set of object
variables. The set Term or Term(ℒ) of terms or ℒ-terms, is the set
closed under the following three rules

𝑥 ∈ Var
𝑥 ∈ Term

𝑐 ∈ ℱ0
𝑐 ∈ Term

𝑓 ∈ ℱ𝑛 𝑡1 ∈ Term ⋯ 𝑡𝑛 ∈ Term
𝑓(𝑡1, … 𝑡𝑛) ∈ Term

and that fulfils the following iteration property: for any set 𝑋 together
with maps 𝐼Var ∶ Var → 𝑋, 𝐼0 ∶ ℱ0 → 𝑋 and 𝐼𝑓 ∶ 𝑋ar(𝑓) → 𝑋 for all
𝑓 ∈ ℱ, there is a unique map 𝐼 ∶ Term → 𝑋 with

𝐼(𝑥) = 𝐼Var(𝑥)
𝐼(𝑐) = 𝐼0(𝑐)

𝐼(𝑓(𝑡1, … , 𝑡𝑛)) = 𝐼𝑓(𝐼(𝑡1), … , 𝐼(𝑡𝑛)) .

78 6. Introduction to First-Order Predicate Logic

Clara: Oh my …

Raghunātha: Don’t worry, I will slowly walk you through this definition.

First off, you could think of terms as given by a context free grammar:

𝑡 ∶∶= 𝑥 ∣ 𝑐 ∣ 𝑓(𝑡, … , 𝑡)

The problem with this grammar is that it does not take the arity of the symbol
𝑓 into account. For instance, if you take the symbol 𝑒 from example 6.2, then
this grammar would allow you to write 𝑒(0, 𝑒(0)). This clearly does not make
a lot of sense, as 𝑒 is supposed to be a function symbol with one argument and
not one or two! In definition 6.3, we used instead the three rules to indicate
exactly the arity of the function symbols. For instance, we can say 0 ∈ Term
by the second rule and therefore 𝑒(0) ∈ Term by the third rule. However,
𝑒(0, 𝑒(0)) ∈ Term does not follow from those rules because 𝑒 ∉ ℱ2. There-
fore, 𝑒(0, 𝑒(0)) ∉ Term

Now, this last statement, that the construction is not a term, would require
some proof. Such a proof is possible by using the iteration principle, as we
will see below. But the iteration principle gives us even more: it allows us
to define maps on terms, just as you saw for propositional formulas. For in-
stance, we can define maps that count variables or function symbols in terms,
or manipulate terms. This will be extremely important once we talk about
proof theory for FOL.

For the time being, let us define a map that finds all variables in a term. Recall
that 𝒫(Var) is the powerset of Var, given by 𝒫(Var) = {𝑈 | 𝑈 ⊆ Var}.

Lemma 6.4

Let ℒ be a signature. There is a map var ∶ Term(ℒ) → 𝒫(Var) with

var(𝑥) = {𝑥} var(𝑐) = ∅ var(𝑓(𝑡1, … , 𝑡𝑛)) =
𝑛

⋃
𝑘=1

var(𝑡𝑘)

that computes the variables that appear in ℒ-terms.

Proof. Suppose that the function symbols in ℒ are ℱ. To use the iteration
on terms, we define maps varVar ∶ Var → 𝒫(Var), var0 ∶ ℱ0 → 𝒫(Var) and

6.2. The Language of First-Order Logic 79

var𝑓 ∶ 𝒫(Var)ar(𝑓) → 𝒫(Var) for all 𝑓 ∈ ℱ with ar(𝑓) = 𝑛, by

varVar(𝑥) = {𝑥} var0(𝑐) = ∅ var𝑓(𝑈1, … , 𝑈𝑛) =
𝑛

⋃
𝑘=1

𝑈𝑘

This gives us, by the iteration principle, the map var with the properties that
we were looking for.

Example 6.5

With the signature ℒ from example 6.2 and 𝑟, 𝑠 ∈ Var, we have that
𝑠(𝑟, 0) and 𝑠(𝑟, 𝑒(𝑠)) are ℒ-terms. The map lemma 6.4 allows us to
compute the variables in those terms:

var(𝑠(𝑟, 0)) = var(𝑟) ∪ var(0)
= {𝑟} ∪ ∅
= {𝑟}

var(𝑠(𝑟, 𝑒(𝑠))) = var(𝑟) ∪ var(𝑒(𝑠))
= {𝑟} ∪ var(𝑠)
= {𝑟} ∪ {𝑠}
= {𝑟, 𝑠}

Note that there are also other terms that may not have any sensible
meaning, given the intuition we assigned to the symbols. For instance,
𝑒(𝑠(𝑟, 0)) is a valid term, but what is “the last index in the position at
the beginning of a path”?

The way we defined the map var in lemma 6.4 is akin to recursive definitions
that you may find in functional programming. We will usually just define
maps on terms through equations that can in principle be obtained by defining
the map by appealing to the formal iteration property, but without explicitly
using this principle. For instance, we can define the height of terms as a map
ℎ∶ Term → ℕ by three equations:

ℎ(𝑥) = 0
ℎ(𝑐) = 0

ℎ(𝑓(𝑡1, … , 𝑡𝑛)) = 1 + max{ℎ(𝑡𝑘) | 1 ≤ 𝑘 ≤ 𝑛}

Clearly, ℎ could be obtained by iteration of appropriate maps but these three
equations are easier to read and convey directly the behaviour of ℎ.

From the iteration principle, we can also obtain an induction principle.

80 6. Introduction to First-Order Predicate Logic

Theorem 6.6: Term Induction

Let 𝑃 ⊆ Term(ℒ) be a property of ℒ-terms. Suppose that Var ⊆
𝑃 , ℱ0 ⊆ 𝑃 , and for all 𝑓 ∈ ℱ and 𝑡1, … , 𝑡ar(𝑓) ∈ 𝑃 we have
𝑓(𝑡1, … , 𝑡ar(𝑓)) ∈ 𝑃 . Then Term(ℒ) ⊆ 𝑃 .

Proof. We put 𝐼Var(𝑥) = 𝑥, 𝐼0(𝑐) = 𝑐 and 𝐼𝑓(𝑡1, … , 𝑡ar(𝑓)) = 𝑓(𝑡1, … , 𝑡ar(𝑓)).
By the iteration principle, we get a map 𝐼 ∶ Term(ℒ) → 𝑃 with 𝐼(𝑡) = 𝑡
for all terms 𝑡, and by uniqueness 𝐼 must be an inclusion map. Therefore,
Term(ℒ) ⊆ 𝑃 .

Let us come back to example 6.5. We saw at the end that there are terms that
we may not care about or that we consider as “non-sense”. This shows that
terms should really be only thought of as providing a way of representing
objects, or rather shapes of objects, that we may want to reason about. And
for that, we will need to talk about formulas in first-order logic. There is a
slight complication with variables in FOL, but you will have to wait until the
next chapter of your journey to see this issue come up. For the moment, we
make only a first attempt.

Definition 6.7: A first attempt to define FOL formulas

Let ℒ be a signature with predicate symbols ℛ. The set Form or
Form(ℒ) of (first-order) formulas or ℒ-formulas is closed under the fol-
lowing rules

𝑃 ∈ ℛ𝑛 𝑡1 ∈ Term ⋯ 𝑡𝑛 ∈ Term
𝑃(𝑡1, … 𝑡𝑛) ∈ Form

𝜑 ∈ Form
(𝜑) ∈ Form

⊥ ∈ Form
𝜑 ∈ Form 𝜓 ∈ Form □ ∈ {∧, ∨, →}

𝜑 □ 𝜓 ∈ Form
𝑥 ∈ Var 𝜑 ∈ Form

∀𝑥. 𝜑 ∈ Form
𝑥 ∈ Var 𝜑 ∈ Form

∃𝑥. 𝜑 ∈ Form

and fulfils an iteration property, similar to that of terms. The binding
precedences extend that of propositional logic:

• ∧ and ∨ bind stronger than →, and

• ∀𝑥. and ∃𝑥. extend to the right as far as possible.

6.2. The Language of First-Order Logic 81

Formula With parentheses
∀𝑥. 𝑅(𝑥) → 𝑂(𝑥) ∀𝑥. (𝑅(𝑥) → 𝑂(𝑥))

∀𝑥. ∃𝑦. 𝑅(𝑥) → 𝑂(𝑦) ∀𝑥. (∃𝑦. (𝑅(𝑥) → 𝑂(𝑦)))
∀𝑥. 𝑅(𝑥) → ∃𝑦. 𝑂(𝑦) ∀𝑥. (𝑅(𝑥) → (∃𝑦. 𝑂(𝑦)))

Table 6.1.: Leaving out parentheses in formulas with quantifiers

We will not worry too much about the iteration principle, but you will see
how it works in a moment. The iteration principle implies also again an in-
duction principle for formulas. However, we will not need this principle at
this stage.

Let us see some examples of formulas and applications of the precedences.

Example 6.8

All the formulas from eqs. (6.3), (6.5), (6.6) and (6.8) are all formulas
over the signature from example 6.2.

As for the precedences, the table 2.2 from propositional logic still applies, but
we additionally have the rule for quantifiers, which is illustrated in table 6.1.
The rule that quantifiers extend as far as possible to the right implies that
we have to use parentheses if a quantifier should stay under another logical
connective. For instance, the formulas

∀𝑥. 𝑅(𝑥) → 𝑂(𝑥) and (∀𝑥. 𝑅(𝑥)) → 𝑂(𝑥) (6.9)

are different and also express very different properties.

This becomes clear when we distinguish between bound and free variables.

Definition 6.9

Let ℒ be a signature. We define maps on ℒ-formulas

fv ∶ Form → 𝒫(Var) and bv ∶ Form → 𝒫(Var)

82 6. Introduction to First-Order Predicate Logic

by

fv(𝑃 (𝑡1, … , 𝑡𝑛)) =
𝑛

⋃
𝑘=1

var(𝑡𝑘) bv(𝑃 (𝑡1, … , 𝑡𝑛)) = ∅

fv(⊥) = ∅ bv(⊥) = ∅
fv(𝜑 □ 𝜓) = fv(𝜑) ∪ fv(𝜓) bv(𝜑 □ 𝜓) = bv(𝜑) ∪ bv(𝜓)
fv(∀𝑥. 𝜑) = fv(𝜑) ∖ {𝑥} bv(∀𝑥. 𝜑) = bv(𝜑) ∪ {𝑥}
fv(∃𝑥. 𝜑) = fv(𝜑) ∖ {𝑥} bv(∃𝑥. 𝜑) = bv(𝜑) ∪ {𝑥}

where ∖ denotes set difference and □ ∈ {∧, ∨, →}. We say that a
variable 𝑥 is free (resp. bound) in 𝜑, if 𝑥 ∈ fv(𝜑) (resp. 𝑥 ∈ bv(𝜑)).

Example 6.10

Suppose we have a signature ℒ with unary predicate symbols (one ar-
gument) 𝑃 and 𝑄, and that 𝜑 = (∀𝑥. 𝑃 (𝑥) ∧ 𝑄(𝑦)) → 𝑃(𝑥) ∨ 𝑄(𝑦).
The variable 𝑦 is clearly nowhere bound, while 𝑥 is bound and free:

(∀𝑥. 𝑃 (𝑥) ∧ 𝑄(𝑥)⏟⏟⏟⏟⏟⏟⏟
𝑥 bound

) → 𝑃(𝑥) ∨ 𝑄(𝑦)⏟⏟⏟⏟⏟
𝑥,𝑦 free

Formally, we have

fv(𝜑) = fv(∀𝑥. 𝑃 (𝑥) ∧ 𝑄(𝑥)) ∪ fv(𝑃 (𝑥) ∨ 𝑄(𝑦))
= (fv(𝑃 (𝑥) ∧ 𝑄(𝑥)) ∖ {𝑥}) ∪ fv(𝑃 (𝑥)) ∪ fv(𝑄(𝑦))
= (fv(𝑃 (𝑥)) ∪ fv(𝑄(𝑥)) ∖ {𝑥}) ∪ {𝑥} ∪ {𝑦}
= ({𝑥} ∖ {𝑥}) ∪ {𝑥, 𝑦}
= ∅ ∪ {𝑥, 𝑦}
= {𝑥, 𝑦}

and

bv(𝜑) = bv(∀𝑥. 𝑃 (𝑥) ∧ 𝑄(𝑥)) ∪ bv(𝑃 (𝑥) ∨ 𝑄(𝑦))
= (bv(𝑃 (𝑥) ∧ 𝑄(𝑥)) ∪ {𝑥}) ∪ bv(𝑃 (𝑥)) ∪ bv(𝑄(𝑦))
= (bv(𝑃 (𝑥)) ∪ bv(𝑄(𝑥)) ∪ {𝑥}) ∪ ∅ ∪ ∅
= (∅ ∪ {𝑥}) ∪ ∅
= {𝑥} .

6.2. The Language of First-Order Logic 83

Example 6.10 shows how bound and free variables for a formula can be com-
puted, and that variables can occur both bound and free. This is a bit mislead-
ing, however, because at every individual occurrence a variable is either bound
or free, but never both. If we apply definition 6.9 to the formulas in eq. (6.9),
then we find that the formula on the left has no free variables and 𝑥 as bound
variable, while the formula on the right has 𝑥 both as free and bound variable.
This should give a clear indication that the two formulas are different.

Clara: But can the formulas still not mean the same thing?

Raghunātha: Keep in mind that we are talking about syntax for the time be-
ing, which has no intrinsic meaning! That being said, you can read the
formula ∀𝑥. 𝑅(𝑥) → 𝑂(𝑥) as “𝑅(𝑥) implies 𝑂(𝑥) for all 𝑥”. Compare
this to the reading of the formula (∀𝑥. 𝑅(𝑥)) → 𝑂(𝑥) as “if 𝑅(𝑦) holds
for all 𝑦, then 𝑂(𝑥) holds for whatever 𝑥 is”.

Clara: But now you changed bound 𝑥 in the second formula to a 𝑦. Of course
they read differently then!

Raghunātha: This is indeed a delicate part of first-order logic that we will
not be able to fully resolve at this stage. But think of it this way: the
formula ∀𝑥. 𝑅(𝑥) and ∀𝑦. 𝑅(𝑦) should express the same thing, namely
that 𝑅 holds for all objects. Therefore, I renamed 𝑥 to 𝑦. This resolves
the naming conflict and we can clearly distinguish the two formulas.
But this also shows that definition 6.7 is missing an important aspect of
variable binding. The night is setting in. I’m afraid that we have to end
our discussion for today and you will have to wait for the resolution of
this problem.

Clara: Thank very much! This is a lot to take in.

Raghunātha: Indeed, but most of what we have discussed is quite straightfor-
ward: just remember that first-order predicate logic allows us to reason
about objects, where objects are described syntactically as terms, and
we use predicate symbols to describe properties of objects. Finally,
quantifiers are used to describe universal and existential properties.
You can find an overview over the connectives in table 6.2.

Isaac: I think that I understand now roughly how the routing problem can be
formally described, but I hope that we will learn more about how it can
actually be solved!

Raghunātha: For that, my friend, you will have to continue your journey. I
will now go home and take a bit of rest.

84 6. Introduction to First-Order Predicate Logic

[Clara and Isaac leave the temple through one of the side arcs. Some children
have played with their drawing under the tree. The robot has gotten a heart and
left the board, leaving all constraints behind but those scribbled on the side of the
board. As the wind has started to blow gently, these became unreadable but for a
fragment reading: “…laws of robotics”. Birds came out to use the cooler night to
find food and comrades. They are making loud chirping noises, while Clara and
Isaac leave the temple area for the next chapter of their journey.]

Basic connectives

Connective Name Pronunciation
⊥ Absurdity/Falsity
∧ Conjunction 𝜑 and 𝜓
∨ Disjunction 𝜑 or 𝜓
→ Implication 𝜑 implies 𝜓

∀𝑥. Universal quantifier for all 𝑥, 𝜑 holds
∃𝑥. Existential quantifier for some 𝑥, 𝜑 holds

Derived connectives

Connective Name Definition
¬ Negation ¬𝜑 = 𝜑 → ⊥
⊤ Truth ⊤ = ¬⊥
↔ Bi-implication 𝜑 ↔ 𝜓 = (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)
∃!𝑥. Uniqueness quantifier

(introduced in chapter 9)
∃!𝑥. 𝜑 = ∃𝑥. 𝜑 ∧ unique𝑥(𝑥, 𝜑)

Table 6.2.: Logical connectives of first-order logic

7. Proof Theory of First-Order
Predicate Logic

7.1. Substitution in First-Order Logic

In these notes, we will discuss an important operation of first-order logic: the
substitution of a term for a variable. This operation will replace any occur-
rence of a variable in a formula by the given term. For instance, we will be able
to substitute the term 𝑓(𝑚, 𝑥) for the variable 𝑦 in the formula 𝑃(𝑦)∧𝑄(𝑟, 𝑦)
to obtain

𝑃(𝑓(𝑚, 𝑥)) ∧ 𝑄(𝑟, 𝑓(𝑚, 𝑥)).

However, the substitution operation is surprisingly complex, as we need to
deal with variables that are bound by quantifiers. The aim of these notes is to
give a rigorous presentation of variables and binding that allows us to safely
carry out substitutions.

7.1.1. The Difficulty of Names and Variables

Let us first discuss two questions that arise in FOL:

1. Are the formulas ∀𝑥. 𝑃(𝑥) and ∀𝑦. 𝑃 (𝑦) expressing the same?

2. What is the scope of variables?

Formula Equality and Renaming The first question can be answered by
reading the formula without explicitly naming variables:

“𝑃 holds for all objects”.

86 7. Proof Theory of First-Order Predicate Logic

Clearly, this sentence corresponds to both formulas ∀𝑥. 𝑃(𝑥) and ∀𝑦. 𝑃 (𝑦),
and we should consider both formulas to be the same, already syntactically!
This gives us a first rule that we will have to adhere to for FOL:

Two formulas are considered to be the same, if we can bijectively re-
name the variables of one formula to obtain the other.

For instance, consider the formulas 𝜑 and 𝜓 given by 𝜑 = ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑦) and
𝜓 = ∀𝑤. ∀𝑧. 𝑄(𝑤, 𝑧). Then, a bijective renaming would be to rename 𝑥 to 𝑤
and 𝑦 to 𝑧, which allows us to transform 𝜑 into 𝜓. However, renaming 𝑥 to 𝑟
and 𝑦 to 𝑟 is not bijective. Thus, we do not consider the formula∀𝑟. ∀𝑟. 𝑄(𝑟, 𝑟)
to be same as 𝜑. Note, that in the latter formula, the 𝑟 refers to the inner-most
quantifier and the outer quantifier has no effect!

Scoping The second question concerns the scope of variables and it requires
us to determine which objects a variable refers to. For instance, the variable 𝑥
in the sub-formula 𝑃(𝑥) of ∀𝑥. 𝑃(𝑥) refers to what the quantifier ranges over.
We say that 𝑥 is in the scope of ∀𝑥 in this formula. However, the variable 𝑦 in
∀𝑥. 𝑄(𝑥, 𝑦) is in the scope of no quantifier and is thus a global reference. If we
naively substituted 𝑥 for 𝑦 in this formula, then we would obtain ∀𝑥. 𝑄(𝑥, 𝑥).
Here, the scope of the second argument of 𝑄, and with it the meaning of the
formula, has suddenly changed. This leads to a second rule:

Substituting a term in a formula should not change variable scoping.

7.1.2. De Bruijn Trees

There are several ways to deal with variables, binding and substitution. An
intuitively understandable way is to represent terms and formulas as de Bruijn
trees. The idea is that bound variables are represented by a number that points
to the quantifier that binds this variables. All free variables keep their name.

Figure 7.1 shows the (de Bruijn-) tree representation of ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧)),
where the left figure shows the actual tree and the right figure indicates to
which quantifier the numerical name refers. We see that the bound variables
are numbered starting from the inner-most quantifier. Also note that the vari-
able 𝑧 is free and thus keeps its name in the tree representation.

7.1. Substitution in First-Order Logic 87

∀
∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧

(a) The plain tree

∀
∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧

(b) Tree with indication of the variable references

Figure 7.1.: de Bruijn-Tree Representations of ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧))

Since the nesting depth of quantifiers is important, we also note that tree rep-
resentations are not closed under subtrees! For instance, the tree in fig. 7.2a is
not a valid tree representation because ⟨1⟩ is a dangling reference. Instead,

∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧
(a) Invalid de Bruijn-Tree

∀
𝑄

𝑥 𝑓

⟨0⟩ 𝑧
(b) Correct tree representing

∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧))

Figure 7.2.: Attempts of finding trees that represent the subformula
∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧)) of ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧))

if we want to remove the outer quantifier, we need to pick a name that we
replace ⟨1⟩ with, say 𝑥, and then obtain the tree representation in fig. 7.2b.

In what follows, we will not work explicitly with tree representations, but will
use another approach, see section 7.1.3 below. However, the tree representa-
tion shows how we can solve the initial problems:

1. The formulas ∀𝑥. 𝑃(𝑥) and ∀𝑦. 𝑃 (𝑦) have the same tree representa-
tion, see fig. 7.3.

88 7. Proof Theory of First-Order Predicate Logic

∀
𝑃
⟨0⟩

Figure 7.3.: De Bruijn-Tree representing both formulas ∀𝑥. 𝑃(𝑥) and
∀𝑦. 𝑃 (𝑦)

∀
𝑄

⟨0⟩ 𝑦
(a) Representation before substitution

∀
𝑄

⟨0⟩ 𝑥
(b) Representation after substitution

Figure 7.4.: Substitution of the free variable 𝑥 for the free variable 𝑦 by using
the tree representation of ∀𝑥. 𝑄(𝑥, 𝑦)

2. Substitutions can be carried out without changing the binding of vari-
ables, see fig. 7.4. Note that the bound variable 𝑥 is represented by ⟨0⟩
and thus there is no danger of substituting the unbound variable 𝑥 for
the unbound variable 𝑦. Hence, the problem of accidentally binding a
variable does not exist for the tree representation.

7.1.3. Axiomatising Terms and Substitutions

The tree representations of formulas that we saw in section 7.1.1 solves our
problems but it is difficult to work with. In fact, these trees are good way of
implementing FOL on a computer, but not for humans to work with. The aim
of this section is to introduce a bunch of axioms that formulas and substitution
have to fulfil. These axioms are fulfilled if we were to represent terms by de
Bruijn trees, but for the remainder of the course, we will leave unspecified
how formulas are implemented.

We begin with the definition of substitutions and how they can be applied to
terms.

7.1. Substitution in First-Order Logic 89

Definition 7.1

A substitution is a map 𝜎 ∶ Var → Term. Given 𝑡 ∈ Term and 𝑥 ∈
Var, we write 𝜎[𝑥 ≔ 𝑡] for the updated substitution defined by

(𝜎[𝑥 ≔ 𝑡])(𝑦) = {𝑡, 𝑥 = 𝑦
𝜎(𝑦), 𝑥 ≠ 𝑦

and 𝜂 ∶ Var → Term for the identity substitution given by 𝜂(𝑦) = 𝑦.
For convenience, we write [𝑥 ≔ 𝑡] as shorthand for 𝜂[𝑥 ≔ 𝑡]. Given
a term 𝑡, we write 𝑡 𝜎 for the application of 𝑡 to the substitution 𝜎,
defined by iteration as follows.

𝑥 𝜎 = 𝜎(𝑥)
𝑐 𝜎 = 𝑐

𝑓(𝑡1, … , 𝑡𝑛) 𝜎 = 𝑓(𝑡1 𝜎, … , 𝑡𝑛 𝜎)

The notation 𝜎[𝑥 ≔ 𝑡] to update a substitution 𝜎 can be read like an assign-
ment in an imperative programming language: the term that 𝜎 assigned to 𝑥
will be overwritten by 𝑡. Similarly, the notation [𝑥 ≔ 𝑡] starts with a storage
in which all variables 𝑦 have the default value 𝑦, except for 𝑥 which gets 𝑡
assigned as initial value.

?
Can you make sense of the name identity substitution? What is the
result of applying a term to 𝜂?

The following example illustrates these definitions.

Example 7.2

Let 𝑔(𝑥, 𝑦) be a term with two free variables 𝑥 and 𝑦, and one binary
function symbol 𝑔. Moreover, let 𝜎 = [𝑥 ≔ 𝑦][𝑦 ≔ 𝑥].

1. The substitution 𝜎 exchanges the two variables:

𝑔(𝑥, 𝑦) 𝜎 = 𝑔(𝑥 𝜎, 𝑦 𝜎) = 𝑔(𝜎(𝑥), 𝜎(𝑦)) = 𝑔(𝑦, 𝑥)

90 7. Proof Theory of First-Order Predicate Logic

This example shows that the substitution [𝑥 ≔ 𝑦][𝑦 ≔ 𝑥] is not
the same as 𝜂. In fact, 𝜎 is substituting for 𝑥 and 𝑦 in parallel and
not in sequence. Therefore, we also cannot obtain 𝜎 by repeated
application:

𝑔(𝑥, 𝑦) [𝑥 ≔ 𝑦][𝑦 ≔ 𝑥] ≠ (𝑔(𝑥, 𝑦) [𝑥 ≔ 𝑦]) [𝑦 ≔ 𝑥] = 𝑔(𝑥, 𝑥)

2. Let now 𝜏 = 𝜎[𝑦 ≔ 𝑓(𝑥)]. In 𝜏 , the assignment of 𝑥 to 𝑦 is
overwritten with the assignment of 𝑓(𝑥) to 𝑦. We thus have the
following.

𝑔(𝑥, 𝑦) 𝜏 = 𝑔(𝑥 𝜏, 𝑦 𝜏) = 𝑔(𝑦, 𝑓(𝑥))

Next, we need to be able to apply substitutions to formulas. To circumvent
the difficulties described in section 7.1.1, we assume that there is a set of terms
on which we can carry out substitutions. This set of terms can in principle be
defined by appealing to the tree representation. However, this is tedious and
instead we just assume that formulas and the application of substitutions fulfil
certain axioms.

Definition 7.3: Extension of definition 6.7

Given a formula 𝜑, a variable 𝑥 and a substitution 𝜎, we say that 𝑥 is
fresh for 𝜑 , written 𝑥 # 𝜑 , if 𝑥 ∉ fv(𝜑). Similarly, we say that 𝑥 is
fresh for 𝜎 , written 𝑥 # 𝜎 , if

𝑥 ∉ var(𝜎(𝑦)) for all 𝑦 ∈ Var ∖ {𝑥} .

Additionally to the closure rules in definition 6.7, we assume that we
can apply a FOL formula 𝜑 to a substitution 𝜎 , written 𝜑 𝜎. Fur-
ther, we assume for all♢ ∈ {∀, ∃} and□ ∈ {∧, ∨, →} that the equality

7.1. Substitution in First-Order Logic 91

on formulas fulfils the following six axioms.

𝜑 □ 𝜓 = 𝜑′ □ 𝜓′ iff 𝜑 = 𝜑′ and 𝜓 = 𝜓′

♢𝑥. 𝜑 = ♢𝑦. 𝜓 iff 𝑦 # 𝜑 and 𝜓 = 𝜑[𝑥 ≔ 𝑦]
⊥ 𝜎 = ⊥

𝑃 (𝑡1, … , 𝑡𝑛) 𝜎 = 𝑃(𝑡1 𝜎, … , 𝑡𝑛 𝜎)
(𝜑 □ 𝜓) 𝜎 = 𝜑 𝜎 □ 𝜓 𝜎
(♢𝑥. 𝜑) 𝜎 = ♢𝑥. 𝜑 𝜎[𝑥 ≔ 𝑥] if 𝑥 # 𝜎

(EC)
(EQ)
(SB)
(SP)
(SC)
(SQ)

?
Do you know why we need to exclude in the definition of 𝑥 # 𝜎 the
variable 𝑥 from the quantification?

Let us explain the intuition behind these axioms. First of all, there are two
groups of axioms: those for the equality on formulas (starting with E) and
those that define the action of substitution on formulas (starting with S). The
axiom (EQ) allows us to bijectively rename bound variables without illegally
binding other variables. For instance, we have

∀𝑥. 𝑄(𝑥, 𝑦) = ∀𝑧. 𝑄(𝑧, 𝑦)

because 𝑧 is fresh for 𝑄(𝑥, 𝑦), that is 𝑧 ∉ fv(𝑄(𝑥, 𝑦)). However, we have

∀𝑥. 𝑄(𝑥, 𝑦) ≠ ∀𝑦. 𝑄(𝑦, 𝑦)

because 𝑦 ∈ fv(𝑄(𝑥, 𝑦)). The axiom (EC) allows us to carry out this renam-
ing also in complex formulas that involve other connectives than quantifiers.
Implicitly, we also use equality on terms and atoms, in the sense that

𝑃(𝑡1, … , 𝑡𝑛) = 𝑃 ′(𝑡′
1, … , 𝑡′

𝑛) iff 𝑃 = 𝑃 ′ and 𝑡𝑘 = 𝑡′
𝑘 for all 1 ≤ 𝑘 ≤ 𝑛

and that equality is an equivalence relation (reflexive, symmetric and transit-
ive).

The second group of axioms describes how substitution can be computed iter-
atively. Axioms (SB), (SP) and (SC) are doing what we would expect: no action
on the atom ⊥, reduce subsitution on predicates to substitution in terms, and
distribute substitution over propositional connectives. Complications arise

92 7. Proof Theory of First-Order Predicate Logic

only in the axiom (SQ), which has to make sure that the use of a bound vari-
able is not changed and that variables are not accidentally bound. On the one
hand, that the use of a bound variable is not changed is achieved by updating
the substitution 𝜎 to 𝜎[𝑥 ≔ 𝑥]. For instance, if 𝜎(𝑥) = 𝑔(𝑦), then naively
carrying out this substitution on ∀𝑥. 𝑃(𝑥) would lead to ∀𝑥. 𝑃(𝑔(𝑦)), which
is certainly not what we want! Instead, we have by (SQ) and (SP)

(∀𝑥. 𝑃 (𝑥)) 𝜎 = ∀𝑥. 𝑃 (𝑥) 𝜎[𝑥 ≔ 𝑥] = ∀𝑥. 𝑃 (𝑥).
Accidental binding is prevented, on the other hand, by the precondition that
𝑥 must be fresh for 𝜎. This condition ensures that none of the terms we want
to substitute for the (free) variables in 𝜑 contains the variable 𝑥, which would
become then bound by the quantifier.

These rules and their interaction are best illustrated through some examples.

Example 7.4

In the following, we use the substitution 𝜎 given by

𝜎 = [𝑦 ≔ 𝑥][𝑧 ≔ 𝑚].
1. Let 𝜑 = ∀𝑧. 𝑄(𝑧, 𝑦). First, we note that var(𝜎(𝑦)) = {𝑥} and

thus 𝑧 ∉ fv(𝜎(𝑣)) for all 𝑣 ≠ 𝑧. Thus, 𝑧 # 𝜎. This allows us to
carry out the substitution:

𝜑 𝜎 = ∀𝑧. 𝑄(𝑧, 𝑦) 𝜎[𝑧 ≔ 𝑧] (SQ)
= ∀𝑧. 𝑄(𝑧 𝜎[𝑧 ≔ 𝑧], 𝑦 𝜎[𝑧 ≔ 𝑧]) (SP)
= ∀𝑧. 𝑄(𝑧, 𝑥)

Note that 𝜎[𝑧 ≔ 𝑧] = [𝑦 ≔ 𝑥] and the substitution of 𝑚 for 𝑧 in
𝜎 was “forgotten” when we applied the substitution under the
quantifier. This is intuitively expected, as the bound variable 𝑧 in
𝜑 is a local reference, while the 𝑧 in 𝜎 refers to a global variable
𝑧 that has the same name but is distinct from the local variable.

2. Let 𝜓 = ∀𝑥. 𝑄(𝑥, 𝑦). First, we note that var(𝜎(𝑦)) = {𝑥}. Thus,
𝑥 ∈ fv(𝜎(𝑦)) and 𝑥 is not fresh. However, we have 𝑧 # 𝑄(𝑥, 𝑦)
and 𝑄(𝑥, 𝑦)[𝑥 ≔ 𝑧] = 𝑄(𝑧, 𝑦). This allows us to rename the
bound variable 𝑥 in 𝜓 to 𝑧 and then carry out the substitution
as above:

(∀𝑥. 𝑄(𝑥, 𝑦)) 𝜎 = (∀𝑧. 𝑄(𝑧, 𝑦)) 𝜎 (EQ)
= ∀𝑧. 𝑄(𝑧, 𝑥) by 1.

7.2. Natural Deduction for FOL 93

Note that we cannot safely rename 𝑧 back to 𝑥, as we would
otherwise illegally bind 𝑥.

In the remainder, we will not make explicit use of the axioms provided in
definition 7.3. Instead, we will rename bound variables, if necessary, before
carrying out substitutions. For instance, we would just write

(∀𝑥. 𝑄(𝑥, 𝑦)) [𝑦 ≔ 𝑥] = ∀𝑧. 𝑄(𝑧, 𝑥)

without explicitly referring to the axioms. However, we know that in cause
of doubt, we can always go back to the axioms and formally carry out the
renaming and substitution.

Our equality axioms for formulas and the possibility of renaming variables
whenever necessary has as consequence that bound variables are internal to
formulas and cannot be observed. The supposed map bv that extracts bound
variables from a formula that we introduced in definition 6.9 is in fact not
well-defined for formulas that fulfil the axioms of definition 7.3. For instance,
the formulas ∀𝑥. 𝑃(𝑥) and ∀𝑦. 𝑃 (𝑦) are equal according to the axioms but

bv(∀𝑥. 𝑃 (𝑥)) = {𝑥} ≠ {𝑦} = bv(∀𝑦. 𝑃 (𝑦))

and thus bv cannot be a map. In general, whenever we want to define a map
on formulas, then such a map has to respect the equality and thus be invariant
under renaming. More precisely, if 𝑓 ∶ Form(ℒ) → 𝐴 is a map and 𝜑 = 𝜓,
according to definition 7.3, then 𝑓(𝜑) = 𝑓(𝜓).

7.2. Natural Deduction for FOL

Note: This section has no explanation. Please refer to the lectures.

Similarly to propositional logic, we want syntactic proofs for FOL.

7.2.1. The Intuitionistic System ND1

As we reason about objects in FOL, we need a new definition of sequents:

94 7. Proof Theory of First-Order Predicate Logic

Definition 7.5

A first-order sequent for a signature ℒ is a triple

Δ ∣ Γ ⊢ 𝜑 ,

where Δ is a list of variables in Var, Γ is a list of ℒ-formulas, 𝜑 is a
ℒ-formula, and fv(Γ) ∪ fv(𝜑) ⊆ |Δ| for |Δ| = {𝑥 ∈ Var | 𝑥 ∶ Δ}. If
Δ is the empty list ⋅, we write

Γ ⊢ 𝜑

instead of ⋅ ∣ Γ ⊢ 𝜑.
Example 7.6

• This is a sequent:

𝑥, 𝑦 ∣ ∀𝑧. 𝑄(𝑧, 𝑦) ⊢ 𝑃(𝑥)

because fv(∀𝑧. 𝑄(𝑧, 𝑦)) ∪ fv(𝑃 (𝑥)) = {𝑥, 𝑦}.
• This is a sequent:

𝑥, 𝑦, 𝑧 ∣ ∀𝑧. 𝑄(𝑧, 𝑦) ⊢ 𝑃(𝑥)

because fv(∀𝑧. 𝑄(𝑧, 𝑦)) ∪ fv(𝑃 (𝑥)) = {𝑥, 𝑦} ⊆ {𝑥, 𝑦, 𝑧}.
• This is not a sequent:

𝑥 ∣ ∀𝑧. 𝑄(𝑧, 𝑦) ⊢ 𝑃(𝑥)

because fv(∀𝑧. 𝑄(𝑧, 𝑦)) ∪ fv(𝑃 (𝑥)) ⊈ {𝑥}.

Definition 7.7: Intuitionistic natural deduction for FOL

The system ND1 for FOL is given by the rules in fig. 7.5, where the
label 𝑥 ∉ Δ in the rules (∀I) and (∃E) are side-conditions that have to
be fulfilled to apply those rules. However, these side-condition will not
be displayed in proof trees.

7.2. Natural Deduction for FOL 95

𝜑 ∶ Γ
(Assum)

Δ ∣ Γ ⊢ 𝜑
Δ ∣ Γ ⊢ ⊥

(⊥E)
Δ ∣ Γ ⊢ 𝜑

Δ ∣ Γ ⊢ 𝜑 ∧ 𝜓
(∧E1)Δ ∣ Γ ⊢ 𝜑

Δ ∣ Γ ⊢ 𝜑 ∧ 𝜓
(∧E2)Δ ∣ Γ ⊢ 𝜓

Δ ∣ Γ ⊢ 𝜑 Δ ∣ Γ ⊢ 𝜓
(∧I)

Δ ∣ Γ ⊢ 𝜑 ∧ 𝜓

Δ ∣ Γ ⊢ 𝜑
(∨I1)Δ ∣ Γ ⊢ 𝜑 ∨ 𝜓

Δ ∣ Γ ⊢ 𝜓
(∨I2)Δ ∣ Γ ⊢ 𝜑 ∨ 𝜓

Δ ∣ Γ ⊢ 𝜑 ∨ 𝜓 Δ ∣ Γ, 𝜑 ⊢ 𝛿 Δ ∣ Γ, 𝜓 ⊢ 𝛿
(∨E)

Δ ∣ Γ ⊢ 𝛿

Δ ∣ Γ, 𝜑 ⊢ 𝜓
(→I)

Δ ∣ Γ ⊢ 𝜑 → 𝜓
Δ ∣ Γ ⊢ 𝜑 → 𝜓 Δ ∣ Γ ⊢ 𝜑

(→E)
Δ ∣ Γ ⊢ 𝜓

Δ, 𝑥 ∣ Γ ⊢ 𝜑
(𝑥 ∉ Δ) (∀I)

Δ ∣ Γ ⊢ ∀𝑥. 𝜑
Δ ∣ Γ ⊢ ∀𝑥. 𝜑

(∀E)
Δ ∣ Γ ⊢ 𝜑 [𝑥 ≔ 𝑡]

Δ ∣ Γ ⊢ 𝜑 [𝑥 ≔ 𝑡]
(∃I)

Δ ∣ Γ ⊢ ∃𝑥. 𝜑
Δ ∣ Γ ⊢ ∃𝑥. 𝜑 Δ, 𝑥 ∣ Γ, 𝜑 ⊢ 𝜓

(𝑥 ∉ Δ) (∃E)
Δ ∣ Γ ⊢ 𝜓

Figure 7.5.: Deduction Rules of the natural deduction system ND1

Note about fig. 7.5:

• In (∀E) and (∃I), the definition of a sequent ensures in Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]
that all the free variables of 𝑡 appear in Δ.

• Similarly, it is ensured in (∃E) that the variable 𝑥 does not occur freely
in 𝜓 because Δ ∣ Γ ⊢ 𝜓 is a sequent.

96 7. Proof Theory of First-Order Predicate Logic

7.2.2. Fitch-Style Deduction for ND1

Example 7.8

We prove ∀𝑥. 𝑃(𝑐, 𝑥) ⊢ ∀𝑥. ∃𝑦. 𝑃 (𝑦, 𝑥), where 𝑐 is a constant

1 ∀𝑥. 𝑃 (𝑐, 𝑥)
2 𝑥
3 𝑃(𝑐, 𝑥) ∀E, 1
4 ∃𝑦. 𝑃 (𝑦, 𝑥) ∃I, 3
5 ∀𝑥. ∃𝑦. 𝑃 (𝑦, 𝑥) ∀I, 2–4

Example 7.9

We prove 𝑦 ∣ ∃𝑥. 𝑃 (𝑥, 𝑦) ⊢ ¬(∀𝑥. ¬𝑃(𝑥, 𝑦))

1 𝑦 ∃𝑥. 𝑃 (𝑥, 𝑦)
2 𝑥 𝑃 (𝑥, 𝑦)
3 ∀𝑥. ¬𝑃 (𝑥, 𝑦)
4 ¬𝑃(𝑥, 𝑦) ∀E, 3
5 ⊥ ¬E, 4, 2
6 ¬(∀𝑥. ¬𝑃(𝑥, 𝑦)) ¬I, 3–5
7 ¬(∀𝑥. ¬𝑃(𝑥, 𝑦)) ∃E, 1, 2–6

7.3. Exercises 97

Example 7.10

We prove ¬∃𝑥. 𝜑 ⊢ ∀𝑥. ¬𝜑.

1 ¬∃𝑥. 𝜑
2 𝑥
3 𝜑
4 ∃𝑥. 𝜑 ∃I, 3
5 ⊥ ¬E, 1, 4
6 ¬𝜑 ¬I, 3–5
7 ∀𝑥. ¬𝜑 ∀I, 2–6

7.2.3. The Classical System cND1

Definition 7.11

The system cND1 of natural deduction for classical first-order logic is
given by the system ND1 together with the contradiction rule:

Δ ∣ Γ, ¬𝜑 ⊢ ⊥
(Contra)

Δ ∣ Γ ⊢ 𝜑

7.3. Exercises

The following exercises allow you to practise the material of this chapter.

Exercise 1

Give the de Bruijn-tree representations of the following formulas.

98 7. Proof Theory of First-Order Predicate Logic

𝑄(𝑥, 𝑔(𝑚))a) ∀𝑥. 𝑄(𝑥, 𝑔(𝑚))b)
(∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ ∀𝑦. 𝑄(𝑦, 𝑧)c) ∃𝑦. 𝑄(𝑦, 𝑔(𝑧))∧∀𝑥. 𝑄(𝑦, 𝑓(𝑥, 𝑧))d)
∀𝑥. ∃𝑥. 𝑃 (𝑥)e)

Exercise 2

Let 𝜎 be given by
𝜎 = [𝑥 ≔ 𝑔(𝑥)][𝑦 ≔ 𝑥][𝑧 ≔ 𝑦].

Evaluate the following applications of terms to 𝜎.
𝑥 𝜎a) 𝑓(𝑥, 𝑦) 𝜎b) (𝑦 𝜎) 𝜎c) 𝑥 (𝜎[𝑥 ≔ 𝑥])d)

Exercise 3

Let 𝜎 be given by
𝜎 = [𝑥 ≔ 𝑔(𝑥)][𝑦 ≔ 𝑥][𝑧 ≔ 𝑦]

and 𝜑 by
𝜑 = ∀𝑥. 𝑄(𝑥, 𝑦, 𝑧).

Determine which of the following relations hold.

𝑥 # 𝜎a) 𝑦 # 𝜎b) 𝑧 # 𝜎c)
𝑥 # 𝜑d) 𝑦 # 𝜑e) 𝑧 # 𝜑f)

Exercise 4

Let 𝜎 be given by
𝜎 = [𝑥 ≔ 𝑔(𝑥)][𝑦 ≔ 𝑥][𝑧 ≔ 𝑦].

Carry out the following substitutions.

𝑄(𝑥, 𝑔(𝑚)) 𝜎a) (∀𝑥. 𝑄(𝑥, 𝑔(𝑚))) 𝜎b)
((∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ ∀𝑦. 𝑄(𝑦, 𝑧)) 𝜎c)
(∃𝑦. 𝑄(𝑦, 𝑔(𝑧))∧∀𝑥. 𝑄(𝑦, 𝑓(𝑥, 𝑧))) 𝜎d)

8. Semantics of First-Order Logic

In this chapter, we will discuss the following two questions:

1. What are objects and their properties and when is a formula valid?

2. Are all derivable sequents valid entailments?

The first question requires us to find a mathematical model of function and
predicate symbols, which we can extend to semantics of terms and formulas.
We will focus here on Boolean semantics for simplicity. The second question
will be answered by proving that both our proof systems ND1 and cND1 are
sound with respect to the Boolean semantics.

Let us begin by finding out what an appropriate model of function and pre-
dicate symbols may be.

8.1. Models of First-Order Logic

Recall that in propositional logic a valuation 𝑣 ∶ PVar → 𝔹 on propositional
variables determined the truth value of formulas. In first-order logic we need
to provide interpretations instead for object variables, terms and predicates.
Finding the right structures to do so is the subject of this section.

First, we recall some notation.
Notation 8.1
Given a set 𝐴 and 𝑛 ∈ ℕ, we write 𝐴𝑛 for the 𝑛-fold finite product of 𝐴,
consisting of 𝑛-tuples of elements in 𝐴: as follows.

𝐴𝑛 = {(𝑎1, … , 𝑎𝑛) | 𝑎𝑘 ∈ 𝐴 for 𝑘 = 1, … , 𝑛}

We identify 𝐴1 with 𝐴 for simplicity. Note also that 𝐴0 consists only of the
single element (), which is a tuple with no entries.

100 8. Semantics of First-Order Logic

For example, the first few finite products look as follows.

𝐴0 = {()} 𝐴1 = 𝐴 𝐴2 = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝐴}

Definition 8.2

Let ℒ be a signature with ℒ = (ℱ, ℛ, ar). An ℒ-model ℳ consists of

• a set 𝑈 , the universe of ℳ
• for each 𝑓 ∈ ℱ a map

ℳ(𝑓)∶ 𝑈 ar(𝑓) → 𝑈

• for each 𝑃 ∈ ℛ a predicate

ℳ(𝑃) ⊆ 𝑈 ar(𝑃)

We also write |ℳ| for 𝑈 .

Note that the universe in in definition 8.2 may be empty. This leads to some
subtleties that are often swept under the rug. We will discuss this further after
definition 8.11.

Further, observe that if 𝑐 ∈ ℱ is a constant, then ℳ(𝑐) is a map of type
𝑈0 → 𝑈 . Since 𝑈0 has one element, providing such a map corresponds to
providing one element 𝑎 ∈ 𝑈 :

ℳ(𝑐)() = 𝑎

Let us unfold the definition for some specific arities. Suppose our signature ℒ
consists of three function symbols 𝑐, 𝑓 and 𝑔 with arity 0, 1 and 2, respectively,
and three predicate symbols 𝑃 , 𝑄, 𝑅 also of arity 0, 1 and 2. An ℒ-model ℳ
consists of a universe 𝑈 , maps and predicates as in table 8.1.

We see that ℳ(𝑐) denotes one element ℳ(𝑐)(∗) ∈ 𝑈 , as discussed above;
ℳ(𝑓) is a unary map; and ℳ(𝑔) is a binary map. Moreover, we find that
ℳ(𝑃) is either the empty set ∅ or the singleton set 𝑈0. In other words, 𝑃 is
nothing but a propositional variable! Finally, ℳ(𝑄) is a predicate, or unary
relation, while ℳ(𝑅) is a binary relation.

8.1. Models of First-Order Logic 101

Symbol s ar(𝑠) Interpretation type

Function Symbols
𝑐 0 ℳ(𝑐)∶ 𝑈0 → 𝑈
𝑓 1 ℳ(𝑓)∶ 𝑈 → 𝑈
𝑔 2 ℳ(𝑔)∶ 𝑈2 → 𝑈

Predicate Symbols
𝑃 0 ℳ(𝑃) ⊆ 𝑈0

𝑄 1 ℳ(𝑄) ⊆ 𝑈
𝑅 2 ℳ(𝑅) ⊆ 𝑈2

Table 8.1.: Data of a model for the indicated signature

?
Let ℒ = (∅, ℛ, ar) with ℛ = {𝑃} and ar(𝑃) = 0. How many possib-
ilities are there to make a model for ℒ?

In the next example, we discuss a signature and two models that occur “in the
wild”.

Example 8.3

Let ℒ be given as follows.

ℱ = {0, 1, 𝑝} ℛ = {𝐼, 𝐿}
ar(0) = ar(1) = 0 ar(𝑝) = ar(𝐼) = ar(𝐿) = 2

The interpretation of this signature could be that 0 and 1 stand for the
numbers 0 and 1, 𝑝 for addition (plus), 𝐼 for equality (identity), and 𝐿
for less-than. Indeed, we can give such an interpretation, which leads
to the model ℳ𝑎 in table 8.2 with universe |ℳ𝑎| = ℕ.

It is not necessary to interpret ℒ as in example 8.3 and we can give different
meanings to the symbols and even the universe.

102 8. Semantics of First-Order Logic

Symbol Interpretation type Interpretation
0 ℳ𝑎(0) ∶ ℕ0 → ℕ ℳ𝑎(0)() = 0
1 ℳ𝑎(1) ∶ ℕ0 → ℕ ℳ𝑎(1)() = 1
𝑝 ℳ𝑎(𝑝) ∶ ℕ2 → ℕ ℳ𝑎(𝑝)(𝑛, 𝑚) = 𝑛 + 𝑚
𝐼 ℳ𝑎(𝐼) ⊆ ℕ2 ℳ𝑎(𝐼) = {(𝑛, 𝑚) | 𝑛 = 𝑚}
𝐿 ℳ𝑎(𝐿) ⊆ ℕ2 ℳ𝑎(𝐿) = {(𝑛, 𝑚) | 𝑛 ≤ 𝑚}

Table 8.2.: Arithmetic model ℳ𝑎 over universe ℕ

Example 8.4

We show in this example how to use the same signature ℒ as in ex-
ample 8.3 to reason about formal languages, where we use the nota-
tion introduced in appendix B.4: The function symbols 0, 1 and 𝑝 cor-
respond to, respectively, the empty language, the language containing
only the empty and union of languages. The predicate symbols, on the
other hand, can be interpreted as language equality and language in-
clusion. All of this is summed up in table 8.3. Note that that 0 and 𝑝
behave similarly to 0 and addition under this interpretation. We will
discuss this later in more depth.

Symbol Interpretation type Interpretation
0 ℳ𝑙(0) ∶ 𝒫(𝐴∗)0 → 𝒫(𝐴∗) ℳ𝑙(0)() = ∅
1 ℳ𝑙(1) ∶ 𝒫(𝐴∗)0 → 𝒫(𝐴∗) ℳ𝑙(1)() = {𝜀}
𝑝 ℳ𝑙(𝑝) ∶ 𝒫(𝐴∗)2 → 𝒫(𝐴∗) ℳ𝑙(𝑝)(𝐿1, 𝐿2) = 𝐿1 ∪ 𝐿2
𝐼 ℳ𝑙(𝐼) ⊆ 𝒫(𝐴∗)2 ℳ𝑙(𝐼) = {(𝐿1, 𝐿2) | 𝐿1 = 𝐿2}
𝐿 ℳ𝑙(𝐿) ⊆ 𝒫(𝐴∗)2 ℳ𝑙(𝐿) = {(𝐿1, 𝐿2) | 𝐿1 ⊆ 𝐿2}

Table 8.3.: Language model ℳ𝑙 for ℒ over universe 𝒫(𝐴∗)

Clearly, the two models ℳ𝑎 and ℳ𝑙 in example 8.3 and example 8.4 are com-
pletely different interpretations of ℒ. This illustrates the power of first-order

8.2. Valuations and the Interpretion of FOL 103

logic: one language we can reason about an enormous variety of different
structures. However, as we will in chapter 9, this power can also become a
weakness of first-order logic.

8.2. Valuations and the Interpretion of FOL

Just as propositional variables in propositional logic, the object variables in
first-order formulas have no intrinsicmeaning. Instead, we have to givemean-
ing to them externally through valuations, which assign to each variable an
element of a given universe.

Definition 8.5

Given a signature ℒ and an ℒ-model ℳ, an ℳ-valuation, or simply
valuation, is a map 𝑣 of the following type.

𝑣 ∶ Var → |ℳ|

With interpretations of variables at our disposal, we can understand also the
meaning of terms.

Definition 8.6

A valuation 𝑣 in a model ℳ extends to the semantics of termsJ−Kℳ
𝑣 ∶ Term → |ℳ| by iteration on terms as follows.

J𝑥Kℳ
𝑣 = 𝑣(𝑥)J𝑐Kℳ
𝑣 = ℳ(𝑐)()J𝑓(𝑡1, … , 𝑡𝑛)Kℳ
𝑣 = ℳ(𝑓)(J𝑡1Kℳ

𝑣 , … , J𝑡𝑛Kℳ
𝑣)

Ifℳ is clear from the context, thenwe just write J−K𝑣 instead of J−Kℳ
𝑣 .

Let us demonstrate valuations and the term semantics for the models in ex-
amples 8.3 and 8.4.

104 8. Semantics of First-Order Logic

Example 8.7

We begin with the arithmetic model ℳ𝑎 from example 8.3. Let 𝑥 ∈ Var
be some variable and define

𝑣(𝑦) = {5, 𝑥 = 𝑦
0, 𝑥 ≠ 𝑦

Under this valuation, the term 𝑝(0, 𝑝(𝑥, 1)) gets the following se-
mantics assigned.

J𝑝(0, 𝑝(𝑥, 1))K𝑣 = J0K𝑣 + J𝑝(𝑥, 1)K𝑣
= J0K𝑣 + (J𝑥K𝑣 + J1K𝑣)
= ℳ𝑎(0)() + (𝑣(𝑥) + ℳ𝑎(1)())
= 0 + (5 + 1)
= 6

The next example provides semantics for the same term but in the language
model.

Example 8.8

Let 𝑥 ∈ Var be some variable and define

𝑣(𝑦) = {𝐴, 𝑥 = 𝑦
∅, 𝑥 ≠ 𝑦

Under this valuation, the term 𝑝(0, 𝑝(𝑥, 1)) gets the following se-
mantics assigned.

J𝑝(0, 𝑝(𝑥, 1))K𝑣 = J0K𝑣 ∪ J𝑝(𝑥, 1)K𝑣
= J0K𝑣 ∪ (J𝑥K𝑣 ∪ J1K𝑣)
= ℳ𝑙(0)() ∪ (𝑣(𝑥) ∪ ℳ𝑙(1)())
= ∅ ∪ (𝐴 ∪ {𝜀})
= {𝑤 ∈ 𝐴∗ | length(𝑤) ≤ 1}

Here, length(𝑤) is the length of the word 𝑤.

Now that we have an interpretation of terms, we can further extend it to an

8.2. Valuations and the Interpretion of FOL 105

interpretation on formulas. Recall that we needed to update substitutions to
eliminate universal quantifiers and introduce existential quantifiers. A similar
operation on valuations is necessary in the semantics of FOL formulas.

Definition 8.9

Let 𝑣 be an ℳ valuation, 𝑥 ∈ Var and 𝑎 ∈ |ℳ|. We define the update
of valuations on 𝑣 by the following equation.

(𝑣[𝑥 ↦ 𝑎])(𝑦) = {𝑎, 𝑦 = 𝑥
𝑣(𝑦), 𝑦 ≠ 𝑥

Let us briefly illustrate the update of valuations.

Example 8.10

We start with the valuation 𝑣 ∶ Var → ℕ given by 𝑣(𝑦) = 0 for all
𝑦 ∈ Var. Given variables 𝑥, 𝑧 ∈ Var with 𝑥 ≠ 𝑧, we have

(𝑣[𝑥 ↦ 1])(𝑥) = 1
(𝑣[𝑥 ↦ 1])(𝑧) = 0
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2])(𝑥) = 1
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2])(𝑧) = 2
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2][𝑥 ↦ 3])(𝑥) = 3
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2][𝑥 ↦ 3])(𝑧) = 2

The update operation of valuations allows us now to give semantics to quan-
tifiers and thereby to all formulas.

Definition 8.11

Let ℒ be a signature and ℳ an ℒ-model. We define for all ℳ-
valuations 𝑣 a map

J−K𝑣 ∶ Form → 𝔹

106 8. Semantics of First-Order Logic

by iteration on formulas.

J⊥K𝑣 = 0

J𝑃(𝑡1, … , 𝑡𝑛)K𝑣 = {1, (J𝑡1K𝑣, … , J𝑡𝑛K𝑣) ∈ ℳ(𝑃)
0, otherwiseJ𝜑 ∧ 𝜓K𝑣 = min{J𝜑K𝑣, J𝜓K𝑣}J𝜑 ∨ 𝜓K𝑣 = max{J𝜑K𝑣, J𝜓K𝑣}J𝜑 → 𝜓K𝑣 = J𝜑K𝑣 ⟹ J𝜓K𝑣J∀𝑥. 𝜑K𝑣 = min{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}J∃𝑥. 𝜑K𝑣 = max{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}

First of all, note that definition 8.11 is correct for quantifiers because renaming
of variables does not affect the result:

J∀𝑥. 𝜑K𝑣 = J∀𝑦. 𝜑 [𝑥 ≔ 𝑦]K𝑣 for all 𝑦 # 𝜑

because

min{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} = min{J𝜑 [𝑥 ≔ 𝑦]K𝑣[𝑦 ↦𝑎] | 𝑎 ∈ |ℳ|}

Thus, the definition of semantics is compatible with the equality of formulas
that we have required to hold in chapter 7.

Recall that we allow the universe of a model to be empty. This creates some
subtleties. For instance, if 𝜑 is a propositional tautology, then ∃𝑥. 𝜑 is not a
tautology, unless the signature has constants! This is because in an empty
model, we have J∃𝑥. 𝜑K𝑣 = max ∅ = 0

The possibilities that arise in the semantics of quantifiers are summed up in
table 8.4 together with the corresponding quantification. Note, however, that
the first row does not appear if there are constants in the signature.

Let us now calculate the truth value of some formulas.

8.2. Valuations and the Interpretion of FOL 107

{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} J∀𝑥. 𝜑K𝑣 J∃𝑥. 𝜑K𝑣 Interpretation
∅ 1 0 the model is empty

{0} 0 0 𝜑 holds for no 𝑎
{1} 1 1 𝜑 holds for all 𝑎

{0, 1} 0 1 𝜑 holds for some 𝑎

Table 8.4.: Possibilities for quantifier semantics

Example 8.12

Recall the signature ℒ and arithmetic model ℳ𝑎 from example 8.3.
Consider the formula

∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥)
that expresses under the arithmetical interpretation that 𝑥 + 0 = 𝑥.
In other words, the formula should be true for any valuation over ℳ𝑎.
Indeed, given a valuation 𝑣 and a natural number 𝑛, we have

J𝑝(𝑥, 0)K𝑣[𝑥 ↦𝑛] = 0 + 𝑛 = 𝑛

and thus

J𝐼(𝑝(𝑥, 0), 𝑥)K𝑣[𝑥 ↦𝑛] = {1, (J𝑝(𝑥, 0)K𝑣[𝑥 ↦𝑛], J𝑥K𝑣[𝑥 ↦𝑛]) ∈ ℳ𝑎(𝐼)
0, otherwise

= {1, 𝑛 = 𝑛
0, otherwise

= 1.

As expected, this gives us

J∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥)K𝑣 = min{J𝐼(𝑝(𝑥, 0), 𝑥)K𝑣[𝑥 ↦𝑛] | 𝑛 ∈ ℕ}
= min{1}
= 1

and thus ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥) is true in ℳ𝑎.
As a second example, consider the formula

∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)

108 8. Semantics of First-Order Logic

that states that for every number there is a strictly larger number. This
formula is true in the arithmetic model because for every 𝑛 ∈ ℕ we
have that 𝑛 < 𝑛 + 1. In other words, for every valuation 𝑣 and 𝑛 ∈ ℕ

J𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛][𝑦 ↦𝑛+1] = 1.

Thus,

J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛]

= max{J𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛][𝑦 ↦𝑚] | 𝑚 ∈ ℕ}
= 1 because 𝑛 + 1 ∈ ℕ

and

J∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣
= min{J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛] | 𝑛 ∈ ℕ}
= min{1}
= 1

?
Is the formula ∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦)∧¬𝐼(𝑥, 𝑦) from example 8.12 true in the
language model ℳ𝑙?

8.3. Entailment and Satisfiability for FOL

In section 8.2, we have defined the functional interpretation of first-order for-
mulas in terms of the mapping J−K. As for propositional logic, we can also
give a relational interpretation of formulas. This allows us to easily define
satisfiability and tautologies.

Definition 8.13

Let 𝜑 be an ℒ-formula and Γ a set of ℒ-formulas. We define the se-
mantic entailment, where JΓK𝑣 = min{J𝜓K𝑣 | 𝜓 ∈ Γ}, as follows.

8.3. Entailment and Satisfiability for FOL 109

Γ ⊨ℳ 𝜑 if JΓKℳ
𝑣 ≤ J𝜑Kℳ

𝑣 for all valuations 𝑣 (Γ entails 𝜑 in ℳ)
Γ ⊨ 𝜑 if JΓKℳ

𝑣 ≤ J𝜑Kℳ
𝑣 (Γ entails 𝜑)

for all models ℳ and valuations 𝑣

We say that ℳ and 𝑣 satisfy 𝜑 if J𝜑Kℳ
𝑣 = 1, and that 𝜑 is satisfiable, if

there is a model ℳ and an ℳ-valuation 𝑣 that satisfy 𝜑. The formula
𝜑 is a tautology, written ⊨ 𝜑, if ∅ ⊨ 𝜑. Finally, we say that ℳ validates
𝜑, if ∅ ⊨ℳ 𝜑, that is, 𝜑 is a tautology only within the model ℳ.

Let us give some examples in the arithmetic model.

Example 8.14

Let 𝜑𝑒 be the formula ∃𝑦. 𝐼(𝑥, 𝑝(𝑦, 𝑦)) (“𝑥 is even”), and let 𝑣1 and 𝑣2
be given as follows.

𝑣1(𝑧) = {2, 𝑧 = 𝑥
1, 𝑧 ≠ 𝑥 𝑣2(𝑧) = {3, 𝑧 = 𝑥

1, 𝑧 ≠ 𝑥

Then ℳ𝑎 and 𝑣1 satisfy 𝜑𝑒, but ℳ𝑎 and 𝑣2 do not. Therefore 𝜑𝑒 is
satisfiable but not validated by ℳ𝑎.
Let Γ = {𝜑𝑒} and 𝜑𝑜 = ∃𝑦. 𝐼(𝑥, 𝑝(𝑝(𝑦, 𝑦), 1)). Then

Γ ⊨ℳ𝑎 𝜑𝑜 [𝑥 ≔ 𝑝(𝑥, 1)]

holds: If JΓKℳ𝑎
𝑣 = 1, then 𝑣(𝑥) must be an even number. Thus, 𝑣(𝑥)+1

is an odd number and J𝜑𝑜 [𝑥 ≔ 𝑝(𝑥, 1)]K𝑣 = 1. Formally,

JΓK𝑣 = 1
iff J𝜑𝑒K𝑣 = 1
iff min{J𝐼(𝑥, 𝑝(𝑦, 𝑦))K𝑣[𝑦 ↦𝑛] | 𝑛 ∈ ℕ} = 1
iff J𝐼(𝑥, 𝑝(𝑦, 𝑦))K𝑣[𝑦 ↦𝑛] = 1 for some 𝑛 ∈ ℕ (see table 8.4)
iff 𝑣(𝑥) = 𝑛 + 𝑛 for some 𝑛 ∈ ℕ
iff 𝑣(𝑥) even

110 8. Semantics of First-Order Logic

and under this assumption

J𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)]K𝑣 = J(∃𝑦. 𝐼(𝑥, 𝑝(𝑝(𝑦, 𝑦), 1)))[𝑥 ≔ 𝑝(𝑥, 1)]K𝑣
= J∃𝑦. 𝐼(𝑝(𝑥, 1), 𝑝(𝑝(𝑦, 𝑦), 1))K𝑣
= max{J𝐼(𝑝(𝑥, 1), 𝑝(𝑝(𝑦, 𝑦), 1))K𝑣[𝑦 ↦𝑛] | 𝑛 ∈ ℕ}
≥ J𝐼(𝑝(𝑥, 1), 𝑝(𝑝(𝑦, 𝑦), 1))K𝑣[𝑦 ↦𝑣(𝑥)/2]

= 1,

where we use the identity 𝑣(𝑥) + 1 = (𝑣(𝑥)/2 + 𝑣(𝑥)/2) + 1 in the
last line.

To show that a formula is not a tautology, it can be convenient or even neces-
sary to choose the interpretation of function or predicate symbols appropri-
ately, as the following example shows.

Example 8.15

We have seen in example 8.12 that J∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥)Kℳ𝑎
𝑣 = 1 for any

valuation 𝑣 and therefore ℳ𝑎 validates ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥). However,
this formula is not a tautology because it is not satisfied by the model
ℳ with |ℳ| = ℕ, ℳ(0) = 1 and otherwise the same interpretation
as in the arithmetic model ℳ𝑎.

In chapter 7, we have seen formulas that were derivable in ND1, which are a
good source of tautologies, see also section 8.4 below.

Example 8.16

We claim that the formula (∀𝑥. 𝜑) → ¬∃𝑥. ¬𝜑 is a tautology for any
formula 𝜑. Indeed, let ℳ be a model for the signature ℒ, over which
𝜑 is a formula, and 𝑣 a valuation in ℳ. We obtain from table 8.4 thatJ¬∃𝑥. ¬𝜑K𝑣 = 1 iff J∃𝑥. ¬𝜑K𝑣 = 0

iff J¬𝜑K𝑣[𝑥 ↦𝑎] = 0 for all 𝑎 ∈ |ℳ|
iff J𝜑K𝑣[𝑥 ↦𝑎] = 1 for all 𝑎 ∈ |ℳ|
iff J∀𝑥. 𝜑K𝑣 = 1

This implies that J∀𝑥. 𝜑K𝑣 ≤ J¬∃𝑥. ¬𝜑K𝑣

8.4. Soundness of Natural Deduction for FOL 111

and thus

J(∀𝑥. 𝜑) → ¬∃𝑥. ¬𝜑K𝑣
= J(∀𝑥. 𝜑)K𝑣 ⟹ J¬∃𝑥. ¬𝜑K𝑣
= 1.

Hence, (∀𝑥. 𝜑) → ¬∃𝑥. ¬𝜑 is a tautology.
It should be noted that implication and entailment are, like in proposi-
tional logic, closely related. In this example, we have ∀𝑥. 𝜑 ⊨ ¬∃𝑥. ¬𝜑
and the proof proceeds in essentially the same way: First, we have
that ∀𝑥. 𝜑 ⊨ ¬∃𝑥. ¬𝜑 holds if and only if J∀𝑥. 𝜑K𝑣 ≤ J¬∃𝑥. ¬𝜑K𝑣
for all models and valuations. If J∀𝑥. 𝜑K𝑣 = 0, we have nothing to
prove, while if J∀𝑥. 𝜑K𝑣 = 1 we use the reasoning above to obtain
that J¬∃𝑥. ¬𝜑K𝑣 = 1. Therefore, J∀𝑥. 𝜑K𝑣 ≤ J¬∃𝑥. ¬𝜑K𝑣 holds for all
models and valuations and ∀𝑥. 𝜑 ⊨ ¬∃𝑥. ¬𝜑.

8.4. Soundness of Natural Deduction for FOL

We come now to the second initial question: Are all derivable formulas tauto-
logies? Using definition 8.13, we can state this question precisely by asking:
if there is a proof for the sequent Γ ⊢ 𝜑 in one of the systems from chapter 7,
is 𝜑 then entailed semantically by Γ? The answer to this question is the main
result of this chapter.

Theorem 8.17: Soundness

For every formula 𝜑 and list of formulas Γ over a signature ℒ
1. if Γ ⊢ 𝜑 is derivable in ND1, then Γ ⊨ 𝜑.

2. if Γ ⊢ 𝜑 is derivable in cND1, then Γ ⊨ 𝜑.

Instantiating theorem 8.17 with the empty list of assumptions, we obtain the
following corollary.

112 8. Semantics of First-Order Logic

Corollary 8.18

For every formula 𝜑 over a signature ℒ the following holds.

1. If ⊢ 𝜑 is derivable in ND1, then 𝜑 is a tautology.

2. If ⊢ 𝜑 is derivable in cND1, then 𝜑 is a tautology.

The most important use of theorem 8.17 is to show that a formula is not prov-
able.

Example 8.19

Recall from example 8.15 that ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥) is not a tautology. Thus,
this formula cannot be provable in ND1, as we would obtain a contra-
diction with corollary 8.18.

The proof of theorem 8.17 requires some interesting results that essentially
show that substitutions are the syntactic counterpart of valuations. This is
proved below in lemma 8.20 for terms and in lemma 8.21 for formulas.

Lemma 8.20

For all substitutions 𝜎, terms 𝑡, valuations 𝑣 and variables 𝑥, where 𝑥
is fresh for 𝜎, the following equation holds.

J𝑡 𝜎K𝑣 = J𝑡 (𝜎[𝑥 ≔ 𝑥])K𝑣[𝑥 ↦J𝜎(𝑥)K𝑣]

Proof. We let 𝜎′ = 𝜎[𝑥 ≔ 𝑥] and 𝑣′ = 𝑣[𝑥 ↦ J𝜎(𝑥)K𝑣], which means that we
have to prove

J𝑡 𝜎K𝑣 = J𝑡 𝜎′K𝑣′

This proof proceeds by induction on the term 𝑡.

8.4. Soundness of Natural Deduction for FOL 113

• In the base case we have for a variable 𝑦:

J𝑦 𝜎K𝑣 = J𝜎(𝑦)K𝑣 def. substitution

= {J𝜎(𝑥)K𝑣, 𝑦 = 𝑥J𝜎(𝑦)K𝑣, 𝑦 ≠ 𝑥

= {J𝑥K𝑣′ , 𝑦 = 𝑥J𝜎(𝑦)K𝑣, 𝑦 ≠ 𝑥 def. 𝑣′

= {J𝑥K𝑣′ , 𝑦 = 𝑥J𝜎(𝑦)K𝑣′ , 𝑦 ≠ 𝑥 𝑥 fresh for 𝜎

= J𝑦 𝜎′K𝑣′ def. substitution update

• In the induction step, we have

J𝑓(𝑡1, … , 𝑡𝑛) 𝜎K𝑣
= J𝑓(𝑡1 𝜎, … , 𝑡𝑛 𝜎)K𝑣 def. substitution
= ℳ(𝑓)(J𝑡1 𝜎K𝑣, … , J𝑡𝑛 𝜎K𝑣) def. semantics
= ℳ(𝑓)(J𝑡1 𝜎′K𝑣′ , … , J𝑡𝑛 𝜎′K𝑣′) induction hypothesis
= J𝑓(𝑡1, … , 𝑡𝑛) 𝜎′K𝑣′ def. semantics and subst.

Thus, by induction on 𝑡, the sought after identity J𝑡 𝜎K𝑣 = J𝑡 𝜎′K𝑣′ holds.

The following lemma extends lemma 8.20 to formulas.

Lemma 8.21

For all substitutions 𝜎, formulas 𝜑, valuations 𝑣 and variables 𝑥, where
𝑥 is fresh for 𝜎, the following equation holds.

J𝜑 𝜎K𝑣 = J𝜑 (𝜎[𝑥 ≔ 𝑥])K𝑣[𝑥 ↦J𝜎(𝑥)K𝑣]

Proof. As in lemma 8.20, we let 𝜎′ = 𝜎[𝑥 ≔ 𝑥] and 𝑣′ = 𝑣[𝑥 ↦ J𝜎(𝑥)K𝑣], and
then prove J𝜑 𝜎K𝑣 = J𝜑 𝜎′K𝑣′

by induction on 𝜑.

114 8. Semantics of First-Order Logic

• In the predicate base case, we have

J𝑃(𝑡1, … , 𝑡𝑛) 𝜎K𝑣 = J𝑃(𝑡1 𝜎, … , 𝑡𝑛 𝜎)K𝑣 def. substitution
= ℳ(𝑃)(J𝑡1 𝜎K𝑣, … , J𝑡𝑛 𝜎K𝑣) def. semantics
= ℳ(𝑃)(J𝑡1 𝜎′K𝑣′ , … , J𝑡𝑛 𝜎′K𝑣′) lemma 8.20
= J𝑃(𝑡1, … , 𝑡𝑛) 𝜎′K𝑣′ def. semantics and subst.

• The base case for ⊥ is trivial: J⊥ 𝜎K𝑣 = 0 = J⊥ 𝜎′K𝑣′ .

• The cases for conjunction, disjunction and implication are immediate
by the induction hypothesis. We write 𝔹∧ = min, 𝔹∨ = max and
𝔹→(𝑥, 𝑦) = 𝑥 ⇒ 𝑦, which are the binary Boolean functions for their
corresponding connective. This gives us

J(𝜑1 □ 𝜑2) 𝜎K𝑣 = 𝔹□(J𝜑1 𝜎K𝑣, J𝜑2 𝜎K𝑣) def. subst. and semantics
= 𝔹□(J𝜑1 𝜎′K𝑣′ , J𝜑2 𝜎′K𝑣′) induction hyp.
= J(𝜑1 □ 𝜑2) 𝜎′K𝑣′ def. semantics and subst.

• For quantifiers assume that 𝑦 is fresh for 𝜎.
Before we continue, observe that for any 𝑎 ∈ 𝑈 , we can define 𝑤 =
𝑣[𝑦 ↦ 𝑎] and 𝑤′ = 𝑤[𝑥 ↦ J𝜎(𝑥)K𝑣]. By using the induction hypo-
thesis for 𝜓 with 𝑤, we obtain J𝜓 𝜎K𝑤 = J𝜓 𝜎′K𝑤′ . Since 𝑥 and 𝑦 are
fresh, we have that 𝑤′ = 𝑣′[𝑦 ↦ 𝑎]. Thus J𝜓 𝜎K𝑤 = J𝜓 𝜎′K𝑣′[𝑦 ↦𝑎].

With this observation, we have

J(∀𝑦. 𝜓) 𝜎K𝑣 = J∀𝑦. 𝜓 𝜎K𝑣 (SQ)
= min{J𝜓 𝜎K𝑣[𝑦 ↦𝑎] | 𝑎 ∈ 𝑈} def. semantics
= min{J𝜓 𝜎′K𝑣′[𝑦 ↦𝑎] | 𝑎 ∈ 𝑈} see above
= J(∀𝑦. 𝜓) 𝜎′K𝑣′ def. semantics and (SQ)

The same reasoning, replacing min by max, gives us the result also for
the existential quantifier.

This concludes the induction and thereby the proof.

Proof of theorem 8.17. We generalise the statement and prove that Δ ∣ Γ ⊢ 𝜑
implies Γ ⊨ 𝜑. To this end, we proceed by induction on the proof tree for
Δ ∣ Γ ⊢ 𝜑 in cND1. The statement for ND1 follows from this.

8.4. Soundness of Natural Deduction for FOL 115

Thus, assume that we are given a proof tree for Δ ∣ Γ ⊢ 𝜑. We have to show
for all models ℳ and valuations 𝑣 in ℳ that JΓK𝑣 ≤ J𝜑K𝑣. Most of the cases
are dealt with in the same way as for propositional logic and we only treat the
rules for quantifiers here.

• Suppose the proof tree ends in
Δ, 𝑥 ∣ Γ ⊢ 𝜑

(∀I)
Δ ∣ Γ ⊢ ∀𝑥. 𝜑

where 𝑥 does not appear in Δ. We now haveJ∀𝑥. 𝜑K𝑣 = min{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} def. semantics
≥ min{JΓK𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} by IH
= JΓK𝑣, 𝑥 not in Γ

where we use the induction hypothesis (IH) for Δ, 𝑥 ∣ Γ ⊢ 𝜑 with
model ℳ and valuation 𝑣[𝑥 ↦ 𝑎]. This identity gives us Γ ⊨ ∀𝑥. 𝜑.

• Next, suppose that last rule that is used in the tree is
Δ ∣ Γ ⊢ ∀𝑥. 𝜑

(∀E)
Δ ∣ Γ ⊢ 𝜑 [𝑥 ≔ 𝑡]

for some term 𝑡 with variables in Δ. By the induction hypothesis, we
have that JΓK𝑣 ≤ J∀𝑥. 𝜑K𝑣. Using the substitution lemma with the
substitution 𝜎 = [𝑥 ≔ 𝑡], we obtain the desired result:JΓK𝑣 ≤ J∀𝑥. 𝜑K𝑣 by IH

= min{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} by def.
≤ J𝜑K𝑣[𝑥 ↦J𝑡K𝑣] property of min
= J𝜑 [𝑥 ≔ 𝑡]K𝑣 lemma 8.21

• The proof for the introduction of existential quantifiers
Δ ∣ Γ ⊢ 𝜑 [𝑥 ≔ 𝑡]

(∃I)
Δ ∣ Γ ⊢ ∃𝑥. 𝜑

follows a similar argument:JΓK𝑣 ≤ J𝜑 [𝑥 ≔ 𝑡]K𝑣 by IH
= J𝜑K𝑣[𝑥 ↦J𝑡K𝑣] lemma 8.21
≤ max{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} property of max
= J∃𝑥. 𝜑K𝑣 by def.

116 8. Semantics of First-Order Logic

• Finally, the elimination of existential quantifiers is probably the most
tricky part. Suppose that the tree ends with this rule application:

Δ ∣ Γ ⊢ ∃𝑥. 𝜑 Δ, 𝑥 ∣ Γ, 𝜑 ⊢ 𝜓
(𝑥 ∉ Δ) (∃E)

Δ ∣ Γ ⊢ 𝜓

By the induction hypothesis, we have

I) JΓK𝑣 ≤ J∃𝑥. 𝜑K𝑣 = max{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}, and
II) for all 𝑎 ∈ |ℳ|

min{JΓK𝑣, J𝜑K𝑣[𝑥 ↦𝑎]} = JΓ, 𝜑K𝑣[𝑥 ↦𝑎] 𝑥 ∉ Δ
≤ J𝜓K𝑣[𝑥 ↦𝑎] by IH
= J𝜓K𝑣 𝑥 ∉ Δ

Putting these together, we obtain

JΓK𝑣
≤ min{JΓK𝑣,max{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}}

by I and monotonicity of min
≤ J𝜓K𝑣 by II

as required.

This induction in proof trees shows thatΔ ∣ Γ ⊢ 𝜑 in cND1 impliesΓ ⊨ 𝜑.

9. Extensions and Limits of
First-Order Logic

First-order logic together with the proof system cND1 is a strong and express-
ive logic, but at the same time also severely limited. In this chapter, we will
see where this seeming contradiction comes from.

Before we get to that, we will first extend the syntax of first-order logic by a
special predicate that allows us to reason about the identity of objects.

9.1. First-Order Logic with Equality

Recall that we used in example 8.3 a binary predicate symbol 𝐼 to express that
two objects are equal. In the arithmetic model ℳ𝑎, we also interpreted 𝐼 as
the equality of numbers. However, a general model ℳ is not forced to give
this interpretation to 𝐼 , it can interpret 𝐼 as any binary relation. For example,
the interpretation as inequality is perfectly valid but is the exact opposite of
our intention: ℳ(𝐼) = {(𝑎, 𝑏) | 𝑎 ≠ 𝑏}.
This problem can be fixed by giving equality a special status andmaking it part
of the syntax and proof system of first-order logic. To this end, we extend the
first-order formulas by one extra kind atomic formula of the form 𝑡 ≐ 𝑠 for
terms 𝑠 and 𝑡, which is a logical formula with the intent of expressing that
𝑡 is equal to 𝑠. We use this special notation the to carefully distinguish the
syntactic equality ≐ in the logic, from the equality that we use elsewhere to
express general equality of mathematical objects. In particular, we previously
wrote 𝑠 = 𝑡 to say that 𝑠 and 𝑡 are equal as terms. For instance, we reasoned
about identities like 𝑓(𝑥) [𝑥 ≔ 𝑐] = 𝑓(𝑐). The “dotted” notation is different
from this equality as it is just a syntactic formula. For example, we can form
the formula 𝑓(𝑥) ≐ 𝑐. This formula may be true or not, but the notation with
the dot does not assign any intrinsic meaning to such statements, whereas
𝑓(𝑥) = 𝑐 cannot be true as identity of terms. The meaning of ≐ will rather
come from the proof system and the semantics. It may happen that 𝑓(𝑥) ≐ 𝑐

118 9. Extensions and Limits of First-Order Logic

becomes true in a model, for example, by interpreting 𝑓 as the successor map
with ℳ(𝑓)(𝑛) = 𝑛 + 1, 𝑥 as the number 1 and 𝑐 as the number 2. Thus, it is
important to keep in mind that = and ≐ express generally different things.

Definition 9.1

Let ℒ be a signature. The set Form= or Form(ℒ=) of (first-order) for-
mulas with equality or ℒ=-formulas is closed under the following
rules.

𝑡 ∈ Term 𝑠 ∈ Term
𝑡 ≐ 𝑠 ∈ Form=

𝑃 ∈ ℛ𝑛 𝑡1 ∈ Term ⋯ 𝑡𝑛 ∈ Term
𝑃(𝑡1, … 𝑡𝑛) ∈ Form=

𝜑 ∈ Form=

(𝜑) ∈ Form=

⊥ ∈ Form=
𝜑 ∈ Form= 𝜓 ∈ Form= □ ∈ {∧, ∨, →}

𝜑 □ 𝜓 ∈ Form=

𝑥 ∈ Var 𝜑 ∈ Form=

∀𝑥. 𝜑 ∈ Form=
𝑥 ∈ Var 𝜑 ∈ Form=

∃𝑥. 𝜑 ∈ Form=

The map fv ∶ Form= → 𝒫(Var) is defined exactly as the map as on
Form, with the following extra case for equality.

fv(𝑠 ≐ 𝑡) = fv(𝑠) ∪ fv(𝑡)

Finally, the ℒ=-formulas fulfil, additionally to the axioms from defini-
tion 7.3, the following axiom for substitution.

(𝑠 ≐ 𝑡) 𝜎 = (𝑠 𝜎 ≐ 𝑡 𝜎) (SE)

Note that Form= is defined in the same way as Formwith one extra case added
for 𝑠 ≐ 𝑡 and that there is no difference for ℒ=-formulas that do not involve
the equality relation, see also lemma 9.7 below.

Also we need to be careful to distinguish in the axiom (SE) between the atomic
equality formulas and the equality of formulas themselves. The equality of
formulas, without the dot, compares the two formulas that are made up of the
equality connective, with the dot.

9.1. First-Order Logic with Equality 119

Let us revisit the examples involving statements about natural numbers.

Example 9.2: Arithmetic with equality

In example 8.14, we have reasoned about even and odd numbers by us-
ing a predicate 𝐼 that was supposed to represent the equality of num-
bers. As we have mentioned in the introduction of this section, this
approach does not work very well. Let us instead consider the follow-
ing signature ℒ.

ℱ = {0, 1, 𝑝} ℛ = {𝐿}
ar(0) = ar(1) = 0 ar(𝑝) = ar(𝐿) = 2

The symbols in this signature still have the same intent as in ex-
ample 8.3: 0 and 1 represent the numbers 0 and 1, 𝑝 addition, and
𝐿 less-than. We can now express in Form(ℒ=) the formulas that ap-
peared in examples 8.12 and 8.14 more naturally:

∀𝑥. 𝑥 ≐ 𝑝(𝑥, 0) (0 is neutral)
∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦) (𝑥 is even)
∃𝑦. 𝑥 ≐ 𝑝(𝑝(𝑦, 𝑦), 1) (𝑥 is odd)

Recall from table 8.4 that the existential quantifier in ∃𝑥. 𝜑 requires that there
is at least one object that has the property 𝜑. Suppose we want to express
that there is exactly one such object, that is, that there is a unique object with
property 𝜑. We can use equality to do exactly that. To say that 𝑥 is unique
with the property 𝜑 is expressed by requiring that 𝑥 is equal to any other
object with the same property:

∀𝑦. 𝜑[𝑥 ≔ 𝑦] → 𝑥 ≐ 𝑦

Using this expression of uniqueness, we can define unique existential quanti-
fication, typically written as ∃!𝑥. 𝜑, by the following formula.

∃𝑥. 𝜑 ∧ (∀𝑦. 𝜑[𝑥 ≔ 𝑦] → 𝑥 ≐ 𝑦)

As uniqueness is one of themost important applications of equality, it deserves
its own definition.

120 9. Extensions and Limits of First-Order Logic

Definition 9.3: Uniqueness

Let 𝜑 be a formula, 𝑡 a term and 𝑥 a free variable in 𝜑. We define a for-
mula unique𝑥(𝑡, 𝜑) that expresses that 𝑡 is uniquely among all objects
that can be placed in the formula 𝜑 for 𝑥:

unique𝑥(𝑡, 𝜑) = ∀𝑦. 𝜑[𝑥 ≔ 𝑦] → 𝑡 ≐ 𝑦

The variable 𝑦 is chosen to be fresh for 𝜑 and 𝑡. Using uniqueness, we
can define the uniqueness quantifier as follows.

∃!𝑥. 𝜑 = ∃𝑥. 𝜑 ∧ unique𝑥(𝑥, 𝜑)

Another useful application of equality is that it allows us to count how many
things there are with a certain property.

Example 9.4: Expressing finite quantities

Not only can we use equality to enforce uniqueness as in definition 9.3,
but we can even state that there must be at least or exactly a certain
amount of objects with some property. To do so, we need to express
that two objects are not identical, which we define here as the negation
of equality:

𝑠≐𝑡 = ¬(𝑠 ≐ 𝑡).
We can express that there are at least two objects with property 𝜑 by

∃𝑥. ∃𝑦. 𝜑[𝑥 ≔ 𝑥] ∧ 𝜑[𝑥 ≔ 𝑦] ∧ 𝑥≐𝑦

and that there must be exactly two objects for which 𝜑 holds by

∃𝑥. ∃𝑦. 𝜑[𝑥 ≔ 𝑥]∧𝜑[𝑥 ≔ 𝑦]∧𝑥≐𝑦∧(∀𝑧. 𝜑[𝑥 ≔ 𝑧] → 𝑧 ≐ 𝑥∨𝑧 ≐ 𝑦)

This is called counting quantification.

Besides counting objects, we can also use equality to make sure that objects
are given by a certain pattern. Let us demonstrate this by specifying the com-
mands of a simple protocol.

9.1. First-Order Logic with Equality 121

Example 9.5: Commands of a vending machine

Suppose we were to specify the interface of a vending machine with
a coin slot and button to select the product. Since vending machines
occur across computer science curricula, it is worthwhile to figure out
how to formalise this specification.
We begin with the signature ℒ𝑣, where 𝑣 stands for “vending ma-
chine”, with predicate symbols Cmd and Prod of arity one for clas-
sifying commands, products, a constant coin, and a unary function
symbol sel for the product selection command. This model assumes
that our vending machine does not distinguish between coins and pos-
sible surpluses will be donated. Formally, we define ℒ𝑣 = (ℛ, ℱ, ar),
where ℛ = {Cmd, Prod}, ℱ = {coin, sel}, ar(coin) = 0, and
ar(Cmd) = ar(Prod) = ar(sel) = 1,
Within the signatureℒ𝑣, we can nowuse equality to specify that a com-
mand must either be the input of a coin or the selection of a product:

∀𝑥.Cmd(𝑥) ↔ 𝑥 ≐ coin ∨ ∃𝑦. 𝑥 ≐ sel(𝑦) ∧ Prod(𝑦)

This formula can be recognised as a typical data type declaration, here
in Haskell-style:

data Cmd = Coin | Sel Prod

Given that we know how commands look like, we can specify the be-
haviour of our vending machine. Our vending machine is going to be
a bit greedy and not very user friendly: It has two states 𝑠1 and 𝑠2, one
that waits for a coin and one that dispenses the chosen product. When
the machine is in the first state it will ignore any selection commands,
while in the second state it will continue accepting coins, even after
already receiving one. This is displayed in the following state diagram.

𝑠1 𝑠2

coin
sel(𝑥)

sel(𝑥)

coin

Before we can reason about this machine, we have to carry out the
mundane task of formally specifying this state diagram. To do so, we
have to extend the signature ℒ𝑣 with constants 𝑠1 and 𝑠2, a unary
predicate symbol St to classify states, and a binary function symbol 𝑓

122 9. Extensions and Limits of First-Order Logic

that represents that transitions of the machine. Our goal is to describe
𝑓 by a formula, such that

∀𝑥. ∀𝑦. St(𝑥) ∧ Cmd(𝑦) → ∃!𝑧. St(𝑧) ∧ 𝑓(𝑥, 𝑦) ≐ 𝑧

holds. The uniqueness quantifier is what makes 𝑓 a map, which means
that 𝑓 assigns to every state 𝑥 and command 𝑦 a unique state 𝑧.
Typically, we would specify 𝑓 by pattern matching:

𝑓(𝑠1, coin) = 𝑠2 𝑓(𝑠1, sel(𝑥)) = 𝑠1
𝑓(𝑠2, coin) = 𝑠2 𝑓(𝑠2, sel(𝑥)) = 𝑠1

Such a patternmatching definition ensures automatically that 𝑓 is well-
defined, if we know that there are exactly two states 𝑠1 and 𝑠2, and the
two commands coin and sel. We have specified already how commands
look like above. Similarly, we can specify that there are only two states:

∀𝑥. St(𝑥) ↔ 𝑥 ≐ 𝑠1 ∨ 𝑥 ≐ 𝑠2

Such pattern matching definition can be specified in first-order logic
with equality as follows.

∀𝑥. ∀𝑦. St(𝑥) ∧ Cmd(𝑦) →
(𝑥 ≐ 𝑠1 ∧ 𝑦 ≐ coin → 𝑓(𝑥, 𝑦) = 𝑠2)

∧ (𝑥 ≐ 𝑠2 ∧ 𝑦 ≐ coin → 𝑓(𝑥, 𝑦) = 𝑠2)
∧ (𝑥 ≐ 𝑠1 ∧ ∃𝑧. Prod(𝑧) ∧ 𝑦 ≐ sel(𝑧) → 𝑓(𝑥, 𝑦) = 𝑠1)
∧ (𝑥 ≐ 𝑠2 ∧ ∃𝑧. Prod(𝑧) ∧ 𝑦 ≐ sel(𝑧) → 𝑓(𝑥, 𝑦) = 𝑠1)

That this formulas specifies 𝑓 uniquely as a map, follows from the for-
mulas that declare the “data types” Cmd and St. We will, however, re-
frain from proving this here because such a proof would be quite long
and extremely boring. A better approach is to use an extension of first-
order logic with types [And02; Jac99], that allows the specification of
Cmd, St and 𝑓 directly by pattern matching. That being said, this ex-
ample shows that we can in principle handle data types and function
definitions in first-order logic with equality.

We could now go further and also specify and reason about the behaviour of
the vending machine, but at that point we should be really using a computer
and a proof assistant.

9.1. First-Order Logic with Equality 123

9.1.1. Semantics of FOL with Equality

The intention of the new symbol ≐ is that it expresses that two objects are
identical. With this in mind, we can easily extend the semantics of formulas
to account for equality.

Definition 9.6: Formula semantics with equality

Let ℒ be a signature and ℳ an ℒ-model. The ℒ=-semantics or just
semantics of ℒ=-formulas is given for a valuation 𝑣 ∶ Var → |ℳ| by
the map

J−K=
𝑣 ∶ Form= → 𝔹

that is defined by iteration on formulas as follows.

J⊥K=
𝑣 = 0

J𝑃(𝑡1, … , 𝑡𝑛)K=
𝑣 = {1, (J𝑡1K𝑣, … , J𝑡𝑛K𝑣) ∈ ℳ(𝑃)

0, otherwise

J𝑠 ≐ 𝑡K=
𝑣 = {1, J𝑠K𝑣 = J𝑡K𝑣

0, otherwiseJ𝜑 ∧ 𝜓K=
𝑣 = min{J𝜑K=

𝑣 , J𝜓K=
𝑣 }J𝜑 ∨ 𝜓K=𝑣 = max{J𝜑K=

𝑣 , J𝜓K=
𝑣 }J𝜑 → 𝜓K=

𝑣 = J𝜑K=
𝑣 ⟹ J𝜓K=

𝑣J∀𝑥. 𝜑K=
𝑣 = min{J𝜑K=

𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}J∃𝑥. 𝜑K=
𝑣 = max{J𝜑K=

𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}

If it is clear from the context that J−K=
𝑣 is applied to an ℒ=-formula

𝜑, then we just write J𝜑K𝑣 instead of J𝜑K=
𝑣 . Semantic entailment for

formulas and assumptions in Form= is adapted accordingly: if Γ is a
set of formulas and 𝜑 a single formula in Form=, then we write,

Γ ⊨= 𝜑 if JΓK=
𝑣 ≤ J𝜑K=

𝑣 for all models ℳ and valuations 𝑣.

Note that J−K=
𝑣 differs from the semantics of formulas without equality only

124 9. Extensions and Limits of First-Order Logic

by the extra case for 𝑠 ≐ 𝑡. This means that whenever a formula does not
use the equality symbol, then its semantics is given by definition 8.11. The
following lemma makes this idea precise.

Lemma 9.7: Preservation of semantics

There is a map 𝑒 ∶ Form(ℒ) → Form(ℒ=), such that for all models ℳ,
valuations 𝑣 and formulas 𝜑 ∈ Form(ℒ) the following identity holds.

J𝑒(𝜑)K=
𝑣 = J𝜑K𝑣

Proof. The map 𝑒 is defined by iteratively mapping a formula in Form(ℒ) to
the same formula in Form(ℒ=): 𝑒(⊥) = ⊥, 𝑒(𝑃 (𝑡1, … , 𝑡𝑛)) = 𝑃(𝑡1, … , 𝑡𝑛),
𝑒(𝜑 ∧ 𝜓) = 𝑒(𝜑) ∧ 𝑒(𝜓) etc. That the semantics of 𝑒(𝜑) and 𝜑 agree is easily
proved by induction.

This result allows us also to use table 8.4 to determine the semantics of ℒ=-
formulas with quantifiers.

Let us go through the semantics of some formulas that use the equality pre-
dicate.

Example 9.8

Recall that the arithmetic model ℳ𝑎 in example 8.3 had to account for
the predicate 𝐼 that modelled equality explicitly. We can now forget
about the interpretation of 𝐼 and use ℳ𝑎 to give semantics to ℒ=-
formulas for the signature ℒ from example 9.2. For instance, we have
for a given valuation 𝑣 ∶ Var → ℕ that

J∀𝑥. 𝑥 ≐ 𝑝(𝑥, 0)K=
𝑣 = {1, J𝑥 ≐ 𝑝(𝑥, 0)K𝑣[𝑥 ↦𝑛] for all 𝑛 ∈ ℕ

0, otherwise

= {1, 𝑛 = 𝑛 + 0 for all 𝑛 ∈ ℕ
0, otherwise

= 1,

9.1. First-Order Logic with Equality 125

where we used table 8.4 for the first identity. Similarly, we have

J∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)K=
𝑣 = {1, J𝑥 ≐ 𝑝(𝑦, 𝑦)K𝑣[𝑦 ↦𝑛] = 1 for some 𝑛 ∈ ℕ

0, otherwise

= {1, 𝑣(𝑥) = 2𝑛 for some 𝑛 ∈ ℕ
0, otherwise

= {1, 𝑣(𝑥) even
0, otherwise

9.1.2. Natural Deduction for FOL with Equality

The last step to complete the picture of first-order logic with equality is to give
the corresponding proof system. Keeping lemma 9.7 in mind, we expect that
such a proof system has the same rules as ND1 or cND1 for all connectives
and only adds rules for equality. Thus, let us briefly think about how we use
equality and try to deduce the proof rules from this intuition.

A common use of equality is equational reasoning. For instance, if 𝑎 and 𝑏 are
numbers, then

𝑎𝑏 + 𝑎(−𝑏) = 𝑎(𝑏 − 𝑏) = 𝑎0 = 0
establishes that 𝑎𝑏 + 𝑎(−𝑏) is identical to 0. In fact, if we calculate with con-
crete numbers, say 2 and 5, then 2⋅5+2⋅(−5) is just another way of writing 0.
This leads us to the most basic identity, the identity of an object with itself:

𝑥 = 𝑥

This identity is called reflexivity and will be the first rule that we adapt into
our proof system.

Reflexivity by itself is, however, not enough. We often replace “equals by
equals” in equational reasoning. For instance, if we know that 𝑐 = 0 then we
can infer

𝑑 = 0 + 𝑑 = 𝑐 + 𝑑.
From this and the previous identity, we can infer the following much more
complex identity.

𝑑 = (𝑎𝑏 + 𝑎(−𝑏)) + 𝑑

126 9. Extensions and Limits of First-Order Logic

The process of replacing equal objects can be generalised to arbitrary formulas
and leads us the so-called replacement rule.

Formally, the intuitionistic and classical natural deduction proof systems for
first-order logic with equality are given in the following definition.

Definition 9.9: Natural deduction with equality

The systemsND=
1 and cND=

1 are given by extending, respectively,ND1
and cND1 with the following two rules.

(Refl)
Δ ∣ Γ ⊢ 𝑡 ≐ 𝑡

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡 Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑠]
(Repl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]

The rule (Refl) is called reflexivity and (Repl) is called replacement.

We follow in definition 9.9 the traditional naming for the rules, although we
could also use the naming scheme of introduction and elimination rules that
we employed for other logical connectives. Under this naming scheme, (Refl)
would be an introduction rule, while (Repl) would be an elimination rule.

Surprisingly, the two rules (Refl) and (Repl) are enough to fully characterise
equality. To give a flavour of the power of the replacement rule, let us prove
that ≐ is symmetric and transitive. These two properties form the basis of
equational reasoning.

Theorem 9.10: Equality is an equivalence relation

The following two rules of symmetry and transitivity are admissible in
ND=

1 and cND=
1 .

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡
(Sym)

Δ ∣ Γ ⊢ 𝑡 ≐ 𝑠
Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡 Δ ∣ Γ ⊢ 𝑡 ≐ 𝑟

(Trans)
Δ ∣ Γ ⊢ 𝑠 ≐ 𝑟

Proof. To derive transitivity, we will have to use the replacement rule. The
difficulty in using this rule lies in finding the correct formula 𝜑, in which we
replace equal terms. If we take a look at the conclusion of the transitivity rule,
then we have several options of choosing such a formula 𝜑. After a bit of trial
and error, we can come up with

𝑠 ≐ 𝑥

9.1. First-Order Logic with Equality 127

for 𝜑. This formula works because 𝜑[𝑥 ≔ 𝑟] is the conclusion 𝑠 ≐ 𝑟 of (Trans)
and 𝜑[𝑥 ≔ 𝑡] is the first premise 𝑠 ≐ 𝑡 of (Trans). Thus, (Trans) is given by
the following application of (Repl), albeit with swapped premises.

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡] Δ ∣ Γ ⊢ 𝑡 ≐ 𝑟
(Repl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑟]

By the above discussion, this a proof tree for

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡 Δ ∣ Γ ⊢ 𝑡 ≐ 𝑟
(Trans)

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑟

by carrying out the substitution. This shows that the transitivity rule is deriv-
able from (Repl).

?
Can you find a derivation for the symmetry rule in theorem 9.10 in
ND=

1 ?

At this point, one may wonder why we have to introduce equality as a new
symbol and give new proof systems. Why can we not just add equality to the
signature and find axioms Γ so that that Γ, Γ′ ⊢ 𝜑 is derivable in ND1 if and
only if Γ′ ⊢ 𝜑 is derivable in ND=

1 ? For instance, the formula ∀𝑥. 𝑥 ≐ 𝑥
could serve as an axiom that represents reflexivity. The problem is that the
replacement rule ranges over all formulas, which would mean that we have to
add an axiom for each formula, including our axioms. This leads to a problem
that we cannot solve in first-order logic, if we want to use only finitely many
axioms. Alternatively, we can add for all function and predicate symbols in
the signature axioms that state that they respect the equality relation. For
example, if 𝑓 ∈ ℱ1 and 𝑃 ∈ ℛ1 we would need

resp𝑓 = ∀𝑥. ∀𝑦. 𝑥 ≐ 𝑦 → 𝑓(𝑥) ≐ 𝑓(𝑦)
resp𝑃 = ∀𝑥. ∀𝑦. 𝑥 ≐ 𝑦 → 𝑃(𝑥) → 𝑃(𝑦)

One can then prove that for Γ0 consisting of axioms for reflexivity, transitivity,
symmetry, resp𝑓 and resp𝑃 for all 𝑓 and 𝑃 in ℒ that Γ0, Γ ⊢ 𝜑 is provable in
ND1 over the signature ℒ=, which has ℛ= = ℛ ∪ {≐}, iff Γ ⊢ 𝜑 is provable
in ND=

1 . However, this proof requires induction over formulas and leads thus
to quite large proof trees. For this reason we give equality a special status in
our logic.

128 9. Extensions and Limits of First-Order Logic

In our semantics of ℒ=-formulas, we interpreted the syntactic equality ≐ as
equality in the universe. This make the proof of the following soundness state-
ment an easy extension of soundness of the systems ND1 and cND1.

Theorem 9.11

If the sequent Γ ⊢ 𝜑 is derivable in ND=
1 or cND=

1 , then Γ ⊨ 𝜑.

Since the unique quantifier in definition 9.3 is a derived logical connective, we
can equip it with introduction and elimination rules. Especially the introduc-
tion rule shortens proofs considerably.

Lemma 9.12: Rules for uniqueness quantifier

The following rules are admissible inND=
1 , where the variable 𝑦 in (∃!I)

has to be fresh.

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡] Δ, 𝑦 ∣ Γ, 𝜑[𝑥 ≔ 𝑦] ⊢ 𝑡 ≐ 𝑦
(∃!I)

Δ ∣ Γ ⊢ ∃!𝑥. 𝜑

Δ ∣ Γ ⊢ ∃!𝑥. 𝜑 Δ, 𝑥 ∣ Γ, 𝜑, unique𝑥(𝑥, 𝜑) ⊢ 𝜓
(∃!E)

Δ ∣ Γ ⊢ 𝜓

?
Can you derive the two rules in lemma 9.12?

We finish this section with a few example proofs in the systems ND=
1 and

cND=
1 . As before, wewill use Fitch-style proofs tomake the proofs readable.

Example 9.13

In this example, we will formally prove the incredibly difficult fact that
the successor of an even number is odd. To this end, we use the for-
mulas 𝜑𝑒 and 𝜑𝑜 given by

𝜑𝑒 = ∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦) and 𝜑𝑜 = ∃𝑧. 𝑥 ≐ 𝑝(𝑝(𝑧, 𝑧), 1)

to describe even and odd numbers. We then derive the sequent

⊢ ∀𝑥. 𝜑𝑒 → 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)]

9.1. First-Order Logic with Equality 129

in ND=
1 by using Fitch-style.

1 𝑥 ∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)
2 𝑦 𝑥 ≐ 𝑝(𝑦, 𝑦)
3 𝑝(𝑥, 1) ≐ 𝑝(𝑥, 1) Refl

4 𝑝(𝑥, 1) ≐ 𝑝(𝑝(𝑦, 𝑦), 1) Repl, 2, 3
5 ∃𝑧. 𝑝(𝑥, 1) ≐ 𝑝(𝑝(𝑧, 𝑧), 1) ∃I, 4
6 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] ∃E, 1, 2–5
7 𝜑𝑒 → 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] →I, 1–6
8 ∀𝑥. 𝜑𝑒 → 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] ∀I, 1–7

In the proof, we use the reflexivity rule (Refl) in line 3 and the replace-
ment rule (Repl) in line 4. The rule (Repl) is thereby applied to the
formula 𝜓 given by 𝑝(𝑥, 1) ≐ 𝑝(𝑢, 1) and the substitutions [𝑢 ≔ 𝑥]
and [𝑢 ≔ 𝑝(𝑦, 𝑦))]:

Δ ∣ Γ ⊢ 𝑥 ≐ 𝑝(𝑦, 𝑦) Δ ∣ Γ ⊢ 𝜓[𝑢 ≔ 𝑥]
Δ ∣ Γ ⊢ 𝜓[𝑢 ≔ 𝑝(𝑦, 𝑦)]

where Δ = 𝑥, 𝑦 and Γ = 𝜑𝑒, 𝑥 ≐ 𝑝(𝑦, 𝑦) are the context and assump-
tions introduced in lines 1 and 2.

The next example shows how equality can be used to prove uniqueness of
dividers

Example 9.14: Even numbers have unique divider

We all know that division gives unique results, whenever it is defined.
In particular, if a number 𝑛 is even, then there should be a unique num-
ber 𝑘 with 𝑛 = 2𝑘. Formally, we use the formula

∀𝑥. 𝜑𝑒 → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) (∗)

to express uniqueness of divisors. In this example, we will prove
uniqueness of divisors, as expressed by (∗), in ND=

1 .
Underlying uniqueness of division by two is the fact that doubling a

130 9. Extensions and Limits of First-Order Logic

number is an injective function, that is, 2𝑛 = 2𝑚 implies 𝑚 = 𝑛 for
all natural numbers 𝑚 and 𝑛:

𝜑double-inj = ∀𝑚. ∀𝑛. 𝑝(𝑚, 𝑚) ≐ 𝑝(𝑛, 𝑛) → 𝑚 ≐ 𝑛

Thus, what we will prove is that uniqueness of divisors is derivable
from injectivity of doubling:

𝜑double-inj ⊢ ∀𝑥. 𝜑𝑒 → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) (†)

To make injectivity of doubling better usable in the proof of (†) below,
let us derive for some context Δ, and terms 𝑟, 𝑠 and 𝑡 the following
sequent.

Δ ∣ 𝜑double-inj, 𝑟 ≐ 𝑝(𝑠, 𝑠), 𝑟 ≐ 𝑝(𝑡, 𝑡) ⊢ 𝑠 ≐ 𝑡 (♭)

This sequent allows us to use an intermediate term 𝑡 to relate the doub-
ling of 𝑠 and of 𝑡 to derive the equality of 𝑠 and 𝑡, and is proven as
follows. Note that the proof uses symmetry and transitivity that we
derived in theorem 9.10, and that the steps 4 and 5 are akin to the chain
of equations 𝑝(𝑠, 𝑠) ≐ 𝑥 ≐ 𝑝(𝑡, 𝑡).

1 𝜑double-inj

2 𝑥 ≐ 𝑝(𝑠, 𝑠)
3 𝑥 ≐ 𝑝(𝑡, 𝑡)
4 𝑝(𝑠, 𝑠) ≐ 𝑥 Sym, 2
5 𝑝(𝑠, 𝑠) ≐ 𝑝(𝑡, 𝑡) Trans, 4, 3
6 ∀𝑛. 𝑝(𝑠, 𝑠) ≐ 𝑝(𝑛, 𝑛) → 𝑠 ≐ 𝑛 ∀E, 1
7 𝑝(𝑠, 𝑠) ≐ 𝑝(𝑡, 𝑡) → 𝑠 ≐ 𝑡 ∀E, 6
8 𝑠 ≐ 𝑡 →E, 7, 5

Using the identity, we can prove the uniqueness of the divisor of even
numbers. The derivation of (∗) uses a typical combination: assume that
an object with some property exists and prove that this object is unique.
In the course of this, we use existential elimination (line 4-7) to inspect

9.2. Completeness 131

the object that we know to exist, and then introduce the uniqueness
quantifier in line 7 by appealing to the above identity (♭).

1 𝜑𝑑𝑜𝑢𝑏𝑙𝑒−𝑖𝑛𝑗

2 𝑥
3 ∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)
4 𝑦 𝑥 ≐ 𝑝(𝑦, 𝑦)
5 𝑦′ 𝑥 ≐ 𝑝(𝑦′, 𝑦′)
6 𝑦 ≐ 𝑦′ (♭), 4, 5
7 ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) ∃!I, 4, 5–6
8 ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) ∃E, 4–7
9 (∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)) → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) →I, 3–8
10 ∀𝑥. 𝜑𝑒 → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) ∀I, 2–9

Example 9.14 shows how ND=
1 can be used to do equational reasoning, as it

occurs in computer science and mathematics. Clearly, the proofs are fairly
lengthy because we have to make every step explicit, which we typically not
do on paper. However, the amount of boilerplate can be reduced by using a
computer to automate some, or even all, of the steps, while still retaining the
certainty of a formal proof as the one above.

9.2. Completeness

The strength of the classical natural deduction systems for FOL are in their
completeness theorems. Recall from theorems 8.17 and 9.11 that cND1 and
cND=

1 are sound, meaning that any statement that is provable is also true
semantically:

If Γ ⊢ 𝜑 is derivable in cND1 or cND=
1 , then Γ ⊨ 𝜑.

The completeness theorem establishes the other direction of this implication.

132 9. Extensions and Limits of First-Order Logic

Theorem 9.15: Completeness of cND1 and cND=
1

Let Γ ⊢ 𝜑 be a first-order sequent.

1. If Γ is a list of ℒ-formulas, 𝜑 a ℒ-formula and Γ ⊨ 𝜑, then Γ ⊢ 𝜑
is derivable in cND1.

2. If Γ is a list of ℒ=-formulas, 𝜑 a ℒ=-formula and Γ ⊨= 𝜑, then
Γ ⊢ 𝜑 is derivable in cND=

1 .

Just as in the case of propositional logic, this remarkable result tells us that
there is a proof tree for any semantically true statement. Unfortunately, the
proof of this result is not effective, that is, we cannot extract an actual proof
tree from the proof of theorem 9.15 and we only know that such a proof tree
has to exist. The reason for this is that the proof of theorem 9.15 is a proof by
contradiction and therefore uses classical logic in an essential way. This can-
not be avoided, which renders the completeness theorem fairly useless from
a computational perspective. If we wanted to use it to derive Γ ⊢ 𝜑, then
we would have to quantify over all models and establish for each model ℳ
that the Γ entails 𝜑 in ℳ. As Γ and 𝜑 will likely contain quantifiers, we will
then have to quantify over all elements of the universe of ℳ, cf. example 8.16.
This is not only difficult, but generally undecidable. Even though the sound-
ness and completeness theorems establish cND1 as a good proof system for
first-order logic, finding a proof tree remains a difficult problem. In the next
chapter, we will see a proof system that can prove less than cND1 and ND1,
but allows us to do proof search.

9.3. Compactness and its Consequences

Closely related to completeness is also compactness. Where the completeness
theorem 9.15 told us that any semantically true formula has a formal proof, the
compactness theorem will establish limits on properties that we can express
as formulas in first-order logic.

Note that (first-order) sequents of the form Γ ⊢ 𝜑 always require that Γ is a
finite list of formulas, whereas the semantic entailment Γ ⊨= 𝜑 allows that Γ
can be any set, even an infinite set, of formulas. Theorem 9.15 can be formu-
lated differently to allow for such a general set Γ of assumption. However,
one then has to show that Γ ⊨= 𝜑 uses only a finite number of assumptions
from Γ to obtain completeness of cND=

1 . This is because a the proof trees of

9.3. Compactness and its Consequences 133

cND=
1 are finite and can therefore only use finitely many assumptions. As a

consequence, we get the following result.

Theorem 9.16: Compactness of first-order logic

Let Γ be an arbitrary set of first-order formulas. Then Γ ⊨= 𝜑 if and
only if there is a finite Γ0 ⊆ Γ such that Γ0 ⊨= 𝜑.

The right-to-left direction of the equivalence between the two conditions is
easily established: Observe that if Γ0 ⊆ Γ, then for any valuation 𝑣 we have

JΓK=
𝑣 ≤ JΓ0K=

𝑣 ≤ J𝜑K=
𝑣 .

This shows that Γ0 ⊨= 𝜑 implies Γ ⊨= 𝜑 for any (finite) subset Γ0 of Γ.
The other direction is what makes theorem 9.16 so interesting, and it is this
direction that we use now to establish some limits of first-order logic with
cND=

1 .

9.3.1. Expressiveness of First-Order Logic

A (simple directed) graph 𝐺 is given by a finite set 𝑁 of nodes and a relation
𝐸 ⊆ 𝑁2 of edges. Graphs are typically drawn as diagrams like this:

𝑛1 𝑛2

𝑛3

𝑛4

This graph 𝐺1 is given by the set 𝑁1 = {𝑛1, 𝑛2, 𝑛3, 𝑛4} of nodes and the
relation 𝐸1 of edges given by

𝐸1 = {(𝑛1, 𝑛2), (𝑛2, 𝑛2), (𝑛2, 𝑛3), (𝑛3, 𝑛1), (𝑛4, 𝑛2)}.

A typical problem in graph theory is reachability:

Given a graph 𝐺 and nodes 𝑚 and 𝑛 in 𝐺, can we reach 𝑛 from
𝑚 by traversing along edges of 𝐺?

134 9. Extensions and Limits of First-Order Logic

In the above example, we have that 𝑛3 is reachable from 𝑛1 by using the edges
(𝑛1, 𝑛2) and (𝑛2, 𝑛3). Contrary to that, 𝑛4 is not reachable from 𝑛1 in 𝐺1.

This problem seems to lend itself to formalisation in first-order logic: Let ℒ be
the signature (∅, ℛ, ar) with ℛ = {𝑅} and ar(𝑅) = 2. The intention is that
the relation symbol 𝑅 represents a binary relation and therefore the edges of
a graph. Indeed, given a graph 𝐺 with nodes 𝑁 and edges 𝐸, we obtain an
ℒ-model ℳ𝐺 by defining

|ℳ𝐺| = 𝑁 and ℳ𝐺(𝑅) = 𝐸.
We can now ask if there is a first-order formula 𝜑 over ℒ with two free vari-
ables 𝑥 and 𝑦, such that for all graphs 𝐺, all nodes 𝑚 and 𝑛 in 𝐺 and valuations
𝑣 we haveJ𝜑Kℳ𝐺

[𝑥 ↦𝑚][𝑦 ↦𝑛] = 1 if and only if 𝑛 is reachable from 𝑚 in 𝐺.
It is important to note that we ask for a formula that works for all graphs!
Let us try to write down such a formula. How can we reach a node 𝑦 from
𝑥? Either 𝑥 is already 𝑦, or an edge connects them, or we make a transition
via other nodes. The problem is that there is a priori no upper bound on the
number of nodes that we have to visit to get from 𝑥 to 𝑦 because the formula
has to work for any graph. Thus, we are left with the following attempt to
write down a formula, in which the dots indicate that such a formula would
have to be infinitely long, which is clearly not what we consider a formula.

𝑥 ≐ 𝑦
∨ 𝑅(𝑥, 𝑦)
∨ (∃𝑧. 𝑅(𝑥, 𝑧) ∧ 𝑅(𝑧, 𝑦))
∨ (∃𝑧1. ∃𝑧2. 𝑅(𝑥, 𝑧1) ∧ 𝑅(𝑧1, 𝑧2) ∧ 𝑅(𝑧2, 𝑦))
∨ ⋯

How do we get out of this? In just first-order logic with equality, we don’t!

Theorem 9.17: Graph reachability cannot be expressed

There is no ℒ=-formula 𝜑 with fv(𝜑) = {𝑥, 𝑦}, such that 𝜑 is true if
and only if 𝑦 is reachable from 𝑥 via 𝑅.

Proof. Assume that there is an ℒ=-formula with fv(𝜑) = {𝑥, 𝑦}, such that for
every graph 𝐺 = (𝑁, 𝐸) with ℳ𝐺 as above and for all 𝑛, 𝑚 ∈ 𝑁

J𝜑Kℳ𝐺
[𝑥 ↦𝑚][𝑦 ↦𝑛] = 1 if and only if 𝑛 is reachable from 𝑚 in 𝐺.

9.3. Compactness and its Consequences 135

We define now formulas 𝜑𝑘 with fv(𝜑𝑘) = {𝑥, 𝑦}, such that

J𝜑𝑘Kℳ𝐺
[𝑥 ↦𝑚][𝑦 ↦𝑛] = 1 if and only if there is a path from 𝑛 to 𝑚 of length 𝑘.

Concretely, we define 𝜑𝑘 by iteration on 𝑘:

𝜑0 = 𝑥 ≐ 𝑦
𝜑𝑘+1 = ∃𝑧. 𝑅(𝑥, 𝑧) ∧ 𝜑𝑘[𝑥 ≔ 𝑧]

Let now Γ = {¬𝜑𝑘 | 𝑘 ∈ ℕ}, which expresses that there is no path of any
length and we clearly have Γ ⊨ ¬𝜑. By the compactness theorem 9.16, we get
a finite Γ0 ⊆ Γ with Γ0 ⊨ ¬𝜑. Let 𝑘 ∈ ℕ be the largest number, such that
𝜑𝑘 ∈ Γ0. Thus, any path longer than 𝑘 is not forbidden by Γ0!

To use this fact, we define a graph 𝐺 = (𝑁, 𝐸) by 𝑁 = {𝑛0, 𝑛1, … , 𝑛𝑘+1}
and 𝐸 = {(𝑛𝑖, 𝑛𝑖+1) | 𝑖 = 0, … , 𝑘}. This graph 𝐺 looks essentially like a list

𝑛0 𝑛1 ⋯ 𝑛𝑘+1

with only one path from 𝑛0 to 𝑛𝑘+1, which is furthermore of length 𝑘 + 1. In
other words, for this graph 𝐺, we have

JΓ0Kℳ𝐺
[𝑥 ↦𝑛0][𝑦 ↦𝑛𝑘+1] = 1

but J¬𝜑Kℳ𝐺
[𝑥 ↦𝑛0][𝑦 ↦𝑛𝑘+1] = 0,

which contradicts Γ0 ⊨ ¬𝜑. Hence, the formula 𝜑 cannot exist.

Theorem 9.17 is a severe limitation of first-order logic. Isaac was counting
on FOL to find a route that leads it to its heart! However, since routing is
essentially graph reachability, FOL will not be able to help But there is hope!
In the exercises and in the next chapter, we will see that our Isaac can still be
helped to find its heart.

136 9. Extensions and Limits of First-Order Logic

9.4. Exercises

Exercise 5

Formalise the sentence
“Pavel owes money to everyone but himself”

as a formula 𝜑 in first-order logic with equality. You need one constant
𝑝 for “Pavel” and one binary predicate symbol 𝑂 for “owes to”.

a)

Derive for your formula 𝜑 the following sequent in ND=
1 using a Fitch-

style proof.
𝜑 ⊢ ¬𝑂(𝑝, 𝑝)

b)

Exercise 6

Let ℒ be a signature with a unary predicate symbol 𝑃 . We define 𝑃1 to be the
formula

𝑃1 = ∀𝑦. ∀𝑧. 𝑃 (𝑦) ∧ 𝑃(𝑧) → 𝑦 ≐ 𝑧,
which expresses that there can be maximally one object that fulfils 𝑃 . Prove
the following logical equivalence in ND=

1 :

⊢ (∃!𝑥. 𝑃 (𝑥)) ↔ ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1)

To approach the proof of this formula, do both implications in separate proofs
and refer to them in the proof of the logical equivalence. Furthermore, use
the derived rules for the uniqueness quantifier from lemma 9.11 in the lecture
notes.

Exercise 7 Graph Reachability

We have seen that compactness prevents us from giving a formula that ex-
presses reachability in graphs. In this exercise, we will see that reachability
can be expressed by appropriately defining a predicate. Let ℒ be the signa-
ture ({𝐸, 𝑅}, {𝑛1, … , 𝑛4}, ar) with ar(𝐸) = ar(𝑅) = 2 and ar(𝑛𝑘) = 0 for
𝑘 = 1, … 4. The intention is that 𝐸(𝑥, 𝑦) holds if there is an edge between 𝑥
and 𝑦 in a given graph, and 𝑅(𝑥, 𝑦) holds if the node 𝑦 is reachable from 𝑥.
We will use the constants 𝑛𝑘 later to model the nodes of a concrete graph.

9.4. Exercises 137

Reachability 𝑅 is the reflexive and transitive closure of the edge relation 𝐸.
In other words, each node 𝑥 must be related to itself via 𝐸 (reflexivity), and
if there is an edge from 𝑥 to some 𝑧 and 𝑦 is reachable from 𝑧, then 𝑦 is also
reachable from 𝑥 (transitivity).

Give two formulas 𝜑𝑟 and 𝜑𝑡 with free variables 𝑥 and 𝑦 that express,
respectively, reflexivity and transitivity. That is to say, that the formula
𝜑𝑅 given by

∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) ↔ 𝜑𝑟 ∨ 𝜑𝑡

expresses that 𝑅 is the reachability relation in the graph with edges 𝐸.

a)

Let 𝜑𝑅,1, 𝜑𝑅,2 and 𝜑𝑅,3 be given by

𝜑𝑅,1 = ∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡
𝜑𝑅,2 = ∀𝑥. ∀𝑦. 𝜑𝑟 → 𝑅(𝑥, 𝑦)
𝜑𝑅,3 = ∀𝑥. ∀𝑦. 𝜑𝑡 → 𝑅(𝑥, 𝑦)

Derive the following sequent in ND=
1 using Fitch-style.

𝜑𝑅,1, 𝜑𝑅,2, 𝜑𝑅,3 ⊢ 𝜑𝑅

Note that the proof merely uses the rules for quantifiers and proposi-
tional connectives, not those for equality.

b)

Consider the following graph 𝐺.

𝑛1 𝑛2

𝑛3

𝑛4

Give formulas 𝜑𝐸,1, … , 𝜑𝐸,5 that describe the edge of 𝐺.

c)

Give a proof inND=
1 using Fitch-style of𝜑𝑅, 𝜑𝐸,1, … , 𝜑𝐸,5 ⊢ 𝑅(𝑛4, 𝑛3).

Use b) to simplify the task.
d)

Exercise 8

A group 𝐺 is given by a binary map ∔∶ 𝐺 × 𝐺 → 𝐺 and an element ̇0 of 𝐺,
such that

138 9. Extensions and Limits of First-Order Logic

1. for all 𝑥 in 𝐺, 𝑥 ∔ ̇0 = ̇0 ∔ 𝑥 = 𝑥,
2. for all 𝑥, 𝑦, 𝑧 in 𝐺, 𝑥 ∔ (𝑦 ∔ 𝑧) = (𝑥 ∔ 𝑦) ∔ 𝑧, and
3. for every 𝑥 in 𝐺 there is a 𝑦 in 𝐺, such that 𝑥 ∔ 𝑦 = ̇0 and 𝑦 ∔ 𝑥 = ̇0.

The equations 1 - 3 are called the group axioms. Groups appear everywhere in
computer science and mathematics, with very popular applications in crypto-
graphy. The goal of this exercise is to formally reason about groups in first-
order logic with equality.

Let ℒ be the signature with function symbols ∔ and ̇0 of arity 2 and 0, re-
spectively. Let us write, as above, the symbol ∔ in infix notation, that is, we
write 𝑠 ∔ 𝑡 instead of ∔(𝑠, 𝑡) for terms 𝑠 and 𝑡. We define ℒ=-formulas 𝜑1,𝑙
and 𝜑1,𝑟 by

𝜑1,𝑙 = ∀𝑥. ̇0 ∔ 𝑥 ≐ 𝑥 and 𝜑1,𝑟 = ∀𝑥. 𝑥 ∔ ̇0 ≐ 𝑥

that formalise together the first group axiom.

Give ℒ=-formulas 𝜑2 and 𝜑3 that formalise the axioms 2 and 3 from
above.

a)

Give a formula 𝜑𝑢 that expresses the uniqueness of 𝑦 in the third group
axiom. The element 𝑦 is called the inverse of 𝑥.

b)

Prove in ND=
1 that the inverse 𝑦 of 𝑥 in the third axiom is unique, that

is, derive ⊢ 𝜑𝑢 for your formula in ND=
1 . Use Fitch-style as usual.

c)

10. Incompleteness and
Undecidability

Note: Incomplete lecture notes with little explanation. Please refer for
this chapter to the lecture.

The following definition refers to “computation procedures”, which we do not
define precisely here. Think of them as a computer programs, a sequence of
instructions that can be unambiguously run by a machine. A more precise
definition can be given, for example, in terms of Turing machines or by any
other equivalent notion of computation.

Definition 10.1

We define the set ℕ of partial numbers by ℕ = ℕ ∪ {∞}, where the
symbol ∞ can be understood as diverging computation or non-halting
computation. A map 𝑓 ∶ ℕ𝑛 → ℕ is called an (n-ary) partial function
or just function. The domain of 𝑓 is given by the set all of all inputs on
which 𝑓 converges: dom(𝑓) = {𝑥 ∈ ℕ𝑛 | 𝑓(𝑥) ≠ ∞} . If dom(𝑓) =
ℕ𝑛, then 𝑓 is called total.
We say that a function 𝑓 is computable if there is a computation pro-
cedure that halts on all inputs 𝑥 ∈ dom(𝑓) with output 𝑓(𝑥), and does
not halt if 𝑓(𝑥) = ∞. A set 𝑃 ⊂ ℕ𝑛 is semi-decidable (or recursively
enumerable, r.e.) if there is a computable function 𝑓 with dom(𝑓) = 𝑃 .
Such a set 𝑃 is decidable, if the characteristic function 𝜒𝑃 with

𝜒𝑃 (𝑥) = {0, 𝑥 ∈ 𝑃
1, 𝑥 ∉ 𝑃

is total computable.

The name “recursively enumerable” for semi-decidable sets comes from the
fact that a set 𝑃 ⊆ ℕ is semi-decidable if and only if 𝑃 is empty or there is a

140 10. Incompleteness and Undecidability

total computable function 𝑓 ∶ ℕ → ℕ with 𝑃 = {𝑓(𝑛) | 𝑛 ∈ ℕ}. Thus, there
is a way to enumerate the elements of 𝑃 as 𝑓(0), 𝑓(1), …

Theorem 10.2

The set {𝜑 | ⊢ 𝜑 derivable in 𝒟} is for 𝒟 ∈ {ND1, cND1,ND=
1 , cND=

1 }
semi-decidable but not decidable.

Definition 10.3

A term 𝑡 or formula 𝜑 is closed, if var(𝑡) = ∅ or fv(𝜑) = ∅, respectively.

Definition 10.4

A set Γ of closed formulas is a theory, if it is closed under deduction: If
𝜑 is closed and Γ ⊢ 𝜑 in cND=

1 , then 𝜑 ∈ Γ. We call Γ axiomatisable
if there is a r.e. set Γ0 ⊆ Γ, such that Γ = {𝜑 | Γ0 ⊢ 𝜑 in cND=

1 }. The
elements of Γ0 are called axioms and Γ0 an axiomatisation.

Example 10.5

Γ0 = {∀𝑥. ¬(𝑠 𝑥 ≐ 0)} axiomatises that zero is not the successor of
any number.

Definition 10.6

We shall write ℒ(Γ) for the signature containing all symbols in Γ. Let
Γ and Γ′ be axiomatised by Γ0 and Γ′

0, respectively. Γ′ contains Γ, if
ℒ(Γ) ⊆ ℒ(Γ′) and Γ0 ⊆ Γ′

0.

Definition 10.7

The set PR of primitive recursive (p.r.) functions is the smallest set con-
taining the following functions.

• Constants: K𝑛 ∶ ℕ𝑛 → ℕ with K𝑛(𝑥) = 0
• Projection: Π𝑛

𝑘 ∶ ℕ𝑛 → ℕ with Π𝑛
𝑘 (𝑥1, … , 𝑥𝑛) = 𝑥𝑘 for 1 ≤

𝑘 ≤ 𝑛
• Successor: S ∶ ℕ → ℕ with S(𝑥) = 𝑥 + 1

141

• Composition: C𝑛
𝑚(𝑔, ℎ1, … , ℎ𝑛) ∶ ℕ𝑚 → ℕ for all p.r. functions

𝑔 ∶ ℕ𝑛 → ℕ and ℎ1, … , ℎ𝑛 ∶ ℕ𝑚 → ℕ defined by

C𝑛
𝑚(𝑔, ℎ1, … , ℎ𝑛)(𝑥) = 𝑔(ℎ1(𝑥), … , ℎ𝑛(𝑥))

• Iteration: I𝑛(𝑔, ℎ) ∶ ℕ𝑛+1 → ℕ for all p.r. functions 𝑔 ∶ ℕ𝑛 → ℕ
and ℎ∶ ℕ𝑛+2 → ℕ defined by

I𝑛(𝑔, ℎ)(0, 𝑥) = 𝑔(𝑥)
I𝑛(𝑔, ℎ)(𝑥 + 1, 𝑦) = ℎ(I𝑛(𝑔, ℎ)(𝑥, 𝑦), 𝑥, 𝑦)

Example 10.8

1. The truncated predecessor function pred ∶ ℕ → ℕ, specified by

pred(𝑛) = {0, 𝑛 = 0
𝑛 − 1, 𝑛 > 0 ,

is primitive recursive, as we have that pred = I0(K0, Π2
2). That

this identity holds can be seen by evaluating the right-hand side
as far as possible and match it with the specification of pred.
Since the function is given by iteration, we distinguish the base
case and the step case:

I0(K0, Π2
2)(𝑛) = {K0(), 𝑛 = 0

Π2
2(I0(K0, Π2

2)(𝑘), 𝑘), 𝑘 = 𝑛 + 1

= {0, 𝑛 = 0
𝑘, 𝑛 = 𝑘 + 1

= {0, 𝑛 = 0
𝑛 − 1, 𝑛 > 0

This corresponds to our specification of the predecessor.

2. Note that the predecessor is defined by case distinction on its
argument. We can use the same idea to show that case distinc-
tion is primitive recursive in general. Given 𝑓 ∶ ℕ𝑛 → ℕ and

142 10. Incompleteness and Undecidability

𝑔 ∶ ℕ𝑛+1 → ℕ, the function [𝑓, 𝑔] ∶ ℕ𝑛+1 → ℕ, given by

[𝑓, 𝑔](𝑛, 𝑥) = {𝑓(𝑥), 𝑛 = 0
𝑔(𝑘, 𝑥), 𝑛 = 𝑘 + 1 ,

is primitive recursive because

[𝑓, 𝑔] = I𝑛(𝑓,C(𝑔, Π𝑛+2
2 , … , Π𝑛+2

𝑛+2)) .

3. Neither of the two examples above has used proper recursion,
as both ignored the recursion parameter in their use of iteration.
To show that addition is primitive recursive, we observe that it
obeys two recursive equations: 0 + 𝑚 = 𝑚 and (𝑛 + 1) + 𝑚 =
(𝑛 + 𝑚) + 1. We can emulate these with iteration and define
𝑝 ∶ ℕ2 → ℕ as follows.

𝑝 = I1(Π1
1,C1

3(𝑆, Π3
1))

With this definition we have for all 𝑛, 𝑚 ∈ ℕ that

𝑝(0, 𝑚) = Π1
1(𝑚) = 𝑚

and

𝑝(𝑛 + 1, 𝑚) = C1
3(𝑆, Π3

1)(𝑝(𝑛, 𝑚), 𝑛, 𝑚)
= 𝑆(Π3

1(𝑝(𝑛, 𝑚), 𝑛, 𝑚))
= 𝑆(𝑝(𝑛, 𝑚))
= 𝑝(𝑛, 𝑚) + 1 .

Therefore, 𝑝 fulfils the same recursive equations as +, which one
can use to prove that 𝑝(𝑛, 𝑚) = 𝑛 + 𝑚.

Note: Remainder of lecture missing!

11. First-Order Horn Clauses and
Automatic Deduction

11.1. Automatic Deduction and the Cut-Rule

When approaching proofs of mathematical theorems, we usually decompose
the problem into intermediate results that are easier to prove on their own.
In the natural deduction systems, the approach is justified by the so-called cut
rule. This rule allows one to prove first a formula 𝜑, often called a lemma, then
prove a formula 𝜓 under the assumption of 𝜑, and finally the conclude that 𝜓
holds without explicit reference to the lemma 𝜑. The rule is formulated in the
following theorem.

Theorem 11.1: Admissible Cut

The following cut rule is admissible in ND1.

Γ ⊢ 𝜑 Γ, 𝜑 ⊢ 𝜓
(Cut)Γ ⊢ 𝜓

Proof. The cut rule is given by the following proof tree.

Γ ⊢ 𝜑
Γ, 𝜑 ⊢ 𝜓

(→I)Γ ⊢ 𝜑 → 𝜓
(→E)Γ ⊢ 𝜓

The cut rule is very useful in structuring proofs, but horrendous for automatic
deduction because it requires ingenuity for inventing the intermediate lemma
𝜑 to prove 𝜓. There are techniques for generating such lemmas but we will
take another route here.

A first step to automatic deduction is to avoid the use of the cut rule and
thereby the introduction of an implication that is immediately followed by

144 11. First-Order Horn Clauses and Automatic Deduction

an implication elimination, as in the proof of the cut rule. Fortunately, it is
possible to avoid such detours and we can proceed without having to make
up formulas out of thin air. This is captured by the following theorem.

Theorem 11.2: Cut Elimination

Any proof tree in ND1 for a sequent Γ ⊢ 𝜑 can be transformed into a
proof tree in ND1 for the same sequent, which contains no instances
of the cut rule.

Proof. We shall only discuss the idea how detours introduced by a cut can be
removed, as its implementation is rather technical. Details can be found in
texts on proof theory [TS00; TvD88]

In the (Cut)-rule, we split the proof a lemma 𝜑 from its use in a proof of 𝜓.
To avoid a cut, we can thus use the proof of 𝜑 directly everywhere we use the
assumption 𝜑 in the proof of 𝜓. More precisely, suppose we have a proof tree

⋮
Γ ⊢ 𝜑

for the sequent Γ ⊢ 𝜑. Any proof tree for Γ, 𝜑 ⊢ 𝜓 can only use 𝜑 through
the (Assum)-rule and the tree must be of the following form, where we display
only one use of the (Assum)-rule.

(Assum)Γ, 𝜑 ⊢ 𝜑 ⋯
Γ, 𝜑 ⊢ 𝛿 ⋮

Γ, 𝜑 ⊢ 𝜓

We can now replace everywhere the use of the (Assum)-rule applied to 𝜑 dir-
ectly by the proof of 𝜑, as in the following tree.

⋮
Γ ⊢ 𝜑 ⋯

Γ ⊢ 𝛿 ⋮
Γ ⊢ 𝜓

Note that the assumption𝜑 goes away. This procedure can be carried outmore
precisely by induction over proof trees, allowing us substitute the proof tree
for 𝜑 into that of 𝜓 and thus eliminating the application of the (Cut)-rule.

11.2. First-Order Horn Clauses and Logic Programming 145

This is good news for automatic deduction because we can limit at each step
the rules that may be applied by inspecting the formula 𝜑 that we have to
prove. The approach of inspecting 𝜑 in finding a proof for Γ ⊢ 𝜑 is also called
goal-oriented because the search for the proof is driven by the goal 𝜑. How-
ever, restricting ourselves to proofs that avoid the cut rule is not enough for
fully automatic deduction because there are other choice-points. For instance,
if we try to prove ∃𝑥. 𝑃 (𝑥) ⊢ ¬∀𝑥. ¬𝑃(𝑥) do we first use the introduction of
the negation or the elimination of the existential quantifier? The problem is
that the principle formula of elimination rules, the formula that gives a rule
its name, appears among the premises of those rules. This means for the goal-
oriented construction of a proof that we have to guess the right formula to
eliminate from the goal, while there may be a non-trivial relation between
the two. In the above example, we have to guess that we have to eliminate
∃𝑥. 𝑃 (𝑥) to prove ¬∀𝑥. ¬𝑃(𝑥), which is difficult for human intelligence, let
alone for a computer. One way out of this is to limit the class of formulas that
may appear in proofs and thereby reduce the amount of guessing to a man-
ageable amount. Combined with limiting proof rules, we obtain a reasonable
fragment of first-order logic for automatic deduction.

11.2. First-Order Horn Clauses and Logic
Programming

In chapter 5, we have seen a class of propositional formulas that were called
Horn clauses. It turns out that there is an extremely useful generalisation to
first-order logic.

Definition 11.3: Horn Clauses and Theories in FOL

A predicate atom over a signature ℒ is a formula of the form
𝑃(𝑡1, … , 𝑡𝑛), where 𝑃 is an 𝑛-ary predicate symbol in ℒ and 𝑡1, … , 𝑡𝑛
are ℒ-terms. Predicate atoms are denoted by letters 𝐴, 𝐵, 𝐶, … AHorn
clause is a closed formula of the form

∀𝑥1. ⋯ ∀𝑥𝑚. 𝐴1 ∧ ⋯ ∧ 𝐴𝑛 → 𝐴0

for 𝑚, 𝑛 ∈ ℕ and predicate atoms 𝐴0, 𝐴1, … , 𝐴𝑛. The atom 𝐴0 is
called the head of the clause and the set {𝐴1, … , 𝐴𝑛} is called the body
of the clause. We call a list Γ of Horn clauses a Horn clause theory or
logic program.

146 11. First-Order Horn Clauses and Automatic Deduction

The body of a clause may be empty, that is, 𝑛 may be zero, in which case we
leave out the implication in the Horn clause in definition 11.3 and just write
∀𝑥1. ⋯ ∀𝑥𝑚. 𝐴0. This is convenient when writing logic programs that con-
tain Horn clauses without assumptions, so called base facts. In the abstract
treatment of Horn clauses later in this chapter it will, however, not be neces-
sary to differentiate between base facts and general Horn clauses.

It is also important to note that a Horn clause must be closed, thus only the
variables 𝑥1, … , 𝑥𝑚 may appear in the head and body of a Horn clause. These
are then all bound by the quantifiers on the outside.

What makes Horn clause theories so useful? As the name “logic program”
indicates, we can use such theories for programming. In fact, we can describe
any Turing machine by a logic program Γ. A computation corresponds to
giving a predicate atom 𝐴 with free variables 𝑥1, … , 𝑥𝑚 and asking for a de-
rivation of Γ ⊢ ∃𝑥1. ⋯ ∃𝑥𝑚. 𝐴 in ND1. If the Turing machine halts, then
such a derivation exists. This correspondence makes it possible to automat-
ically find such a derivation if it exists. Thus, finding proofs is also for Horn
clause theories only semi-decidable but, as we will see, it is still much easier
in many cases to find proofs from Horn clause theories rather than arbitrary
theories.

Let us demonstrate the programming aspect of Horn clauses. Recall that in
primitive recursive arithmetic and other approaches to arithmetic, we have al-
ways assumed that all objects were numbers. Often, we need to reason about
different types of objects. The following example shows how we can axiomat-
ise with Horn clauses a predicate that characterises natural numbers.

Example 11.4

In this example, we will use that every natural number is either zero or
the successor of another natural number. More specifically, the con-
stant 0 represents in the following zero and the unary function symbol
𝑠 represents the successor of a number. With these two symbols, we
can enumerate all the natural numbers:

0, 𝑠(0), 𝑠(𝑠(0)), 𝑠(𝑠(𝑠(0))), …
Writing natural numbers in this way is called unary encoding, which is
a very bad encoding from the perspective of complexity but very useful
for explanatory purposes.
In this example, we will be working with a signature ℒ that contains a
constant 0, a unary function symbol 𝑠, a unary predicate symbol 𝑁 , a

11.2. First-Order Horn Clauses and Logic Programming 147

binary predicate symbol 𝐿, and a ternary predicate symbol 𝑃 . We use
the unary predicate symbol 𝑁 to pin down the natural numbers, in the
sense that 𝑁(𝑡) holds if 𝑡 is the representation of a natural number. The
following two Horn clauses implement precisely the initial description
of natural numbers.

𝑁(0)
∀𝑛. 𝑁(𝑛) → 𝑁(𝑠(𝑛))

We can now continue and implement arithmetic for natural numbers.
To use Horn clauses for this task, we have to switch from thinking in
terms of function to thinking in terms of relations. More specifically,
we use a ternary predicate symbol 𝑃 with the intent that 𝑃(𝑚, 𝑛, 𝑘)
holds if 𝑘 is the sum of 𝑚 and 𝑛. To provide Horn clauses that imple-
ment addition, recall the primitive recursive specification of addition:
0 + 𝑚 = 𝑚 and (𝑛 + 1) + 𝑚 = (𝑛 + 𝑚) + 1. Assuming that 𝑛 and
𝑚 are given in the above representation of natural numbers, we can
represent this recursive specification of addition by the following two
Horn clauses.

∀𝑚. 𝑃(0, 𝑚, 𝑚)
∀𝑛. ∀𝑚. ∀𝑘. 𝑃 (𝑛, 𝑚, 𝑘) → 𝑃(𝑠(𝑛), 𝑚, 𝑠(𝑘))

In a similar spirit, we can define other recursive relations on natural
numbers. For instance, to specify that the binary predicate𝐿 represents
the less or equal relation, wewould use the following twoHorn clauses.

∀𝑛. 𝐿(𝑛, 𝑛)
∀𝑛. ∀𝑚. 𝐿(𝑛, 𝑚) → 𝐿(𝑛, 𝑠(𝑚))

The clauses say that every natural number is less or equal to itself (re-
flexivity) and that increasing the number on the right preserves the less
or equal relation.

?
Can you find two Horn clauses that describe the computation of mul-
tiplication as ternary predicate symbol 𝑀 analogously to 𝑃 in ex-
ample 11.4?

148 11. First-Order Horn Clauses and Automatic Deduction

What makes logic programming so interesting compared to other program-
ming paradigms? The answer lies in its declarative nature, which allows us to
specify what the result of a computation should be rather than how the result
is computed. In his seminal work, Kowalski [Kow79] has expressed this in the
following equation.

Algorithm = Logic + Control

This equation essentially means that we can design algorithms by providing
logical formulas that describe the result of an algorithm and a control mechan-
ism that controls the use of these formulas to compute the result. A particular
property of this approach is that new algorithms can be obtained by exchan-
ging the control mechanism, while preserving the logical properties and cor-
rectness of the computed result. In terms of the above equation, we may have
a logical specification 𝐿 and algorithms 𝐴1 and 𝐴2 given by 𝐴1 = 𝐿+𝐶1 and
𝐴2 = 𝐿 + 𝐶2 for some control mechanisms 𝐶1 and 𝐶2. These two algorithms
will compute results with the same logical properties, but may have different
computational behaviour. For example, 𝐴2 may be more efficient than 𝐴1.

Let us return to concrete logic programming approach and illustrate it on our
initial robot example.

Example 11.5: Path Finding

Remember the board from fig. 6.1 on page 70 that Isaac drew? In sec-
tion 6.1, we used first-order logic to describe what moves on the board
are allowed and how a route towards the heart looks like. The aim of
this example is to use Horn clauses to give a logical description of paths
that will allow us, with an appropriate control mechanism, to derive an
efficient algorithm for routing.
In section 9.3.1, we have seen that reachability in graphs cannot be
expressed by a first-order formula. Since path finding for the robot can
be seen as reachability in a graph, we cannot directly express paths as
a formula. In exercise 3 of chapter 9, we saw how graph reachability
could still be expressed by introducing a new predicate that represented
the reflexive, transitive closure of the edge relation of a graph. And
even better, the two formulas that expressed this are Horn clauses and
we can therefore formulate graph reachability as a logic program! Let
us now use this approach to help Isaac break this limitation of first-
order logic and to finally get to the heart.

11.2. First-Order Horn Clauses and Logic Programming 149

For this purpose, we will use the signature ℒ with constants 1, 2, … for
all positive natural numbers, one binary function symbol pos, three un-
ary predicate symbols 𝑅, 𝐻 and 𝐹 , and two binary predicate symbols
𝐴 and 𝐶 . Let us explain the intention of all these symbols. We will use
pos to describe positions on the board and will denote by pos(𝑥, 𝑦) the
position with horizontal coordinate 𝑥 and vertical coordinate 𝑦. For in-
stance, the robot is in fig. 6.1 in position pos(2, 3). The unary predicate
symbols 𝑅, 𝐻 and 𝐹 describe, respectively, the position of the Robot,
the position of the Heart and Free positions. Since the robot may only
move between adjacent positions, will use the binary predicate symbol
𝐴 to express when a position is Adjacent to another position. Finally,
the binary predicate symbol 𝐶 is what we are after: it will relate two
positions if they are Connected by a path via free and adjacent posi-
tions.
Our goal is to describe the situation in fig. 6.1 and the predicate symbol
𝐶 as a logic program, that is, a finite list of Horn clauses. All of the
following is provided in appendix D as a Prolog program that can be
directly run in your favourite Prolog interpreter.
Let us begin with the easy part: the position of the robot and the heart.
These are given by the following two formulas.

𝑅(pos(2, 3)) and 𝐻(pos(5, 1)) (11.1)

This two formulas are base facts, albeit with no quantifiers and an
empty body, that is, 𝑚 and 𝑛 in definition 11.3 are both zero.
Next, we describe the free position that the robotmay visit by providing
a formula for each free position:

𝐹(pos(1, 1)) 𝐹(pos(2, 2)) 𝐹(pos(3, 1))
𝐹(pos(1, 4)) 𝐹(pos(2, 3)) 𝐹(pos(3, 2)) …

𝐹(pos(2, 4)) 𝐹(pos(3, 4))
(11.2)

You may have noticed that we have initially talked in section 6.1 about
the obstacles on the board and nowwe talk about free positions instead.
The reason for this is that obstacles are an inherently negative descrip-
tion of the allowed moves that the robot may make. More precisely,
we have the relation

∀𝑝. 𝐹(𝑝) ↔ ¬𝑂(𝑝) ,
where 𝑂 was the predicate symbol that we used for describing the po-
sitions of obstacles. This negative relation between 𝐹 and 𝑂 would

150 11. First-Order Horn Clauses and Automatic Deduction

become a problem when we ask if the robot can move to a certain posi-
tion because the first-order Horn clauses in definition 11.3 may not use
⊥ and therefore no negation! Thus, we would not be able to formulate
the routing problem as a logic program if we describe positions with
obstacles instead of free positions.
To finish the board description, we have to give all the ad-
jacent positions by providing formulas that specify the predic-
ate symbol 𝐴. This predicate should be read as, if 𝐴(𝑝, 𝑞)
holds then position 𝑝 and 𝑞 are adjacent. For instance, we
should have that 𝐴(pos(1, 1), pos(1, 2)) holds. However, neither
𝐴(pos(1, 1), pos(2, 2)) nor 𝐴(pos(6, 1), pos(7, 1)) should not hold. In
the first case, the two positions pos(1, 1) and pos(2, 2) are not adja-
cent, as we do not allow diagonal steps. In the second case, the term
pos(7, 1) is not a valid position on the board because the horizontal co-
ordinates range from 1 to 6 only. Formalising all of this as Horn clauses
is a bit tedious because we have to enumerate for each position all its
four neighbours, except for positions at the boundary that have two or
three neighbours:

𝐴(pos(𝑥, 𝑦), pos(𝑥 + 1, 𝑦)), 1 ≤ 𝑥 ≤ 5, 1 ≤ 𝑦 ≤ 4
𝐴(pos(𝑥, 𝑦), pos(𝑥, 𝑦 + 1)), 1 ≤ 𝑥 ≤ 6, 1 ≤ 𝑦 ≤ 3
𝐴(pos(𝑥, 𝑦), pos(𝑥 − 1, 𝑦)), 2 ≤ 𝑥 ≤ 6, 1 ≤ 𝑦 ≤ 4
𝐴(pos(𝑥, 𝑦), pos(𝑥, 𝑦 − 1)), 1 ≤ 𝑥 ≤ 6, 2 ≤ 𝑦 ≤ 4

(11.3)

The first line of (11.3) states that every position pos(𝑥, 𝑦) is adjacent to
its east neighbour pos(𝑥 + 1, 𝑦). Note that pos(𝑥, 𝑦) only has a neigh-
bour in the east if it is not a boundary position, that is, if 𝑥 ≤ 5. In the
remaining three lines, we analogously provide the specification of the
southern, western and northern neighbours.
With the board layout described through the Horn clauses in eqs. (11.1)
to (11.3), we can now try to find away for Isaac to the heart. We achieve
this by providing a description of the predicate symbol 𝐶 with the in-
tention that 𝐶(𝑝, 𝑞) holds if position 𝑞 is reachable from 𝑝 via free and
adjacent positions. Reachability can be described by two Horn clauses,
one that states that every position can be reached from itself and one
for making an intermediate step via a free position:

∀𝑝. 𝐶(𝑝, 𝑝) (11.4)
∀𝑝. ∀𝑞. ∀𝑟. 𝐶(𝑞, 𝑟) ∧ 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) → 𝐶(𝑝, 𝑟) (11.5)

11.3. Uniform Proofs 151

These two Horn clauses formulate reachability as backward search.
That is to say, we start with the final position we want to reach and
then try to find positions that make a path to the initial position.

11.3. Uniform Proofs

In example 11.5, we have used logical formulas to describe how a path from the
starting position to the goal looks like. What is missing to get an algorithm for
routing is the control part of Kowalski’s equation, which allows us to search
for a path. We will introduce in this section a control mechanism based on
proof theory, called uniform proofs.

The idea of uniform proofs is that we devise a proof system tailored towards
proving goal formulas of a very specific shape only from Horn clauses. This
restriction of goals and assumptions has a two-fold effect:

1. we remove all the choices appearing in elimination rules, and

2. we concentrate the choices in one proof rule.

Removing elimination rules in general and the cut rule in particular, rules
out an infinitude of choices and makes the search for proof rules more goal-
oriented. As we will see, the second aspect of concentrating choice, reduces
the amount of branching in proof search drastically to just a few options. All
together, uniform proofs provide an operational perspective on proof search
and will guide us in the construction of proofs, also in ND1, relative to logic
programs.

Before we come to the actual definition of uniform proofs, we will need to talk
about specific terms and substitutions that arise in proof search. Recall that a
term with no variables is called closed. In the simplest case, which will be the
only one that we treat here, we can prove an existentially quantified formula
∃𝑥. 𝜑 by providing a closed term 𝑡 and prove 𝜑[𝑥 ≔ 𝑡]. For instance, let 𝜑
be 𝑅(pos(𝑥, 3)) and let 𝑡 be 2, as in example 11.5. Under the assumption of
eq. (11.1), we have that 𝜑[𝑥 ≔ 𝑡] holds and thus also ∃𝑥. (pos(𝑥, 3)). Note that
we substituted the closed term 2 for 𝑥 and thereby obtained a closed formula.1
Wewill restrict the proof rules (∃I) and (∀E) ofND1 to allow only substitutions
that result into closed formulas, which in turn will eliminate all free variables
from proofs. The following definition formalises the needed substitutions.
1Terminology: Closed terms and formulas are often also called ground terms and formulas.

152 11. First-Order Horn Clauses and Automatic Deduction

Definition 11.6: Closing substitution

Let 𝑋 ⊆ Var be a set of variables. An 𝑋-closing substitution is a sub-
stitution 𝜎 ∶ Var → Term, such that 𝜎(𝑥) is closed for all 𝑥 ∈ 𝑋.

The purpose of 𝑋-closing substitutions is to turn any formula, whose free
variables are among those in 𝑋, into a closed formula.

Example 11.7

As we have fv(𝑃 (0, 𝑥, 𝑥)) = {𝑥}, any 𝑋-closing substitution with
𝑥 ∈ 𝑋 will allow use to close this formula. For instance, 𝑠(0) is
a closed term over the signature of example 11.4 and [𝑥 ≔ 𝑠(0)]
is a {𝑥}-closing substitution. Indeed, we obtain the closed formula
𝑃(0, 𝑥, 𝑥) [𝑥 ≔ 𝑠(0)] = 𝑃 (0, 𝑠(0), 𝑠(0)).

?
Do signatures without constants admit closed terms?

Wementioned initially that we obtain proof search by restricting the formulas
𝜑 that can appear as a goal, that is, in a sequent Γ ⊢ 𝜑 that we wish to prove.
Out of the many choices one can make to restrict formulas, we will be using
the one given in definition 11.8 below. Before we come to that definition, let
us briefly think about what a reasonable set of goals, for which proofs can
be searched, would be. First of all, we of course want to be able to prove
facts about predicates, hence predicate atoms of the form 𝑃(𝑡1, … , 𝑡𝑛) should
certainly be allowed as goals. Next, conjunction does certainly not pose any
problem because finding a proof for Γ ⊢ 𝜑 ∧ 𝜓 only requires us to find proofs
for Γ ⊢ 𝜑 and Γ ⊢ 𝜓 separately by the introduction rule (∧I). To be able
to state and prove more interesting properties, we will also allow disjunction
and existential quantification. These two connectives will make proof search
more difficult. Recall that the introduction rules (∨I1) and (∨I2) for disjunction
require us to find proofs for either Γ ⊢ 𝜑 or Γ ⊢ 𝜓 in order to prove Γ ⊢ 𝜑∨𝜓.
Thus, to find a proof for the disjunction 𝜑 ∨ 𝜓 we have to try to prove one of
the options, say 𝜑, and if we fail to prove this option, then we try the other.
Trying out these different options is not difficult, but can be costly, depending
on how many proof steps we have to carry out before we find out that 𝜑
is not provable. Finally, the proof of an existential quantifier ∃𝑥. 𝜑 requires
us to find a term 𝑡, such that 𝜑[𝑥 ≔ 𝑡] holds. As it turns out, it is possible

11.3. Uniform Proofs 153

to devise procedure that construct a closed term 𝑡, if it exists, automatically.
Thus, we will also allow existential quantifiers in proof goals. The following
definition 11.8 sums up the formulas that we allow as goals.

Definition 11.8: Goal formulas

The set Goal of all goal formulas 𝜑𝐺 is the set of ℒ-formulas over a
signature ℒ generated by the following grammar.

𝜑𝐺 ∶∶= 𝑃 (𝑡1, … , 𝑡𝑛) ∣ 𝜑𝐺 ∧ 𝜑𝐺 ∣ 𝜑𝐺 ∨ 𝜑𝐺 ∣ ∃𝑥. 𝜑𝐺

Introduction Rules

Γ ⊢𝑢 𝜑1 Γ ⊢𝑢 𝜑2 (∧I)Γ ⊢𝑢 𝜑1 ∧ 𝜑2

Γ ⊢𝑢 𝜑[𝑥 ≔ 𝑡] 𝑡 closed
(∃I)Γ ⊢𝑢 ∃𝑥. 𝜑

Γ ⊢𝑢 𝜑1 (∨I1)Γ ⊢𝑢 𝜑1 ∨ 𝜑2

Γ ⊢𝑢 𝜑2 (∨I2)Γ ⊢𝑢 𝜑1 ∨ 𝜑2

Backchaining Rule

(∀𝑥1. ⋯ ∀𝑥𝑚. 𝐴1 ∧ ⋯ 𝐴𝑛 → 𝐴0) ∶ Γ Γ ⊢𝑢 𝐴1[𝜎] ⋯ Γ ⊢𝑢 𝐴𝑛[𝜎]
(B)

Γ ⊢𝑢 𝐴0[𝜎]

where 𝜎 is an {𝑥1, … , 𝑥𝑚}-closing substitution.

Figure 11.1.: Rules of Uniform Proofs

Let us now come to uniform proofs, which are given by a proof system that
allows us to prove goals 𝜑 (definition 11.8) fromHorn clause theories Γ (defin-
ition 11.3). To distinguish sequents for uniform proofs from those of ND1, we
will write Γ ⊢𝑢 𝜑 for a sequent that we intent to find a uniform proof for.
We have already explained the general approach to prove Γ ⊢𝑢 𝜑 above for
the case of conjunction, disjunction and existential quantification. This leads
us to the introduction rules in the upper part of fig. 11.1, which are exactly
the same rules as in ND1, just restricted to the introduction of goal formulas.
Let us consider the goal 𝜑 given by ∃𝑢. ∃𝑣. 𝑅(𝑢) ∧ 𝐴(𝑢, 𝑣) ∧ 𝐹(𝑣) over the

154 11. First-Order Horn Clauses and Automatic Deduction

signature from the robot path finding example 11.5. This formula says that the
robot is in some position on the board that has a free adjacent position. Such
positions exist, namely if we pick 𝑝 = pos(2, 3) for the robot position and
the adjacent position 𝑞 = pos(2, 4). Using only the introduction rules from
fig. 11.1, we can start a proof for 𝜑:

1 ⋮
2 𝐴(𝑝, 𝑞) ⁇

3 𝐹(𝑞) ⁇

4 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) ∧I, 2, 3
5 𝑅(𝑝) ⁇

6 𝑅(𝑝) ∧ 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) ∧I, 5, 4
7 ∃𝑣. 𝑅(𝑝) ∧ 𝐴(𝑝, 𝑣) ∧ 𝐹(𝑣) ∃I, 6
8 ∃𝑢. ∃𝑣. 𝑅(𝑢) ∧ 𝐴(𝑢, 𝑣) ∧ 𝐹(𝑣) ∃I, 7

However, we are not able to fill in the question marks, yet. Note that the
formulas that we have to prove in lines 2, 3 and 5 are closed predicate atoms.
It is easy to see that any proof attempt that starts with a goal formula and only
uses the introduction rules, must eventually reach predicate atoms. Thus, we
need a rule to prove such predicate atoms from a Horn clause theory. And
that is the heart of logic programming: given a predicate atom, find a Horn
clause that matches the atom, and continue with the premises of the Horn
clause. This process is called backchaining and is captured by the rule (B) in
fig. 11.1. The idea of the backchaining rule is that, wheneverwe have to prove a
predicate atom, we choose a Horn clause from our logic program in such away
that the head of the clause (definition 11.3) matches the atom. If we find such a
matching clause, then we continue by proving all the premises of the chosen
Horn clause. Note that the premises of a Horn clause are always predicate
atoms, thus we will continue using the backchaining rule until we can finish
the proof by selecting a fact, which is a Horn clause without premises.

Let us use this procedure to fill in the question marks in the proof above. For
the purpose of this, let us denote byΓ1 the logic program that consists of all the
Horn clauses in eqs. (11.1) to (11.3). In line 5, we have to prove 𝑅(pos(2, 3)),
which is exactly the fact that we assumed in (11.1). Thus, we can use the

11.3. Uniform Proofs 155

following instance of the backchaining rule, where both 𝑛 and 𝑚 are 0 and
thus the substitution 𝜎 is irrelevant.

𝑅(pos(2, 3)) ∶ Γ1 (B)
Γ1 ⊢𝑢 𝑅(pos(2, 3))

The proofs for lines 2 and 3 are given analogously, which then results in the
following completed uniform proof in Fitch-style.

1 Γ1

2 𝐴(𝑝, 𝑞) B, 1
3 𝐹(𝑞) B, 1
4 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) ∧I, 2, 3
5 𝑅(𝑝) B, 1
6 𝑅(𝑝) ∧ (𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞)) ∧I, 5, 4
7 ∃𝑣. 𝑅(𝑝) ∧ (𝐴(𝑝, 𝑣) ∧ 𝐹(𝑣)) ∃I, 6
8 ∃𝑢. ∃𝑣. 𝑅(𝑢) ∧ (𝐴(𝑢, 𝑣) ∧ 𝐹(𝑣)) ∃I, 7

Beforewe continue to explain the backchaining rule formore interesting cases,
let us formally define what we mean by a uniform proof.

Definition 11.9: Uniform proofs

Let Γ be a Horn clause theory and 𝜑 a closed goal formula. We say that
𝜑 can be proven from Γ by a uniform proof, if a proof for Γ ⊢𝑢 𝜑 can
be derived from the rules in fig. 11.1.

Note that the uniform proofs have no separate elimination rules. Instead,
backchaining combines the assumption rule (Assum), the universal quanti-
fier elimination (∀E) and the implication elimination (→E) into one rule. This
works because the only assumptions that we can use are Horn clauses.

Example 11.10

Suppose we want to show that the robot can reach some position in

156 11. First-Order Horn Clauses and Automatic Deduction

fig. 6.1, thus we want to find a proof for

Γ ⊢𝑢 ∃𝑢. 𝐶(pos(2, 3), 𝑢) ,

where𝐶 is the predicate for connected positions from example 11.5 and
Γ the logic program that consists of eqs. (11.1) to (11.5). As above, we
will refer to the logic program given by eqs. (11.1) to (11.3) as Γ1. This
allows us refer explicitly to the Horn clauses in eqs. (11.4) and (11.5).
There are many choices for the position 𝑢, but to make the example
non-trivial and not too lengthy, let us use pos(2, 4). The uniform proof
for the above sequent goes for this choice as follows.

1 Γ1

2 ∀𝑝. 𝐶(𝑝, 𝑝)
3 ∀𝑝. ∀𝑞. ∀𝑟. 𝐶(𝑞, 𝑟) ∧ 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) → 𝐶(𝑝, 𝑟)
4 𝐶(pos(2, 4), pos(2, 4)) B, 2
5 𝐴(pos(2, 3), pos(2, 4)) B, 1
6 𝐹(pos(2, 4)) B, 1
7 𝐶(pos(2, 3), pos(2, 4)) B, 3, 4, 5, 6
8 ∃𝑢. 𝐶(pos(2, 3), 𝑢) ∃I, 7

You may notice that there is another choice hidden in example 11.10: To ap-
ply the backchaining rule in line 7, we had to choose an “intermediate” posi-
tion, the variable 𝑞 in the transitivity rule from line 3. We chose the position
pos(2, 4) because it brought us directly to the position that we wanted to go
to. However, we could have chosen to take a completely different path, for
instance via pos(2, 2), pos(3, 2), pos(4, 2), pos(4, 3), pos(4, 4) and pos(3, 4).
This is where we have to find an appropriate control mechanism to guide the
search for a path. In appendix D, an implementation of example 11.5 is given
in a language called Prolog, a programming language based on Horn clause
theories. The control mechanism chosen there is “tabling” combined with the
search for a shortest path, which gives a very efficient search strategy for path
finding. We will not explain the details of this control mechanism or Prolog
here. For our purposes, it suffices to say that uniform proofs provide a found-
ation for the reasoning steps that Prolog takes and that an algorithm can be

11.3. Uniform Proofs 157

obtained from the uniform proof system by complementing it with an appro-
priate search strategy for the substitution 𝜎 in the backchaining rule.

Remark. The uniform proof system has quite a few less rules than ND1: all
the elimination rules and the introduction rules for implication and universal
quantification are not present. We have already explained why the general
introduction and elimination rules for implication cause troubles. It is pos-
sible to add restricted versions of the introduction rules for implication and
universal quantification [MN12; Mil+91]. However, the general elimination
rules need to be treated completely differently.

Solutions

Answers to theQuizzes of Chapter 3

Answer to quiz on page 17 For each of the three variables, there are two
possibilities 0 and 1. Thus, there are 23 = 8 different combinations of truth
values and each of them gets its own row.

Answers to theQuizzes of Chapter 4

Answer to quiz on page 45 The first proof attempt is not correct because
the (→I)-rule uses a hypothesis but line 2 does not open a new flag. A correct
proof would look as follows.

1 𝑝
2 𝑞
3 𝑝 Assum, 1
4 𝑞 → 𝑝 →I, 2–3

The second attempt is correct and proves the judgement 𝑝 ⊢ 𝑟 → 𝑝 ∧ 𝑟.

Answers to theQuizzes of Chapter 5

Answer to quiz on page 56 First, we have

¬(𝜑1 ∧ ⋯ ∧ 𝜑𝑛 ∧ ¬𝜑)
≡ ¬𝜑1 ∨ ⋯ ∨ ¬𝜑𝑛 ∨ ¬¬𝜑 by De Morgan’s laws
≡ ¬𝜑1 ∨ ⋯ ∨ ¬𝜑𝑛 ∨ 𝜑 by DNE

and then we use ¬⊤ = ⊥ to obtain the proof.

160 11. First-Order Horn Clauses and Automatic Deduction

Answer to quiz on page 62 You can easily find that
(𝑝1 ∧ 𝑞1) ∨ (𝑝2 ∧ 𝑞2) ≡ (𝑝1 ∨ 𝑝2) ∧ (𝑝1 ∨ 𝑞2) ∧ (𝑞1 ∨ 𝑝2) ∧ (𝑞1 ∨ 𝑞2).

This formula has 22 = 4 disjunctive clauses. For the other formula, you will
find that you will have to have every combination of 𝑝𝑖 and 𝑞𝑗 in the disjunct-
ive clauses:
(𝑝1∧𝑞1)∨(𝑝2∧𝑞2)∨(𝑝3∧𝑞3) ≡ (𝑝1∨𝑝2∨𝑝3)∧(𝑝1∨𝑝2∨𝑞3)∧⋯∧(𝑞1∨𝑞2∨𝑞3).
This leads to 23 = 8 disjunctive clauses and shows the exponential blow-up
of the CNF.

Answers to theQuizzes of Chapter 6

Answer to quiz on page 74 In eq. (6.6), we used that 𝑠(𝑟, 𝑘) is supposedly
uniquely defined for any 𝑘. But typically, path would be of finite length, say
𝑙. If 𝑘 is larger than 𝑙, the map 𝑠 cannot be defined for 𝑠(𝑟, 𝑘).
There are several ways to solve this. A more elegant one will be presented in
chapter 11, but that approach uses a different definition of paths and indexing
entirely. For our present definition, we can introduce a function symbol len,
which returns the length of a path, and a predicate symbol 𝐵, where 𝐵(𝑘, 𝑛)
intuitively holds if 𝑘 is natural number below the Bound 𝑛. The formula (6.6)
can then be improved to

∀𝑟. 𝑃 (𝑟) → ∀𝑘. 𝐵(𝑘, len(𝑟)) → ¬𝑂(𝑠(𝑟, 𝑘)) .

Answers to theQuizzes of Chapter 7

Answer to quiz on page 89 If 𝑡 is any term, then it is easy to see that 𝑡 𝜂 =
𝑡. Thus, the identity substitution is the identity for the application of terms to
substitutions. Formally, this can be proven by induction over terms.

In fact, this goes even deeper. We can compose substitutions, just like we com-
pose maps: For substitutions 𝜎 and 𝜏 , let us denote by 𝜏 ⊙𝜎 their composition,
which is given by applying to every term 𝜎(𝑥) the substitution 𝜏 :

(𝜏 ⊙ 𝜎)(𝑥) = 𝜎(𝑥) 𝜏
Since 𝜎(𝑥) 𝜂 = 𝜎(𝑥), we thus obtain 𝜂⊙𝜎 = 𝜎. The other way round, we also
have (𝜎 ⊙ 𝜂)(𝑥) = 𝑥𝜎 = 𝜎(𝑥). Hence, composition with 𝜂 does not change a
substitution and thus the identity substitution acts like the identity map.

11.3. Uniform Proofs 161

Answer to quiz on page 91 The reason is that in the axiom (SP), we would
otherwise exclude even the identity substitution because𝑥 ∈ var(𝜂(𝑥)). How-
ever, the present definition gives us 𝑥 # 𝜂 and we could prove 𝜑 𝜂 = 𝜑.

Solutions to the Exercises of Chapter 7

Solution 1

𝑄
𝑥 𝑔

𝑚

a) ∀
𝑄

⟨0⟩ 𝑔
𝑚

b)

∧
∃
𝑄

⟨0⟩ 𝑔
𝑚

∀
𝑄

⟨0⟩ 𝑧

c) ∃
∧

𝑄

⟨0⟩ 𝑔
𝑧

∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧

d)

∀
∃
𝑃
⟨0⟩

e)

Solution 2

𝑥 𝜎 = 𝜎(𝑥) = 𝑔(𝑥)a)
𝑓(𝑥, 𝑦) 𝜎 = 𝑓(𝜎(𝑥), 𝜎(𝑦)) = 𝑓(𝑔(𝑥), 𝑥)b)
(𝑦 𝜎) 𝜎 = 𝑥 𝜎 = 𝑔(𝑥)c)
𝑥 (𝜎[𝑥 ≔ 𝑥]) = (𝜎[𝑥 ≔ 𝑥])(𝑥) = 𝑥d)

162 11. First-Order Horn Clauses and Automatic Deduction

Solution 3

We have fv(𝜑) = {𝑦, 𝑧}, var(𝜎(𝑥)) = {𝑥}, var(𝜎(𝑦)) = {𝑥}, var(𝜎(𝑧)) =
{𝑦}, and var(𝜎(𝑣)) = {𝑣} for all other variables 𝑣. This gives us

𝑥 is not fresh for 𝜎, since 𝑥 ∈ var(𝜎(𝑦)).a)
𝑦 is not fresh for 𝜎, since 𝑦 ∈ var(𝜎(𝑧)).b)
𝑧 is fresh for 𝜎, since 𝑧 ∉ var(𝜎(𝑣)) for any variable 𝑣.c)
𝑥 is fresh for 𝜑, since 𝑥 ∉ fv(𝜑).d)
𝑦 is not fresh for 𝜑, since 𝑦 ∈ fv(𝜑).e)
𝑧 is not fresh for 𝜑, since 𝑧 ∈ fv(𝜑).f)

Solution 4

𝑄(𝑥, 𝑔(𝑚)) 𝜎 = 𝑄(𝑔(𝑥), 𝑔(𝑚))a)
Note that 𝑥 is not fresh for 𝜎 and we cannot directly apply carry out the
substitution, even though 𝑦 never appears in the formula. Instead, we
do the following.

(∀𝑥. 𝑄(𝑥, 𝑔(𝑚))) 𝜎 = (∀𝑥′. 𝑄(𝑥′, 𝑔(𝑚))) 𝜎 (EQ)
= ∀𝑥′. 𝑄(𝑥′, 𝑔(𝑚)) (𝜎[𝑥′ ≔ 𝑥′]) (SQ)
= ∀𝑥′. 𝑄(𝑥′, 𝑔(𝑚)) (SP)
= ∀𝑥. 𝑄(𝑥, 𝑔(𝑚)) (EQ)

b)

Note that 𝜎[𝑥 ≔ 𝑥] = [𝑦 ≔ 𝑥][𝑧 ≔ 𝑦], which means that this updated
substitution does not affect the occurrences of 𝑥 in the third step below.

((∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ ∀𝑦. 𝑄(𝑦, 𝑧)) 𝜎
= ((∃𝑥. 𝑄(𝑥, 𝑔(𝑚)))) 𝜎 ∧ (∀𝑦. 𝑄(𝑦, 𝑧)) 𝜎 (SC)
= (∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ (∀𝑦. 𝑄(𝑦, 𝑧)) 𝜎 (SQ)
= (∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ (∀𝑦′. 𝑄(𝑦′, 𝑧)) 𝜎 (EQ)
= (∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ (∀𝑦′. 𝑄(𝑦′, 𝑧) 𝜎) (SQ)
= (∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ (∀𝑦′. 𝑄(𝑦′, 𝑦)) (SP)

c)

11.3. Uniform Proofs 163

(∃𝑦. 𝑄(𝑦, 𝑔(𝑧)) ∧ ∀𝑥. 𝑄(𝑦, 𝑓(𝑥, 𝑧))) 𝜎
= (∃𝑦′. 𝑄(𝑦′, 𝑔(𝑧)) ∧ ∀𝑥. 𝑄(𝑦′, 𝑓(𝑥, 𝑧))) 𝜎 (EQ)
= ∃𝑦′. (𝑄(𝑦′, 𝑔(𝑧)) ∧ ∀𝑥. 𝑄(𝑦′, 𝑓(𝑥, 𝑧))) 𝜎 (SQ)
= ∃𝑦′. 𝑄(𝑦′, 𝑔(𝑧)) 𝜎 ∧ (∀𝑥. 𝑄(𝑦′, 𝑓(𝑥, 𝑧))) 𝜎 (SC)
= ∃𝑦′. 𝑄(𝑦′, 𝑔(𝑦)) ∧ (∀𝑥. 𝑄(𝑦′, 𝑓(𝑥, 𝑧))) 𝜎 (SP)
= ∃𝑦′. 𝑄(𝑦′, 𝑔(𝑦)) ∧ (∀𝑥′. 𝑄(𝑦′, 𝑓(𝑥′, 𝑧))) 𝜎 (EQ)
= ∃𝑦′. 𝑄(𝑦′, 𝑔(𝑦)) ∧ ∀𝑥′. 𝑄(𝑦′, 𝑓(𝑥′, 𝑧)) 𝜎 (SQ)
= ∃𝑦′. 𝑄(𝑦′, 𝑔(𝑦)) ∧ ∀𝑥′. 𝑄(𝑦′, 𝑓(𝑥′, 𝑦)) (SP)
= ∃𝑦′. 𝑄(𝑦′, 𝑔(𝑦)) ∧ ∀𝑥. 𝑄(𝑦′, 𝑓(𝑥, 𝑦)) (EQ)

In the last step, we used that 𝑥 # 𝑄(𝑦′, 𝑓(𝑥′, 𝑦)). This step is not strictly
necessary, but shows that 𝜎 does not affect the binding of 𝑥 because no
variable is replaced with a term that contains 𝑥.

d)

Answers to theQuizzes of Chapter 8

Answer to quiz on page 101 There are exactly two possibilities because
ℳ(𝑃) must be a subset of 𝐴0. Thus, either ℳ(𝑃) = ∅ or ℳ(𝑃) = 𝐴0.

Answer to quiz on page 108 The formula ∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦)∧¬𝐼(𝑥, 𝑦) trans-
lates in the language model ℳ𝑙 to “for every language 𝑈 there is language 𝑉
that strictly contains 𝑈 : 𝑈 ⊂ 𝑉 .” This is not true because the total language
𝐴∗ is maximal. Indeed, formally we have for all valuations 𝑣 and 𝑉 ⊆ 𝐴∗ with
𝑤 = 𝑣[𝑥 ↦ 𝐴∗] that

J𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑤[𝑦 ↦𝑉] = {1, 𝐴∗ ⊆ 𝑈 and 𝐴∗ ≠ 𝑉
0, otherwise

= 0.

This gives J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑤 = 0 and thus

J∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣
= min{J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑈] | 𝑈 ∈ 𝐴∗}
≤ J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑤
= 0

164 11. First-Order Horn Clauses and Automatic Deduction

Answers to theQuizzes of Chapter 9

Answer to quiz on page 127 To derive symmetry, we apply the replace-
ment rule to the formula 𝑥 ≐ 𝑠, which we refer to as 𝜑, as follows. First,
we note that 𝜑[𝑥 ≔ 𝑡] = 𝑡 ≐ 𝑠, which means that we can prove symmetry
by showing that 𝜑[𝑥 ≔ 𝑡] is derivable from 𝑠 ≐ 𝑡. Second, we note that
𝜑[𝑥 ≔ 𝑠] = 𝑠 ≐ 𝑠, whence 𝜑[𝑥 ≔ 𝑠] is provable by (Refl). Putting this
together, we obtain the following derivation for symmetry of ≐.

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡
(Refl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑠]
(Repl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]

Solutions to the Exercises of Chapter 9

Solution 5

We use the constant 𝑝 to represent “Pavel” and the predicate symbol 𝑂 to
represent “owes money to”. The sentence is the formalised by the formula

∀𝑥. 𝑥≐𝑝 ↔ 𝑂(𝑝, 𝑥)

The proof of 𝜑 ⊢ ¬𝑂(𝑝, 𝑝) goes as follows.

1 ∀𝑥. 𝑥≐𝑝 ↔ 𝑂(𝑝, 𝑥)
2 𝑂(𝑝, 𝑝)
3 𝑝≐𝑝 ↔ 𝑂(𝑝, 𝑝) ∀E, 1
4 𝑂(𝑝, 𝑝) → 𝑝≐𝑝 ∧E, 3
5 𝑝≐𝑝 →E, 4, 2
6 𝑝 ≐ 𝑝 Refl

7 ⊥ ¬E, 5, 6
8 ¬𝑂(𝑝, 𝑝) ¬I, 2–7

11.3. Uniform Proofs 165

Solution 6

We prove each direction separately, starting with the sequent

⊢ (∃!𝑥. 𝑃 (𝑥)) → ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1) .

1 ∃!𝑥. 𝑃 (𝑥)
2 𝑥 𝑃(𝑥)
3 ∀𝑦. 𝑃 (𝑦) → 𝑥 ≐ 𝑦
4 (∃𝑥. 𝑃 (𝑥)) ∃I, 2
5 𝑦 𝑧
6 𝑃(𝑦) ∧ 𝑃(𝑧)
7 𝑃(𝑦) ∧E, 6
8 𝑃(𝑦) → 𝑥 ≐ 𝑦 ∀E, 3
9 𝑥 ≐ 𝑦 →E, 8, 7
10 𝑃(𝑧) ∧E, 6
11 𝑃(𝑧) → 𝑥 ≐ 𝑧 ∀E, 3
12 𝑥 ≐ 𝑧 →E, 11, 10
13 𝑦 ≐ 𝑥 Sym, 9
14 𝑦 ≐ 𝑧 Trans, 13, 12
15 𝑃(𝑦) ∧ 𝑃(𝑧) → 𝑦 ≐ 𝑧 →I, 6–14
16 ∀𝑧. 𝑃 (𝑦) ∧ 𝑃(𝑧) → 𝑦 ≐ 𝑧 ∀I, 5–15
17 ∀𝑦. ∀𝑧. 𝑃 (𝑦) ∧ 𝑃(𝑧) → 𝑦 ≐ 𝑧 ∀I, 5–16
18 (∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1 ∧I, 4, 17
19 (∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1 ∃!E, 2–18
20 (∃!𝑥. 𝑃 (𝑥)) → ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1) →I, 1–19

166 11. First-Order Horn Clauses and Automatic Deduction

Next, we prove ⊢ ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1) → (∃!𝑥. 𝑃 (𝑥)):

1 (∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1

2 (∃𝑥. 𝑃 (𝑥)) ∧E, 1
3 𝑃1 ∧E, 1
4 𝑥 𝑃 (𝑥)
5 𝑦 𝑃(𝑦)
6 ∀𝑧. 𝑃 (𝑥) ∧ 𝑃(𝑧) → 𝑥 ≐ 𝑧 ∀E, 3
7 𝑃(𝑥) ∧ 𝑃 (𝑦) → 𝑥 ≐ 𝑦 ∀E, 6
8 𝑃(𝑥) ∧ 𝑃 (𝑦) ∧I, 4, 5
9 𝑥 ≐ 𝑦 →E, 7, 8
10 ∃!𝑥. 𝑃 (𝑥) ∃!I, 4, 5–9
11 ∃!𝑥. 𝑃 (𝑥) ∃E, 2, 4–10
12 ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1) → (∃!𝑥. 𝑃 (𝑥)) →I, 1–11

Putting both proofs together, we get ⊢ (∃!𝑥. 𝑃 (𝑥)) ↔ ((∃𝑥. 𝑃 (𝑥))∧𝑃1) by

1 (∃!𝑥. 𝑃 (𝑥)) → ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1)
2 ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1) → (∃!𝑥. 𝑃 (𝑥))
3 (∃!𝑥. 𝑃 (𝑥)) ↔ ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1) ∧I, 1, 2

Solution 7

a) The formulas are

𝜑𝑟 = 𝑥 ≐ 𝑦
𝜑𝑡 = ∃𝑧. 𝐸(𝑥, 𝑧) ∧ 𝑅(𝑧, 𝑦)

11.3. Uniform Proofs 167

b) The derivation of 𝜑𝑅,1, 𝜑𝑅,2, 𝜑𝑅,3 ⊢ 𝜑𝑅 goes as follows.

1 ∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡

2 ∀𝑥. ∀𝑦. 𝜑𝑟 → 𝑅(𝑥, 𝑦)
3 ∀𝑥. ∀𝑦. 𝜑𝑡 → 𝑅(𝑥, 𝑦)
4 𝑥 𝑦
5 𝑅(𝑥, 𝑦)
6 ∀𝑦. 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡 ∀E, 1
7 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡 ∀E, 6
8 𝜑𝑟 ∨ 𝜑𝑡 →E, 7, 5
9 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡 →I, 5–8
10 𝜑𝑟 ∨ 𝜑𝑡

11 𝜑𝑟

12 ∀𝑦. 𝜑𝑟 → 𝑅(𝑥, 𝑦) ∀E, 2
13 𝜑𝑟 → 𝑅(𝑥, 𝑦) ∀E, 12
14 𝑅(𝑥, 𝑦) →E, 13, 11
15 𝜑𝑡

16 ∀𝑦. 𝜑𝑡 → 𝑅(𝑥, 𝑦) ∀E, 3
17 𝜑𝑡 → 𝑅(𝑥, 𝑦) ∀E, 16
18 𝑅(𝑥, 𝑦) →E, 17, 15
19 𝑅(𝑥, 𝑦) ∨E, 10, 11–14, 15–18
20 𝜑𝑟 ∨ 𝜑𝑡 → 𝑅(𝑥, 𝑦) →I, 10–19
21 𝑅(𝑥, 𝑦) ↔ 𝜑𝑟 ∨ 𝜑𝑡 ∧I, 9, 20
22 ∀𝑦. 𝑅(𝑥, 𝑦) ↔ 𝜑𝑟 ∨ 𝜑𝑡 ∀I, 4–21
23 ∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) ↔ 𝜑𝑟 ∨ 𝜑𝑡 ∀I, 4–22

168 11. First-Order Horn Clauses and Automatic Deduction

c) The graph 𝐺 is described by the following 5 formulas.

𝜑𝐸,1 = 𝐸(𝑛1, 𝑛2) 𝜑𝐸,4 = 𝐸(𝑛3, 𝑛1)
𝜑𝐸,2 = 𝐸(𝑛2, 𝑛2) 𝜑𝐸,5 = 𝐸(𝑛4, 𝑛2)
𝜑𝐸,3 = 𝐸(𝑛2, 𝑛3)

d) To derive 𝜑𝑅, 𝜑𝐸,1, … , 𝜑𝐸,5 ⊢ 𝑅(𝑛4, 𝑛3), we first derive as follows the
sequent 𝜑𝑅,1, … , 𝜑𝑅,3, 𝜑𝐸,1, … , 𝜑𝐸,5 ⊢ 𝑅(𝑛4, 𝑛3).

1 ∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡

2 ∀𝑥. ∀𝑦. 𝜑𝑟 → 𝑅(𝑥, 𝑦)
3 ∀𝑥. ∀𝑦. 𝜑𝑡 → 𝑅(𝑥, 𝑦)
4 𝜑𝐸,1, … , 𝜑𝐸,5

5 𝑛3 ≐ 𝑛3 Refl

6 ∀𝑦. 𝑛3 ≐ 𝑦 → 𝑅(𝑛3, 𝑦) ∀E, 2
7 𝑛3 ≐ 𝑛3 → 𝑅(𝑛3, 𝑛3) ∀E, 6
8 𝑅(𝑛3, 𝑛3) →E, 7, 5
9 𝐸(𝑛2, 𝑛3) Assum, 4
10 𝐸(𝑛2, 𝑛3) ∧ 𝑅(𝑛3, 𝑛3) ∧I, 9, 8
11 ∃𝑧. 𝐸(𝑛2, 𝑧) ∧ 𝑅(𝑧, 𝑛3) ∃I, 10
12 ∀𝑦. 𝜑𝑡[𝑥 ≔ 𝑛2] → 𝑅(𝑛2, 𝑦) ∀E, 2
13 𝜑𝑡[𝑥 ≔ 𝑛2][𝑦 ≔ 𝑛3] → 𝑅(𝑛2, 𝑛3) ∀E, 12
14 𝑅(𝑛2, 𝑛3) →E, 13, 11
15 𝐸(𝑛4, 𝑛2) Assum, 4
16 𝐸(𝑛4, 𝑛2) ∧ 𝑅(𝑛2, 𝑛3) ∧I, 15, 14
17 ∃𝑧. 𝐸(𝑛4, 𝑧) ∧ 𝑅(𝑧, 𝑛3) ∃I, 16
18 ∀𝑦. 𝜑𝑡[𝑥 ≔ 𝑛4] → 𝑅(𝑛4, 𝑦) ∀E, 2
19 𝜑𝑡[𝑥 ≔ 𝑛4][𝑦 ≔ 𝑛3] → 𝑅(𝑛4, 𝑛3) ∀E, 18
20 𝑅(𝑛4, 𝑛3) →E, 19, 17

11.3. Uniform Proofs 169

Using b) and the cut rule, we obtain 𝜑𝑅, 𝜑𝐸,1, … , 𝜑𝐸,5 ⊢ 𝑅(𝑛4, 𝑛3) from this
proof.

Solution 8

a) The formulas for associativity and the inverse are given by

𝜑2 = ∀𝑥. ∀𝑦. ∀𝑧. 𝑥 ∔ (𝑦 ∔ 𝑧) ≐ (𝑥 ∔ 𝑦)
𝜑3 = ∀𝑥. ∃𝑦. 𝑥 ∔ 𝑦 = ̇0 ∧ 𝑦 ∔ 𝑥 = ̇0

b) Uniqueness can be expressed in several ways. The quickest is to replace in
𝜑3 the existential by the uniqueness quantifier:

𝜑𝑢 = ∀𝑥. ∃!𝑦. 𝑥 ∔ 𝑦 = ̇0 ∧ 𝑦 ∔ 𝑥 = ̇0

c) Before we give the formal proof that inverses are unique, let us first prove
uniqueness by standard equational reasoning. Assume that we have inverses
and 𝑦 and 𝑧, then the following chain of equations shows that 𝑦 = 𝑧, where
we indicate the used assumption and proof rules on the right.

𝑦 ≐ 𝑦 ∔ ̇0 by 𝜑1,𝑟
≐ 𝑦 ∔ (𝑥 ∔ 𝑧) by (Repl) and 𝑥 being an inverse
≐ (𝑦 ∔ 𝑥) ∔ 𝑧 by 𝜑2
≐ ̇0 ∔ 𝑧 by (Repl) and 𝑦 being an inverse
≐ 𝑧 by 𝜑1,𝑙

Let us formalise first this equational proof in ND=
1 by deriving the sequent

𝑥, 𝑦, 𝑧 ∣ 𝜑1,𝑙, 𝜑1,𝑟, 𝜑2, 𝑦 ∔ 𝑥 ≐ ̇0, 𝑥 ∔ 𝑧 ≐ ̇0 ⊢ 𝑦 ≐ 𝑧 (∗)

170 11. First-Order Horn Clauses and Automatic Deduction

The proof goes as follows.

1 𝑥, 𝑦, 𝑧 𝜑1,𝑙

2 𝜑1,𝑟

3 𝜑2

4 𝑦 ∔ 𝑥 ≐ ̇0
5 𝑥 ∔ 𝑧 ≐ ̇0
6 𝑦 ∔ ̇0 ≐ 𝑦 ∀E, 2
7 𝑦 ≐ 𝑦 ∔ ̇0 Sym, 6
8 ̇0 ≐ 𝑥 ∔ 𝑧 Sym, 5
9 𝑦 ≐ 𝑦 ∔ (𝑥 ∔ 𝑧) Repl, 8, 7
10 ∀𝑢. ∀𝑧. 𝑦 ∔ (𝑢 ∔ 𝑧) ≐ (𝑦 ∔ 𝑢) ∔ 𝑧 ∀E, 3
11 ∀𝑧. 𝑦 ≐ 𝑦 ∔ (𝑥 ∔ 𝑧) ≐ (𝑦 ∔ 𝑥) ∔ 𝑧 ∀E, 10
12 𝑦 ∔ (𝑥 ∔ 𝑧) ≐ (𝑦 ∔ 𝑥) ∔ 𝑧 ∀E, 11
13 𝑦 ∔ (𝑥 ∔ 𝑧) ≐ 0 ∔ 𝑧 Repl, 4, 12
14 ̇0 ∔ 𝑧 ≐ 𝑧 ∀E, 1
15 𝑦 ∔ (𝑥 ∔ 𝑧) ≐ 𝑧 Trans, 13, 14
16 𝑦 ≐ 𝑧 Trans, 9, 15

The following now formalises the proof that the group axioms imply the unique

11.3. Uniform Proofs 171

existence of the inverse, that is, it shows 𝜑1,𝑙, 𝜑1,𝑟, 𝜑2, 𝜑3 ⊢ 𝜑𝑢.

1 𝜑1,𝑙

2 𝜑1,𝑟

3 𝜑2

4 𝜑3

5 𝑥
6 ∃𝑦. 𝑥 ∔ 𝑦 ≐ ̇0 ∧ 𝑦 ∔ 𝑥 ≐ ̇0 ∀E, 4
7 𝑦 𝑥 ∔ 𝑦 ≐ ̇0 ∧ 𝑦 ∔ 𝑥 ≐ ̇0
8 𝑦 ∔ 𝑥 ≐ ̇0 ∧E, 7
9 𝑧 𝑥 ∔ 𝑧 ≐ ̇0 ∧ 𝑧 ∔ 𝑥 ≐ ̇0
10 𝑥 ∔ 𝑧 ≐ ̇0 ∧E, 9
11 𝑦 ≐ 𝑧 (∗), 8, 10
12 ∃!𝑦. 𝑥 ∔ 𝑦 ≐ ̇0 ∧ 𝑦 ∔ 𝑥 ≐ ̇0 ∃!I, 7, 9–11
13 ∃!𝑦. 𝑥 ∔ 𝑦 ≐ ̇0 ∧ 𝑦 ∔ 𝑥 ≐ ̇0 ∃E, 6, 7–12
14 ∀𝑥. ∃!𝑦. 𝑥 ∔ 𝑦 ≐ ̇0 ∧ 𝑦 ∔ 𝑥 ≐ ̇0 ∀I, 5–13

Answers to theQuizzes of Chapter 11

Answer to quiz on page 147 The idea is that multiplication is given re-
cursively by 0 ⋅ 𝑛 = 0 and (𝑚 + 1) ⋅ 𝑛 = (𝑚 ⋅ 𝑛) + 𝑛. This can be translated
into the following two Horn clauses.

∀𝑛. 𝑀(0, 𝑛, 0)
∀𝑚. ∀𝑛. ∀𝑖. ∀𝑘. 𝑀(𝑚, 𝑛, 𝑖) ∧ 𝑃(𝑖, 𝑛, 𝑘) → 𝑀(𝑠(𝑚), 𝑛, 𝑘)

Answer to quiz on page 152 No, if a signature ℒ has no constants, then it
is not possible to obtain an ℒ-termwithout variables. For example, suppose ℒ
is a signature with only one unary function symbol 𝑓 . Then the only terms we
can build over this signature are of the form 𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)), … for variables

172 11. First-Order Horn Clauses and Automatic Deduction

𝑥. Thus, it is not possible to obtain a closed term without variables from ℒ.
This can formally be proven by induction over first-order terms.

Bibliography

[And02] Peter B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof. 2nd ed. Applied Logic Series.
Springer Netherlands, 2002. isbn: 978-1-4020-0763-7. doi: 10 .
1007/978-94-015-9934-4. (Visited on 10/05/2020).

[Ane12] Irving H. Anellis. ‘Peirce’s Truth-functional Analysis and the Ori-
gin of the Truth Table’. In: History and Philosophy of Logic 33.1
(2012), pp. 87–97. issn: 0144-5340. doi: 10.1080/01445340.
2011.621702.

[Gal87] Jean H. Gallier. Logic for Computer Science: Foundations of Auto-
matic Theorem Proving. Wiley, 1987. 511 pp. isbn: ISBN 978-0-471-
61546-0.

[Gan04] Jonardon Ganeri. ‘Indian Logic’. In: Handbook of the History of Lo-
gic. Ed. by DovM. Gabbay and JohnWoods. Vol. 1. North-Holland,
2004, pp. 309–395. isbn: 1874-5857. doi: 10 . 1016 / S1874 -
5857(04)80007-4.

[Gen35] Gerhard Gentzen. ‘Untersuchungen Über Das Logische Schließen.
I’. In: Mathematische Zeitschrift 39.1 (1935), pp. 176–210. issn:
1432-1823. doi: 10.1007/BF01201353.

[HR04] Michael Huth and Mark Dermot Ryan. Logic in Computer Science
- Modelling and Reasoning about Systems. 2nd ed. Cambridge Uni-
versity Press, 2004, p. 427. I pp.

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic
and the Foundations of Mathematics 141. Amsterdam: North Hol-
land, 1999.

[Kle74] Stephen C. Kleene. Introduction to Metamathematics. 7. repr. Bib-
liotheca Mathematica. Groningen: Wolters-Noordhoff and North-
Holland, 1974. isbn: 978-0-444-10088-7.

[Klo92] Jan Willem Klop. Term Rewriting Systems. 1992.
[Kow79] Robert A. Kowalski. ‘Algorithm = Logic + Control’. In: Commun.

ACM 22.7 (1979), pp. 424–436. doi: 10.1145/359131.359136.

https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1080/01445340.2011.621702
https://doi.org/10.1080/01445340.2011.621702
https://doi.org/10.1016/S1874-5857(04)80007-4
https://doi.org/10.1016/S1874-5857(04)80007-4
https://doi.org/10.1007/BF01201353
https://doi.org/10.1145/359131.359136

174 Bibliography

[MN12] Dale Miller and Gopalan Nadathur. Programming with Higher-
Order Logic. Cambridge University Press, 2012. 306 pp. isbn: ISBN
978-0-521-87940-8. uRl: http://www.cambridge.org/de/
academic/subjects/computer-science/programming-
languages-and-applied-logic/programming-higher-
order-logic?format=HB.

[Mil+91] Dale Miller, Gopalan Nadathur, Frank Pfenning and Andre Sced-
rov. ‘Uniform Proofs as a Foundation for Logic Programming’. In:
Ann. Pure Appl. Logic 51.1-2 (1991), pp. 125–157. doi: 10.1016/
0168-0072(91)90068-W.

[PD01] Frank Pfenning and Rowan Davies. ‘A Judgmental Reconstruction
of Modal Logic’. In:Math. Struct. Comput. Sci. 11.4 (2001), pp. 511–
540. doi: 10.1017/S0960129501003322.

[Pra06] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover
Books onMathematics. Dover Publications, 2006. isbn: 978-0-486-
44655-4.

[PTW18] Graham Priest, Koji Tanaka and Zach Weber. ‘Paraconsistent Lo-
gic’. In:The Stanford Encyclopedia of Philosophy. Ed. by Edward N.
Zalta. Summer 2018. Metaphysics Research Lab, Stanford Univer-
sity, 2018. uRl: https://plato.stanford.edu/archives/
sum2018/entries/logic-paraconsistent/.

[Sol13] Daniel Solow. How to Read and Do Proofs: An Introduction to Math-
ematical Thought Processes. 6th edition. Hoboken, New Jersey:
Wiley, 2013. 336 pp. isbn: 978-1-118-16402-0.

[TS00] Anne Sjerp Troelstra andHelmut Schwichtenberg. Basic ProofThe-
ory. 2nd ed. Cambridge Tracts in Theoretical Computer Science.
Cambridge: Cambridge University Press, 2000. isbn: 0-521-77911-
1.

[TvD88] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Math-
ematics: An Introduction. Vol. 1 & 2. Studies in Logic and the Found-
ations of Mathematics 121 & 123. North-Holland, 1988. 384 pp.
isbn: 978-0-444-70266-1.

http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1017/S0960129501003322
https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/
https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/

A. Greek Letters

Letter Name LaTeX command
𝛼 Α alpha \alpha \Alpha
𝛽 Β beta \beta \Beta
𝛾 Γ gamma \gamma \Gamma
𝛿 Δ delta \delta \Delta
𝜖 Ε epsilon \epsilon \Epsilon
𝜁 Ζ zeta \zeta \Zeta
𝜃 Θ theta \theta \Theta
𝜄 Ι iota \iota \Iota
𝜅 Κ kappa \kappa \Kappa
𝜆 Λ lambda \lambda \Lambda
𝜇 Μ mu \mu \Mu
𝜈 Ν nu \nu \Nu
𝜉 Ξ xi \xi \Xi
𝜊 Ο omicron \omicron \Omicron
𝜋 Π pi \pi \Pi
𝜌 Ρ rho \rho \Rho
𝜎 Σ sigma \sigma \Sigma
𝜏 Τ tau \tau \Tau
𝜐 Υ upsilon \upsilon \Upsilon
𝜑 Φ phi \varphi \Phi
𝜒 Χ chi \chi \Chi
𝜓 Ψ psi \psi \Psi
𝜔 Ω omega \omega \Omega

Table A.1.: Greek Letters and Their Pronunciation

B. Tools

B.1. Sets and Maps

Given sets 𝐴 and 𝐵, we denote by 𝐴×𝐵 their product consisting of ordered
pairs

𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

and 𝐵𝐴 the set of maps 𝐴 → 𝐵. Given two maps 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 →
𝐶 , we denote by 𝑔 ∘ 𝑓 the composition of 𝑔 and 𝑓 with (𝑔∘𝑓)(𝑥) = 𝑔(𝑓(𝑥)).
The composition can be pronounced as “𝑔 composed with 𝑓” or “𝑔 after 𝑓”.

We will also be using the powerset of sets 𝐴, denoted by 𝒫(𝐴), which is the
set of all subsets of 𝐴:

𝒫(𝐴) = {𝑈 | 𝑈 ⊆ 𝐴}
The empty set is denoted by ∅.

The set of natural numbers starting at 0 is denoted by ℕ. Given a natural
number 𝑛 ∈ ℕ, we write [𝑛] for the set of the first 𝑛 natural numbers :1

[𝑛] = {𝑘 ∈ ℕ | 𝑘 < 𝑛} .

In particular, we have [0] = ∅, [1] = {0} etc. Generally, [𝑛] has exactly 𝑛
elements.

Exercise 9

Show for any set 𝐴 that the sets 𝐴[2] and 𝐴 × 𝐴 are isomorphic, that is, there
is a map 𝐴[2] → 𝐴 × 𝐴 with an inverse.
1Warning: In some contexts, [𝑛] includes also 𝑛 and has thus 𝑛+1 elements. For our purposes,

the present interpretation is the most useful though.

178 B. Tools

Exercise 10

Show that there is exactly one map ∅ → 𝑋 for any set 𝑋.

Exercise 11

Suppose that 𝑋 is a finite set with 𝑚 elements and let 𝑛 ∈ ℕ. Show that 𝑋[𝑛]

has 𝑚𝑛 elements.

B.2. Induction on Natural Numbers

We denote by ℕ the set of natural numbers starting at 0. But what is this
set exactly? Naively, one could define it by saying ℕ = {0, 1, 2, …}. However,
making precise the meaning of the dots is quite difficult. A better way is to
define the natural numbers as some set with a certain property, as follows.

Definition B.1: Natural numbers and iteration principle

The natural numbers are a set ℕ with an element 0 ∈ ℕ and a map
suc ∶ ℕ → ℕ, such that for any set 𝐴 with an element 𝑎0 and a map
𝑓 ∶ 𝐴 → 𝐴, there is a unique map 𝑔 ∶ ℕ → 𝐴 such that 𝑔(0) = 𝑎0
and 𝑔(suc(𝑛)) = 𝑓(𝑔(𝑛)) for all 𝑛 ∈ ℕ. We say that 𝑔 is defined by
iteration of (𝑎0, 𝑓).

To make our life simple, we will write 𝑛+1 instead of suc(𝑛) for the successor
of the number 𝑛. We can the express any natural number by 1 = 0 + 1,
2 = 1+1, 3 = 2+1 and so forth. When we wrote ℕ = {0, 1, 2, …} above, we
intuitively understood that ℕ should consist of exactly the numbers expressed
in this way and that there should be no spurious elements like catfish ∈ ℕ.
That this is the case is expressed by the iteration property because it tells us
that every element in ℕ is either of the form 0 or 𝑛 + 1 for some 𝑛 ∈ ℕ. This
principle allows us to count from any number down to 0. One can say that

elements of ℕ are static representations of numbers, while iteration
reflect the dynamics of counting.

B.2. Induction on Natural Numbers 179

If we consider a pair (𝑎0, 𝑓) given as in definition B.1, then one can compare
this to the following imperative program, in which a for-loop is used to re-
peatedly apply 𝑓 to the initial value 𝑎0.

1 def g(n):
2 res = 𝑎0
3 for i in [1, ..., n]:
4 res = f(res)
5 return res

Using the iteration principle can be a nuisance because we have to explicitly
specify the pair (𝑎0, 𝑓), which only gets worse for the more complicated struc-
tures that we encounter in, for example, chapter 2. For instance, suppose that
we wish to define exponentiation in terms of multiplication. Our intuition
would be to proceed with the following definition.

𝑎0 = 1 and 𝑎𝑛+1 = 𝑎𝑛 ⋅ 𝑎 (B.1)

This definition arises by applying the iteration principle to the pair (1, 𝑓𝑎)
with 𝑓𝑎(𝑥) = 𝑥 ⋅ 𝑎. However, defining exponentiation via the formal itera-
tion principle is clearly inconvenient, and we will use the equational style in
eq. (B.1) whenever possible and we are sure that the equations can be reduced
to the iteration principle. Such a reduction is not always easy. For instance,
the factorial function can be expressed by the following equations.

0! = 1 and (𝑛 + 1)! = 𝑛! ⋅ (𝑛 + 1) (B.2)

If we tried to use the iteration principle directly to define ! as map ℕ → ℕ
via iteration, then we run into the problem that 𝑛 + 1 is not available for
the multiplication. Instead, we have to define first a map fac ∶ ℕ → ℕ ×
ℕ by iteration from (1, 1) and 𝑓(𝑘, 𝑟) = (𝑘 + 1, 𝑟 ⋅ 𝑘). We then find that
fac(𝑛) = (𝑛 + 1, 𝑛!). This shows that the factorial function can be obtained
by iteration but this requires considerable overhead. Therefore, we typically
prefer specifications like in eq. (B.2).

The iteration principle the natural numbers can be used to define most maps
on the natural numbers that we may be interested in.2 From the iteration
principle, we can also derive the usual induction principle.3

2Defining exact set of definable maps requires one to set up a formal theory, like primitive
recursion, Peano arithmetic or Gödel’s system T.

3We do not specify formally at this point what a property is, but we can think of subsets 𝑃 ⊆ ℕ.

180 B. Tools

Theorem B.2: Induction principle for ℕ

Let 𝑃 be a property of ℕ, where we write 𝑃(𝑛) for the property 𝑃 at
𝑛 ∈ ℕ. To prove that 𝑃(𝑛) holds for all 𝑛 ∈ ℕ, it suffices to show that

• 𝑃(0) holds (base case), and

• for all 𝑛 ∈ ℕ, assuming that 𝑃(𝑛) holds, that 𝑃(𝑛 + 1) holds
(induction step).

Proof. The proof of the induction principle needs a concrete definition of what
a property is. For simplicity, we assume that a property is a subset, that is, 𝑃 ⊆
ℕ where 𝑃(𝑛) means that 𝑛 ∈ 𝑃 . Our goal is then to show that all natural
numbers are contained in 𝑃 . In turn, we obtain this by iterating (0, suc) to
get a map 𝑔 ∶ ℕ → 𝑃 because 0 is in 𝑃 and for any 𝑛 ∈ 𝑃 , also 𝑛 + 1 ∈ 𝑃 .
Since 𝑔 is uniquely defined by 𝑔(0) = 0 and 𝑔(𝑛 + 1) = 𝑔(𝑛) + 1, we obtain
that ℕ ⊆ 𝑃 , as required.

The assumption 𝑃(𝑛) in the induction step is called the induction hypo-
thesis, and it should be noted that it is only assumed for each individual 𝑛.
Sometimes, the induction principle is mistakenly stated with the induction
hypothesis separated as follows.

Incorrect “induction principle”: To prove that 𝑃(𝑛) holds for all
𝑛 ∈ ℕ,

1. prove that 𝑃(0) holds,

2. assume that 𝑃 (𝑛) holds for all 𝑛 ∈ ℕ, and

3. prove that 𝑃(𝑛 + 1) holds for all 𝑛 ∈ ℕ.

This, however, is incorrect because the second point implies immediately the
first and third, thereby allowing us to prove that any property! Clearly, we
do not want this and theorem B.2 is the correct principle. In chapter 6, we
will see how first order logic allows us to resolve such ambiguities of natural
language.

B.3. Trees and Induction 181

2

3

∗ 10

∗ ∗

0

∗ ∗

0

0 1

0 1

1

0 1

Figure B.1.: Example of a binary tree labelled in ℕ. The root is labelledwith the
number 2 and has two children. The circled blue numbers indicate
the number of the outgoing branching.

B.3. Trees and Induction

There are various kinds of trees: binary trees, which have two children below
every node; lists, which have just one child at any node; trees with arbitrary
branching, where every node may have an arbitrary number of children. Be-
sides the branching, trees usually have labels. For instance, in a list every node
is labelled with the corresponding list element. The aim of this section is to
give a general account of labelled trees.

We begin by characterising the labels and branching a tree may have.

Definition B.3

We call a pair (𝐴, 𝐵) a branching type if𝐴 is a set and𝐵 an𝐴-indexed
family of sets, that is, for every 𝑎 ∈ 𝐴 we are given a set 𝐵𝑎.

Note that the terminology of “branching type” also tacitly includes labels. The
intuition of this definition is that a tree of type (𝐴, 𝐵) will be labelled in 𝐴 and
will have at a node with label 𝑎 ∈ 𝐴 one branch for every element in 𝐵𝑎.

Example B.4

Binary trees (not balanced!) labelled in ℕ are induced by the branching
type (ℕ ∪ {∗}, 𝐵) with 𝐵𝑛 = [2] and 𝐵∗ = ∅. The idea is that an inner
node can be labelled with a number, while a leaf is labelled with ∗. An
inner node has then exactly two children and a leaf has none.

182 B. Tools

Figure B.1 shows an example of a binary tree, which we wish to capture with
the branching type given in example B.4. The following definition shows how
general trees can be constructed and what their defining property is.

Definition B.5: Trees as inductive structures

Trees with branching type (𝐴, 𝐵) are given by a set 𝒯, or 𝒯(𝐴, 𝐵),
together with a family tr of maps tr𝑎 ∶ 𝒯𝐵𝑎 → 𝒯 indexed by elements
𝑎 ∈ 𝐴, such that the following iteration principle is fulfilled: for any
set 𝑋 and family 𝑓 of maps with 𝑓𝑎 ∶ 𝑋𝐵𝑎 → 𝑋, there is a unique map

̄𝑓 ∶ 𝒯 → 𝑋 with
̄𝑓(tr𝑎(𝛼)) = 𝑓𝑎(𝑔 ∘ 𝛼)

for all 𝑎 ∈ 𝐴 and 𝛼∶ 𝐵𝑎 → 𝒯. We say that ̄𝑓 is defined by iteration
from 𝑓 or that ̄𝑓 is the inductive extension of 𝑓 .

This definition packs a lot. Let us unfold it in the case of binary trees.

Example B.6: Binary trees

Let us write ℬ = 𝒯(ℕ ∪ {∗}, 𝐵) for a set of trees for the branching
type that we introduced in example B.4. This set comes with a family
tr of maps indexed by ℕ ∪ {∗}, that is, we get for every 𝑛 ∈ ℕ a map
tr𝑛 ∶ ℬ[2] → ℬ and one map tr∗ ∶ ℬ∅ → ℬ. From the exercises in
appendix B.1, we know that giving a map 𝛼 in ℬ[2] amounts to giving
a pair of elements in ℬ. Thus, we can represent for such an 𝛼 the
resulting tree 𝑡𝑟𝑛(𝛼) like so, where a box indicates a whole subtree:

𝑛

𝛼(0) 𝛼(1)
0 1

Let us denote by ℓ the tree tr∗(𝜀), where 𝜀 is the only element of ℬ∅,
see exercise 10. This tree represents a leaf in a binary tree. The tree
from fig. B.1 can then be represented in ℬ by

𝑡 = tr2(tr3(ℓ, tr10(ℓ, ℓ)), tr0(ℓ, ℓ))

where we use the pair notation to create elements of ℬ[2].
So much for the construction of tree. The interesting part is what we
can do with them though. This is where the iteration principle comes
in, which allows us to traverse a tree. For instance, we can sum up all

B.3. Trees and Induction 183

the labels in a tree by using the family 𝑠 given by

𝑠𝑛 ∶ ℕ[2] → ℕ 𝑠∗ ∶ ℕ∅ → ℕ
𝑠𝑛(𝛼) = 𝑛 + 𝛼(0) + 𝛼(1) 𝑠∗(𝛼) = 0

this gives us a map ̄𝑠 ∶ ℬ → ℕ. Running this map on the tree 𝑡 from
above, we have get the following.

̄𝑠(𝑡) = 𝑠2(̄𝑠(tr3(ℓ, tr10(ℓ, ℓ))), ̄𝑠(tr0(ℓ, ℓ)))
= 2 + ̄𝑠(tr3(ℓ, tr10(ℓ, ℓ))) + ̄𝑠(tr0(ℓ, ℓ))
= 2 + (3 + ̄𝑠(ℓ) + ̄𝑠(tr10(ℓ, ℓ))) + (0 + ̄𝑠(ℓ) + ̄𝑠(ℓ))
= 2 + (3 + 0 + (10 + ̄𝑠(ℓ) + ̄𝑠(ℓ))) + (0 + 0 + 0)
= 2 + (3 + 0 + (10 + 0 + 0)) + 0
= 2 + (3 + 0 + 10) + 0
= 2 + 13 + 0
= 15

Thus, we have traversed the trees depth-first and summed up all the
intermediate results.

Exercise 12

Define a map 𝑐 ∶ ℬ → ℕ that counts the number of labelled nodes in a binary
tree by using the iteration principle.

Exercise 13

Define by iteration a map ℎ∶ ℬ → ℕ that computes that height of a tree,
where the leaves should have height 0 and labelled nodes height at least 1.

So far, have used the iteration principle only to define maps but not to prove
anything. Just like for the natural numbers, we can also obtain an induction
principle.

184 B. Tools

Theorem B.7: Tree Induction

Let 𝒯 be a set of tree with branching type (𝐴, 𝐵) and 𝑃 a property of
𝒯, that is 𝑃 ⊆ 𝒯. If for all 𝑎 ∈ 𝐴 and 𝛼∶ 𝐵𝑎 → 𝑃 we have tr𝑎(𝛼) ∈ 𝑃 ,
then 𝑃 holds for all trees in 𝒯 (i.e., 𝑃 = 𝒯).

Exercise 14

Use the tree induction principle to prove that 𝑐(𝑡) ≤ 2ℎ(𝑡) for all 𝑡 ∈ ℬ.

B.4. Formal Languages

Recall that 𝐴∗ denotes the set of words over an alphabet 𝐴. Concretely, the
set of words is given by

𝐴∗ = {𝜀} ∪ {𝑎0𝑎1 ⋯ 𝑎𝑛 | 𝑛 ∈ ℕ, 𝑎𝑘 ∈ 𝐴},

where 𝜀 is the empty word. For instance, if 𝐴 = {𝑎, 𝑏}, then 𝐴∗ contains the
singleton words 𝑎 and 𝑏, and longer words like 𝑎𝑏𝑏𝑎𝑎. The set of languages
over 𝐴 is the powerset 𝒫(𝐴∗), that is, the set of all subsets of 𝐴∗. Given two
words 𝑣, 𝑤 ∈ 𝐴∗, we denote by 𝑣𝑤 or 𝑣 ++ 𝑤 the concatenation of the words
𝑣 and 𝑤, that is, considering 𝑣 and 𝑤 as one word by reading their letters in
order.

(𝑣0 ⋯ 𝑣𝑛) ++ (𝑤0 ⋯ 𝑤𝑚) = 𝑣0 ⋯ 𝑣𝑛𝑤0 ⋯ 𝑤𝑚

We will often make use of context-free grammars, which generate lan-
guages. These grammars will be notated in so-called Backus-Naur form.
Let us start with an example.

Example B.8

Suppose we want to define a language of arithmetic expressions, in
which one can use numbers in ℕ, addition and negation. In this case,
we would say that such expressions 𝑒 are generated by the following
grammar.

𝑒 ∶∶= 𝑛 , 𝑛 ∈ ℕ ∣ 𝑒 + 𝑒 ∣ −𝑒 ∣ (𝑒) (B.3)

This grammar can be read as follows. The symbol ∶∶= says that an

B.4. Formal Languages 185

expression 𝑒 can be generated by using any of the four options on the
right-hand side, where the options are separated by the vertical bar.
The first option is that 𝑒 can be any natural number 𝑛, which is the
only case where we can start to generate an expression. To generate
larger expressions, we have to use any of the other two options. For
instance, if we have generated already expressions 𝑒1 and 𝑒2, then the
second option allows us to generate the expression “𝑒1 + 𝑒2”, the third
option gives us “−𝑒1” and the fourth introduces parentheses “(𝑒1)”. It
is important to realise that “+” and “−” have no meaning, they are just
syntax. In the terminology of (context-free) grammars, “(”, “)”, “+”,
“−” and “𝑛” are called terminal symbols, while 𝑒 in the grammar is
called a non-terminal symbol.
We can now define the language generated by the grammar, call it 𝐿,
as a subset of all words over the alphabet 𝐴 = ℕ ∪ {+, −, (,)} by

𝐸 = {𝑒 ∈ 𝐴∗ | generated by eq. (B.3)} .
But what does “generated by” mean exactly? We can think of eq. (B.3)
as a way of describing trees of a certain shape. For instance, the ex-
pression 5 + (−3) can be seen as a linear, textual description of the
following tree.

+

5 ()

−

3

In appendix B.3, we have already seen how to describe such trees. The
labels are numbers and the operators, that is, we put

𝐿 = ℕ ∪ {+, −, ()}
and the branching width 𝐵 is given by

𝐵𝑛 = ∅ 𝐵+ = [2] 𝐵− = [1] 𝐵() = [1] ,
which indicates that the numbers are leaves, “+” has two children, and
“−” and “()” have one. An expression can be seen as a tree of branching

186 B. Tools

type (𝐿, 𝐵). To get a language, we define a map flat ∶ 𝒯(𝐿, 𝐵) → 𝐴∗

by iteration of the family {𝑓𝑥}𝑥∈𝐿 ∶ (𝐴∗)𝐵𝑥 → 𝐴∗ defined by

𝑓𝑛(𝛼) = 𝑛
𝑓+(𝛼) = 𝛼(0) ++ " + " ++ 𝛼(1)
𝑓+(𝛼) = " − " ++ 𝛼(0)
𝑓()(𝛼) = "(" ++ 𝛼(0) ++ ")"

This gives us that expressions are given as the image of the map flat:

𝐸 = {flat(𝑡) | 𝑡 ∈ 𝒯(𝐿, 𝐵)}

There is something peculiar about trees compared to expressions: The
latter need parentheses to disambiguate, as we do not know how to
generate the word 5 + 4 + 1 with our grammar and there are two dif-
ferent trees that flat maps to this word:

+

5 +

4 1

+

+

5 4

1

To resolve this ambiguity, we normally denote these expressions by,
respectively, 5 + (4 + 1) and (5 + 4) + 1. This tells us that trees do
not need the parentheses and all ambiguity is removed. In fact, we
can see this already in the branching type, in which the parentheses
do not add any branching and merely reflect the parentheses in the
grammar. Often parentheses can be left out by constructing a grammar
more cleverly than what we did, but we leave that for our specific uses
of grammars.

Definition B.9

Let 𝐴 be an alphabet (a set). A context-free grammar 𝐺 over 𝐴 is
a tuple (𝑉 , 𝑅) where 𝑉 is a finite set of non-terminal symbols and
𝑅 ⊆ 𝑉 × (𝐴 ∪ 𝑉) is a relation, the production rules of 𝐺.

B.4. Formal Languages 187

Example B.10

Taking 𝑉 = {𝑒} and

𝑅 = {(𝑒, 𝑛) | 𝑛 ∈ ℕ} ∪ {(𝑒, 𝑒 + 𝑒)} ∪ {(𝑒, −𝑒)} ∪ {(𝑒, (𝑒))}

is the grammar given in example B.8.

C. Three-Valued Logic

In what follows, we describe the so-called 3-valued Heyting logic or algebra.
Let 𝕋 be the set {0, 𝑋, 1}. Intuitively, we understand 0 and 1 as true and
false, as in chapter 3, while the third element 𝑋 of 𝕋 should be seen as an
unknown truth value. This can occur, for example, in computer when the
voltage of a logical signal is not high enough or fluctuates and thereby creates
an undefined logic state. Wewill see that𝕋 can be used a domain formodelling
propositional logic. First of all, we define an order ⊑ on 𝕋 by

0 ⊑ 𝑋 , 𝑋 ⊑ 1 , 0 ⊑ 1 , 0 ⊑ 0 , 𝑋 ⊑ 𝑋 and 1 ⊑ 1 .
This order allows us to use min and max as usual, and if we use them to inter-
pret conjunction and disjunction, then we will see that they conform to our
expectation of an unknown value as input to logic gates:

min(𝑎, 𝑏) (interpretation of ∧) and max(𝑎, 𝑏) (interpretation of ∨)
𝑎 𝑏 0 X 1

0 0 0 0
X 0 X X
1 0 X 1

𝑎 𝑏 0 X 1
0 0 X 1
X X X 1
1 1 1 1

We can also define a semantic implication ⟹𝕋 on 𝕋 just as we did for the
Boolean semantics:

𝑎 ⟹𝕋 𝑏 = {1, 𝑎 ⊑ 𝑏
𝑏, otherwise

The following table lists all the possibilities for ⟹𝑇 𝑟𝑖 and the resulting neg-
ation:

Tables of 𝑎 ⟹𝕋 𝑏 and negation of 𝑎
𝑎 𝑏 0 X 1

0 1 1 1
X 0 1 1
1 0 X 1

a 𝑎 ⟹𝕋 0
0 1
X 0
1 0

190 C. Three-Valued Logic

Putting this all together, we can define for valuations 𝑣 ∶ PVar → 𝕋 a mapJ−K𝕋
𝑣 ∶ PForm → 𝕋 analogously to definition 3.3. We can use this map to also

gives us an entailment relation ⊨𝕋 by defining

Γ ⊨𝕋 𝜑 if for all v we have JΓK𝕋
𝑣 ≤ J𝜑K𝕋

𝑣 .

Also similarly to the Boolean model (theorem 4.12), one can prove the follow-
ing soundness result.

Theorem C.1

If Γ ⊢ 𝜑 is derivable in ND, then Γ ⊨𝕋 𝜑.

However, the similarity with the Boolean model stops when we move to clas-
sical logic. Indeed, it is easy to see that ⊭𝕋 𝑝 ∨ ¬𝑝. Let 𝑣 be the valuation that
is equal to 𝑋 everywhere. We then have

J𝑝 ∨ ¬𝑝K𝑣 = max{J𝑝K𝑣, J¬𝑝K𝑣} = max{𝑋, 0} = 𝑋 ≠ 1 .

This shows that ¬ ⊨𝕋 𝑝 ∨ ¬𝑝 and therefore the (Contra)-rule from defini-
tion 4.16 cannot be sound for this three-valued model.

There are other possibilities for interpreting the implication, see Łukasiewicz’s
or Kleene’s three-valued logic [Kle74, § 64], but different proof systems than
ND and cND are needed to handle those interpretations.

D. Logic Programming

1 % :- table path(_,_,lattice(shortest/3))
2 % :- table conn/2
3

4 % Partial order of lists by length; used in tabled execution
5 shortest(P1, P2, P) :-
6 length(P1, L1),
7 length(P2, L2),
8 (L1 < L2 -> P = P1; P = P2).
9

10 % Right
11 adjacent(pos(X1,Y1), pos(X2, Y1)) :- succ(X1, X2), X1 < 6.
12 % Down
13 adjacent(pos(X1,Y1), pos(X1, Y2)) :- succ(Y1, Y2), Y1 < 4.
14 % Left
15 adjacent(pos(X1,Y1), pos(X2, Y1)) :- succ(X2, X1).
16 % Up
17 adjacent(pos(X1,Y1), pos(X1, Y2)) :- succ(Y2, Y1).
18

19 % Can we go from U to V?
20 step(U, V) :- adjacent(U, V), free(V).
21

22 % conn(U, V) holds if two positions U and V connected.
23 conn(U, U).
24 conn(U, V) :-
25 conn(W, V),
26 step(U, W).
27

28 % Can our robot reach the goal?
29 connr :- robot(U), goal(V), conn(U, V).
30

31 % path(U, V, P) holds if P is a path from U to V. A path is here a list of
positions.

32 path(U, U, [U]).
33 path(U, V, [U|P]) :-
34 path(W, V, P),
35 step(U, W).
36

37 % A path P with route(P) leads our robot from the initial position to the
goal.

38 route(P) :- robot(U), goal(V), path(U, V, P).
39

192 D. Logic Programming

40 % Initial position of robot.
41 robot(pos(2, 3)).
42

43 % Position of goal.
44 goal(pos(5,1)).
45

46 % All the positions that do not contain an obstacle.
47 free(pos(1,1)).
48 free(pos(1,4)).
49

50 free(pos(2,2)).
51 free(pos(2,3)).
52 free(pos(2,4)).
53

54 free(pos(3,1)).
55 free(pos(3,2)).
56 free(pos(3,4)).
57

58 free(pos(4,1)).
59 free(pos(4,2)).
60 free(pos(4,3)).
61 free(pos(4,4)).
62

63 free(pos(5,1)).
64 free(pos(5,3)).
65

66 free(pos(6,1)).
67 free(pos(6,2)).
68 free(pos(6,3)).

List of Notation

General Notation

𝑔 ∘ 𝑓 composition of 𝑔 after 𝑓 See p. 177
∅ empty set that contains no elements See p. 177
[𝑛] set of first 𝑛 natural numbers See p. 177
𝐴𝑛 set of first 𝑛-tuples over 𝐴 See p. 99
ℕ set of natural numbers See p. 178
𝒫(𝐴) powerset of 𝐴 See p. 177
𝐴 × 𝐵 product of the sets 𝐴 and 𝐵 See p. 177
𝐵𝐴 set of maps from 𝐴 to 𝐵 See p. 177

Logic Syntax

ar arity of function and predicate symbols in first-
order signature

See p. 76

Form(ℒ=) first-order formulas with equality ≐ See p. 118
ℱ set of function symbols in a first-order signa-

ture
See p. 76

ℛ set of predicate symbols of a first-order signa-
ture (“ℛ” stands for “relation”)

See p. 76

ℒ (first-order) signature consisting of function
and predicate symbols

See p. 76

⊥ syntactic absurdity (“falsity”) See p. 7
↔ syntactic bi-implication (“if and only if” or

“if”)
See p. 7

∧ syntactic conjunction (“and”) See p. 7
∨ syntactic disjunction (“to”) See p. 7
𝑠 ≐ 𝑡 syntactic equality (“s is provably equal to t”) See p. 117
→ syntactic implication (“implies”) See p. 7

194 Proof Theory

¬ syntactic negation (“not”) See p. 7
∃𝑥. 𝜑 syntactic existential quantification (“there is 𝑥

such that 𝜑”)
See p. 80

∃!𝑥. 𝜑 syntactic uniqueness quantification (“there is a
unique 𝑥 such that 𝜑”)

See p. 120

∀𝑥. 𝜑 syntactic universal quantification (“for all 𝑥
𝜑”)

See p. 80

⊤ syntactic truth (“true” or “top”) See p. 7
Term(ℒ) terms over a signature ℒ See p. 77

Operations on Formulas

bv(𝜑) bound variables appearing in formula 𝜑 See p. 81
fv(𝜑) free variables appearing in formula 𝜑 See p. 81
Sub(𝜑) subformulas of 𝜑 See p. 12
var(𝑡) variables appearing in term 𝑡 See p. 78

Semantics

ℳ ℒ-model for a first-order signature ℒ See p. 100
|ℳ| universe of an ℒ-model See p. 100J𝜑K𝑣 Boolean semantics of 𝜑 under valuation 𝑣 See p. 18JΓK𝑣 Boolean semantics of context Γ under valu-

ation 𝑣
See p. 22

Γ ⊨ 𝜑 Propositional entailment: Γ entails 𝜑 See p. 22
⟹ semantic implication See p. 18

Proof Theory

𝑡 𝜎 application of the term 𝑡 to substitution 𝜎 See p. 89
𝜑 𝜎 application of the formula 𝜑 to substitution 𝜎 See p. 90
Δ ∣ Γ ⊢ 𝜑 first-order sequent consisting of variable con-

text Δ, assumptions Γ 𝑥 and an FOL formula
𝜑

See p. 94

Proof Theory 195

ND1 intuitionistic natural deduction for first-order
logic

See p. 94

cND1 classical natural deduction for first-order logic See p. 97
ND=

1 intuitionistic natural deduction for first-order
logic with equality

See p. 126

cND=
1 classical natural deduction for first-order logic

with equality
See p. 126

𝑥 # 𝜑 variable 𝑥 is fresh for formula 𝜑 See p. 90
𝑥 # 𝜎 variable 𝑥 is fresh for substitution 𝜎 See p. 90
𝜂 substitution changes nothing See p. 89
𝜎 substitutions are maps 𝜎 ∶ Var → Term that

assign first-order terms to variables
See p. 89

𝜎[𝑥 ≔ 𝑡] updates the substitution 𝜎 to assign 𝑡 to vari-
able 𝑥

See p. 89

	Introduction
	Introduction to Propositional Logic
	Motivation
	Syntax of Propositional Logic
	Parse Trees
	Formula Iteration and Induction

	Semantics of Propositional Logic
	Truth Values
	Boolean Semantics of Propositional Logic
	Back to Truth Tables
	Entailment, Satisfiability, Tautologies
	Semantic Deduction

	Proof Theory of Propositional Logic
	Deductive Systems
	Natural Deduction
	Fitch-Style Natural Deduction
	Soundness and Consistency
	Classical Logic and Completeness

	Automatic Deduction for Propositional Logic
	Methods of Semantic Deduction
	Algebra of Boolean Logic
	Conjunctive Normal Forms
	Horn Clause Theories

	Introduction to First-Order Predicate Logic
	The Need for a Richer Language
	The Language of First-Order Logic

	Proof Theory of First-Order Predicate Logic
	Substitution in First-Order Logic
	The Difficulty of Names and Variables
	De Bruijn Trees
	Axiomatising Terms and Substitutions

	Natural Deduction for FOL
	The Intuitionistic System ND1
	Fitch-Style Deduction for ND1
	The Classical System cND1

	Exercises

	Semantics of First-Order Logic
	Models of First-Order Logic
	Valuations and the Interpretion of FOL
	Entailment and Satisfiability for FOL
	Soundness of Natural Deduction for FOL

	Extensions and Limits of First-Order Logic
	First-Order Logic with Equality
	Semantics of FOL with Equality
	Natural Deduction for FOL with Equality

	Completeness
	Compactness and its Consequences
	Expressiveness of First-Order Logic

	Exercises

	Incompleteness and Undecidability
	First-Order Horn Clauses and Automatic Deduction
	Automatic Deduction and the Cut-Rule
	First-Order Horn Clauses and Logic Programming
	Uniform Proofs

	Solutions
	Greek Letters
	Tools
	Sets and Maps
	Induction on Natural Numbers
	Trees and Induction
	Formal Languages

	Three-Valued Logic
	Logic Programming
	List of Notation

