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This is a story of a robot trying to find a heart.
A story of equal rights and hope.
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1. Introduction





2. Introduction to Propositional
Logic

2.1. Motivation

2.2. Syntax of Propositional Logic

Definition 2.1

The formulas 𝜑 of predicate logic are given by the following context
free grammar, in which 𝑝 ranges over the propositional variables PVar.

𝜑 ∶∶= 𝑝 ∣ ⊥ ∣ 𝜑 ∧ 𝜑 ∣ 𝜑 ∨ 𝜑 ∣ 𝜑 → 𝜓 ∣ (𝜑)

Reading conventions:

• ∧ and ∨ have precedence over →
• all connective associate to the right

The reading conventions allow us to leave out parentheses:

Formula With parentheses
𝑝 → 𝑞 → 𝑟 𝑝 → (𝑞 → 𝑟)
𝑝 ∧ 𝑞 ∧ 𝑟 𝑝 ∧ (𝑞 ∧ 𝑟)
𝑝 ∨ 𝑞 ∨ 𝑟 𝑝 ∨ (𝑞 ∨ 𝑟)
𝑝 ∧ 𝑞 → 𝑟 (𝑝 ∧ 𝑞) → 𝑟
𝑝 ∨ 𝑞 → 𝑟 (𝑝 ∨ 𝑞) → 𝑟
𝑝 → 𝑞 ∧ 𝑟 𝑝 → (𝑞 ∧ 𝑟)

Note that there is no convention about mixing ∧ and ∨, as this would cause
more confusion than it helps. For example, the formula 𝑝 ∧ 𝑞 ∨ 𝑟 is considered
to be ambiguous and should be written either as (𝑝 ∧ 𝑞) ∨ 𝑟 or 𝑝 ∧ (𝑞 ∨ 𝑟).
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Table 2.1 shows all the basic and derived connectives of propositional logic
that appear here.

Basic connectives

Connective Name Pronunciation
⊥ Absurdity/Falsity
∧ Conjunction 𝜑 and 𝜓
∨ Disjunction 𝜑 or 𝜓
→ Implication 𝜑 implies 𝜓

Derived connectives

Connective Name Definition
¬ Negation ¬𝜑 = 𝜑 → ⊥
⊤ Truth ⊤ = ¬⊥
↔ Bi-implication 𝜑 ↔ 𝜓 = (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)

Table 2.1.: Logical connectives of propositional logic



3. Semantics of Propositional
Logic





4. Proof Theory of Propositional
Logic

4.1. The Intuitionistic System ND

𝜑 ∶ Γ
(Assum)Γ ⊢ 𝜑

Γ ⊢ ⊥ (⊥E)Γ ⊢ 𝜑

Γ ⊢ 𝜑 ∧ 𝜓
(∧E1)Γ ⊢ 𝜑

Γ ⊢ 𝜑 ∧ 𝜓
(∧E2)Γ ⊢ 𝜓

Γ ⊢ 𝜑 Γ ⊢ 𝜓
(∧I)Γ ⊢ 𝜑 ∧ 𝜓

Γ ⊢ 𝜑
(∨I1)Γ ⊢ 𝜑 ∨ 𝜓

Γ ⊢ 𝜓
(∨I2)Γ ⊢ 𝜑 ∨ 𝜓

Γ ⊢ 𝜑 ∨ 𝜓 Γ, 𝜑 ⊢ 𝛿 Γ, 𝜓 ⊢ 𝛿
(∨E)

Γ ⊢ 𝛿
Γ, 𝜑 ⊢ 𝜓

(→I)Γ ⊢ 𝜑 → 𝜓
Γ ⊢ 𝜑 → 𝜓 Γ ⊢ 𝜑

(→E)Γ ⊢ 𝜓

Figure 4.1.: Deduction Rules of the natural deduction system ND1

Definition 4.1: Natural deduction for intuitionistic proposi-
tional logic

The system ND for propositional logic is given by the rules in fig. 4.1.





5. Normal Forms and Automatic
Deduction for Propositional
Logic





6. Introduction to First-Order
Logic

6.1. The Need for a Richer Language
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Figure 6.1.: Robot trying to find a heart

6.2. The Language of First-Order Logic

Definition 6.1

A first-order signature ℒ is a triple (ℱ, ℛ, ar) , where ℱ and ℛ are
disjoint sets (ℱ ∩ ℛ = ∅) and ar is a map ℱ ∪ ℛ → ℕ. The elements
of ℱ are called function symbols and those of ℛ predicate symbols. The
map ar assigns to each symbols its arity, which is the number of argu-
ment the symbol expects. We write ℱ𝑛 = {𝑓 ∈ ℱ | ar(𝑓) = 𝑛} and
ℛ𝑛 = {𝑃 ∈ ℛ | ar(𝑃 ) = 𝑛} . Elements of ℱ0 are called constants.
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Basic connectives

Connective Name Pronunciation
⊥ Absurdity/Falsity
∧ Conjunction 𝜑 and 𝜓
∨ Disjunction 𝜑 or 𝜓
→ Implication 𝜑 implies 𝜓

∀𝑥. Universal quantifier for all 𝑥, 𝜑 holds
∃𝑥. Existential quantifier for some 𝑥, 𝜑 holds

Derived connectives

Connective Name Definition
¬ Negation ¬𝜑 = 𝜑 → ⊥
⊤ Truth ⊤ = ¬⊥
↔ Bi-implication 𝜑 ↔ 𝜓 = (𝜑 → 𝜓) ∧ (𝜓 → 𝜑)
∃!𝑥. Uniqueness quantifier ∃!𝑥. 𝜑 = ∃𝑥. 𝜑 ∧ unique𝑥(𝑥, 𝜑)

Table 6.1.: Logical connectives of first-order logic



7. Proof Theory of First-Order
Logic

7.1. Substitution in First-Order Logic

In these notes, we will discuss an important operation of first-order logic: the
substitution of a term for a variable. This operation will replace any occur-
rence of a variable in a formula by the given term. For instance, we will be able
to substitute the term 𝑓(𝑚, 𝑥) for the variable 𝑦 in the formula 𝑃(𝑦)∧𝑄(𝑟, 𝑦)
to obtain

𝑃(𝑓(𝑚, 𝑥)) ∧ 𝑄(𝑟, 𝑓(𝑚, 𝑥)).

However, the substitution operation is surprisingly complex, as we need to
deal with variables that are bound by quantifiers. The aim of these notes is to
give a rigorous presentation of variables and binding that allows us to safely
carry out substitutions.

7.1.1. The Difficulty of Names and Variables

Let us first discuss two questions that arise in FOL:

1. Are the formulas ∀𝑥. 𝑃(𝑥) and ∀𝑦. 𝑃 (𝑦) expressing the same?

2. What is the scope of variables?

Formula Equality and Renaming The first question can be answered by
reading the formula without explicitly naming variables:

“𝑃 holds for all objects”.
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Clearly, this sentence corresponds to both formulas ∀𝑥. 𝑃(𝑥) and ∀𝑦. 𝑃 (𝑦),
and we should consider both formulas to be the same, already syntactically!
This gives us a first rule that we will have to adhere to for FOL:

Two formulas are considered to be the same, if we can bijectively re-
name the variables of one formula to obtain the other.

For instance, consider the formulas 𝜑 and 𝜓 given by 𝜑 = ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑦) and
𝜓 = ∀𝑤. ∀𝑧. 𝑄(𝑤, 𝑧). Then, a bijective renaming would be to rename 𝑥 to 𝑤
and 𝑦 to 𝑧, which allows us to transform 𝜑 into 𝜓. However, renaming 𝑥 to 𝑟
and 𝑦 to 𝑟 is not bijective. Thus, we do not consider the formula∀𝑟. ∀𝑟. 𝑄(𝑟, 𝑟)
to be same as 𝜑. Note, that in the latter formula, the 𝑟 refers to the inner-most
quantifier and the outer quantifier has no effect!

Scoping The second question concerns the scope of variables. This requires
us to determine which objects a variable refers to. For instance, the variable 𝑥
in the sub-formula 𝑃(𝑥) of ∀𝑥. 𝑃(𝑥) refers to what the quantifier ranges over.
We say that 𝑥 is in the scope of ∀𝑥 in this formula. However, the variable 𝑦
in ∀𝑥. 𝑄(𝑥, 𝑦) is in the scope of no quantifier and is thus a global reference.
If we were now naively substituting 𝑥 for 𝑦 in this formula, then we would
obtain ∀𝑥. 𝑄(𝑥, 𝑥). Here, the scope of the second argument of 𝑄, and with
it the meaning of the formula, has suddenly changed. This leads to a second
rule:

Substituting a term in a formula should not change the scoping of vari-
ables.

7.1.2. De Bruijn Trees

There are several ways to deal with variables, binding and substitution. An
intuitively understandable way is to represent terms and formulas as de Bruijn
trees. The idea is that bound variables are represented by a number that points
to the quantifier that binds this variables. All free variables keep their name.

Figure 7.1 shows the (de Bruijn-) tree representation of ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧)),
where the left figure shows the actual tree and the right figure indicates to
which quantifier the numerical name refers. We see that the bound variables
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∀
∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧

(a) The plain tree

∀
∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧

(b) Tree with indication of the variable references

Figure 7.1.: de Bruijn-Tree Representations of ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧))

are numbered starting from the inner-most quantifier. Also note that the vari-
able 𝑧 is free and thus keeps its name in the tree representation.

Since the nesting depth of quantifiers is important, we also note that tree rep-
resentations are not closed under subtrees! For instance, the tree in fig. 7.2a is
not a valid tree representation because ⟨1⟩ is a dangling reference. Instead,

∀
𝑄

⟨1⟩ 𝑓

⟨0⟩ 𝑧
(a) Invalid de Bruijn-Tree

∀
𝑄

𝑥 𝑓

⟨0⟩ 𝑧
(b) Correct tree representing

∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧))

Figure 7.2.: Attempts of finding trees that represent the subformula
∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧)) of ∀𝑥. ∀𝑦. 𝑄(𝑥, 𝑓(𝑦, 𝑧))

if we want to remove the outer quantifier, we need to pick a name that we
replace ⟨1⟩ with, say 𝑥, and then obtain the tree representation in fig. 7.2b.

In what follows, we will not work explicitly with tree representations, but will
use another approach, see section 7.1.3 below. However, the tree representa-
tion shows how we can solve the initial problems:
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∀
𝑃
⟨0⟩

Figure 7.3.: De Bruijn-Tree representing both formulas ∀𝑥. 𝑃(𝑥) and
∀𝑦. 𝑃 (𝑦)

∀
𝑄

⟨0⟩ 𝑦
(a) Representation before substitution

∀
𝑄

⟨0⟩ 𝑥
(b) Representation after substitution

Figure 7.4.: Substitution of the free variable 𝑥 for the free variable 𝑦 by using
the tree representation of ∀𝑥. 𝑄(𝑥, 𝑦)

1. The formulas ∀𝑥. 𝑃 (𝑥) and ∀𝑦. 𝑃 (𝑦) have the same tree representa-
tion, see fig. 7.3.

2. Substitutions can be carried out without changing the binding of vari-
ables, see fig. 7.4. Note that the bound variable 𝑥 is represented by ⟨0⟩
and thus there is no danger of substituting the unbound variable 𝑥 for
the unbound variable 𝑦. Hence, the problem of accidentally binding a
variable does not exist for the tree representation.

7.1.3. Axiomatising Terms and Substitutions

The tree representations of formulas that we saw in section 7.1.1 solves our
problems but it is difficult to work with. In fact, these trees are good way of
implementing FOL on a computer, but not for humans to work with. The aim
of this section is to introduce a bunch of axioms that formulas and substitution
have to fulfil. These axioms are fulfilled if we were to represent terms by de
Bruijn trees, but for the remainder of the course, we will leave unspecified
how formulas are implemented.

We begin with the definition of substitutions and how they can be applied to
terms.
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Definition 7.1

A substitution is a map 𝜎 ∶ Var → Term. Given 𝑡 ∈ Term and 𝑥 ∈ Var,
we write 𝜎[𝑥 ≔ 𝑡] for the updated substitution defined by

(𝜎[𝑥 ≔ 𝑡])(𝑦) = {𝑡, 𝑥 = 𝑦
𝜎(𝑦), 𝑥 ≠ 𝑦 .

Similarly, we write [𝑥 ≔ 𝑡] for the substitution given by

[𝑥 ≔ 𝑡](𝑦) = {𝑡, 𝑥 = 𝑦
𝑦, 𝑥 ≠ 𝑦 .

Given a term 𝑡, we write 𝑡[𝜎] for the application of the substitution 𝜎
to 𝑡, defined by iteration on terms as follows.

𝑥[𝜎] = 𝜎(𝑥)
𝑐[𝜎] = 𝑐

𝑓(𝑡1, … , 𝑡𝑛)[𝜎] = 𝑓(𝑡1[𝜎], … , 𝑡𝑛[𝜎])

The notation 𝜎[𝑥 ≔ 𝑡] to update a substitution 𝜎 should be read like an assign-
ment in an imperative programming language: the term that 𝜎 assigned to 𝑥
will be overwritten by 𝑡. Similarly, the notation [𝑥 ≔ 𝑡] starts with a storage
in which all variables 𝑦 have the default value 𝑦, except for 𝑥 which gets 𝑡
assigned as initial value. It should also be noted that there is a substitution
𝜂 ∶ Var → Term that assigns to each variable 𝑦 the term 𝑦, that is, we have
𝜂(𝑦) = 𝑦. The notation [𝑥 ≔ 𝑡] is then a shorthand for 𝜂[𝑥 ≔ 𝑡].

The following example illustrates these notations.

Example 7.2

Let 𝑔(𝑥, 𝑦) be a term with two free variables 𝑥 and 𝑦, and one binary
function symbol 𝑔. Moreover, let 𝜎 = [𝑥 ≔ 𝑦][𝑦 ≔ 𝑥].
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1. The substitution 𝜎 exchanges the two variables:

𝑔(𝑥, 𝑦)[𝜎] = 𝑔(𝑥[𝜎], 𝑦[𝜎]) = 𝑔(𝑦, 𝑥)

2. Let now 𝜏 = 𝜎[𝑦 ≔ 𝑓(𝑥)]. In 𝜏 , the assignment of 𝑥 to 𝑦 is
overwritten with the assignment of 𝑓(𝑥) to 𝑦. We thus have the
following.

𝑔(𝑥, 𝑦)[𝜏 ] = 𝑔(𝑥[𝜏], 𝑦[𝜏 ]) = 𝑔(𝑦, 𝑓(𝑥))

3. It is sometimes convenient to exploit the notation and leave out
square brackets. For example, instead of 𝑔(𝑥, 𝑦)[[𝑦 ≔ 𝑓(𝑥)]] we
could write 𝑔(𝑥, 𝑦)[𝑦 ≔ 𝑓(𝑥)] and obtain 𝑔(𝑥, 𝑦)[𝑦 ≔ 𝑓(𝑥)] =
𝑔(𝑥, 𝑓(𝑥)).

Next, we need to be able to apply substitutions to formulas. To circumvent
the difficulties described in section 7.1.1, we assume that there is a set of terms
on which we can carry out substitutions. This set of terms can in principle be
defined by appealing to the tree representation. However, this is tedious and
instead we just assume that formulas and the application of substitutions fulfil
certain axioms.
Assumption 7.3
Given a formula 𝜑, a variable 𝑥 and a substitution 𝜎, we say that 𝑥 is fresh for
𝜎 in 𝜑, if we have for all 𝑦 ∈ fv(𝜑) ∖ {𝑥} that 𝑥 ∉ fv(𝜎(𝑦)). We assume that
there is an operation 𝜑[𝜎] that applies a substitution 𝜎 to an FOL formula 𝜑.
Further, we assume for all ♢ ∈ {∀, ∃} and □ ∈ {∧, ∨, →} that the equality
on formulas fulfils the following six axioms.

𝜑 □ 𝜓 = 𝜑′ □ 𝜓′ iff 𝜑 = 𝜑′ and 𝜓 = 𝜓′

♢𝑥. 𝜑 = ♢𝑦. 𝜓 iff 𝑦 ∉ fv(𝜑) and 𝜓 = 𝜑[𝑥 ≔ 𝑦]
⊥[𝜎] = ⊥

𝑃(𝑡1, … , 𝑡𝑛)[𝜎] = 𝑃(𝑡1[𝜎], … , 𝑡𝑛[𝜎])
(𝜑 □ 𝜓)[𝜎] = 𝜑[𝜎] □ 𝜓[𝜎]
(♢𝑥. 𝜑)[𝜎] = ♢𝑥. 𝜑[𝜎[𝑥 ≔ 𝑥]] if 𝑥 is fresh for 𝜎 in 𝜑

(EC)
(EQ)
(SB)
(SP)
(SC)
(SQ)

Let us explain the intuition behind these axioms. First of all, there are two
groups of axioms: those for the equality on formulas (starting with E) and
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those that define the action of substitution on formulas (starting with S). The
axiom (EQ) allows us to bijectively rename bound variables without illegally
binding other variables. For instance, we have

∀𝑥. 𝑄(𝑥, 𝑦) = ∀𝑧. 𝑄(𝑧, 𝑦)

because 𝑧 ∉ fv(𝑄(𝑥, 𝑦)). However, we have

∀𝑥. 𝑄(𝑥, 𝑦) ≠ ∀𝑦. 𝑄(𝑦, 𝑦)

because 𝑦 ∈ fv(𝑄(𝑥, 𝑦)). The axiom (EC) allows us to carry out this renam-
ing also in complex formulas that involve other connectives than quantifiers.
Implicitly, we also use equality on terms and atoms, in the sense that

𝑃(𝑡1, … , 𝑡𝑛) = 𝑃 ′(𝑡′
1, … , 𝑡′

𝑛) iff 𝑃 = 𝑃 ′ and 𝑡𝑘 = 𝑡′
𝑘 for all 1 ≤ 𝑘 ≤ 𝑛

and that equality is an equivalence relation (reflexive, symmetric and transit-
ive).

The second group of axioms describes how substitution can be computed iter-
atively. Axioms (SB), (SP) and (SC) are doing what we would expect: no action
on the atom ⊥, reduce subsitution on predicates to substitution in terms, and
distribute substitution over propositional connectives. Complications arise
only in the axiom (SQ), which has to make sure that the use of a bound vari-
able is not changed and that variables are not accidentally bound. On the one
hand, that the use of a bound variable is not changed is achieved by updating
the substitution 𝜎 to 𝜎[𝑥 ≔ 𝑥]. For instance, if 𝜎(𝑥) = 𝑔(𝑦), then naively
carrying out this substitution on ∀𝑥. 𝑃(𝑥) would lead to ∀𝑥. 𝑃(𝑔(𝑦)), which
is certainly not what we want! Instead, we have by (SQ) and (SP)

(∀𝑥. 𝑃 (𝑥))[𝜎] = ∀𝑥. 𝑃 (𝑥)[𝜎[𝑥 ≔ 𝑥]] = ∀𝑥. 𝑃 (𝑥).

Accidental binding is preventing, on the other hand, by the precondition that
𝑥 must be fresh for 𝜎 in 𝜑. This condition ensures that none of the terms we
want to substitute for the free variables in 𝜑 contains the variable 𝑥, which
would become then bound by the quantifier.

These rules and their interaction are best illustrated through some examples.

Example 7.4

In the following, we use the substitution 𝜎 given by

𝜎 = [𝑦 ≔ 𝑥][𝑧 ≔ 𝑚].
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1. Let 𝜑 = ∀𝑧. 𝑄(𝑧, 𝑦). First, we note that fv(𝑄(𝑧, 𝑦))∖{𝑧} = {𝑦}
and fv(𝜎(𝑦)) = {𝑥}. Thus, 𝑧 ∉ fv(𝜎(𝑦)) and 𝑧 is fresh. This
gives us

𝜑[𝜎] = ∀𝑧. 𝑄(𝑧, 𝑦)[𝜎[𝑧 ≔ 𝑧]] (SQ)
= ∀𝑧. 𝑄(𝑧[𝜎[𝑧 ≔ 𝑧]], 𝑦[𝜎[𝑧 ≔ 𝑧]]) (SP)
= ∀𝑧. 𝑄(𝑧, 𝑥)

Note that 𝜎[𝑧 ≔ 𝑧] = [𝑦 ≔ 𝑥] and the substitution of 𝑚 for 𝑧 in
𝜎 was “forgotten” when we applied the substitution under the
quantifier. This is intuitively expected, as the bound variable 𝑧 in
𝜑 is a local reference, while the 𝑧 in 𝜎 refers to a global variable
𝑧 that has the same name but is distinct from the local variable.

2. Let𝜓 = ∀𝑥. 𝑄(𝑥, 𝑦). First, we note that fv(𝑄(𝑥, 𝑦))∖{𝑥} = {𝑦}
and fv(𝜎(𝑦)) = {𝑥}. Thus, 𝑥 ∈ fv(𝜎(𝑦)) and 𝑥 is not fresh.
However, we have 𝑧 ∉ fv(𝑄(𝑥, 𝑦)) and 𝑄(𝑥, 𝑦)[𝑥 ≔ 𝑧] =
𝑄(𝑧, 𝑦). This allows us to rename the bound variable 𝑥 in 𝜓
to 𝑧 and then carry out the substitution as above:

𝜓[𝜎] = (∀𝑧. 𝑄(𝑧, 𝑦))[𝜎] (EQ)
= ∀𝑧. 𝑄(𝑧, 𝑥) by 1.

Note that we cannot safely rename 𝑧 back to 𝑥, as we would
otherwise illegally bind 𝑥.

In the remainder of the course, we will not make explicit use of the axioms
provided in assumption 7.3. Instead, we will rename bound variables, if neces-
sary, before carrying out substitutions. For instance, we would just write

(∀𝑥. 𝑄(𝑥, 𝑦))[𝑦 ≔ 𝑥] = ∀𝑧. 𝑄(𝑧, 𝑥)

without explicitly referring to the axioms. However, we know that in cause
of doubt, we can always go back to the axioms and formally carry out the
renaming and substitution.
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7.2. Natural Deduction for FOL

Similarly to propositional log, we want syntactic proofs for FOL. As we reason
about objects in FOL, we need a new definition of sequents:

Definition 7.5

A first-order sequent for a signature ℒ is a triple

Δ ∣ Γ ⊢ 𝜑 ,

where Δ is a list of variables in Var, Γ is a list of ℒ-formulas, 𝜑 is a
ℒ-formula, and fv(Γ) ∪ fv(𝜑) ⊆ |Δ| for |Δ| = {𝑥 ∈ Var | 𝑥 ∶ Δ}. If
Δ is the empty list ⋅, we write

Γ ⊢ 𝜑

instead of ⋅ ∣ Γ ⊢ 𝜑.

Example 7.6

• This is a sequent:

𝑥, 𝑦 ∣ ∀𝑧. 𝑄(𝑧, 𝑦) ⊢ 𝑃(𝑥)

because fv(∀𝑧. 𝑄(𝑧, 𝑦)) ∪ fv(𝑃 (𝑥)) = {𝑥, 𝑦}.
• This is a sequent:

𝑥, 𝑦, 𝑧 ∣ ∀𝑧. 𝑄(𝑧, 𝑦) ⊢ 𝑃(𝑥)

because fv(∀𝑧. 𝑄(𝑧, 𝑦)) ∪ fv(𝑃 (𝑥)) = {𝑥, 𝑦} ⊆ {𝑥, 𝑦, 𝑧}.
• This is not a sequent:

𝑥 ∣ ∀𝑧. 𝑄(𝑧, 𝑦) ⊢ 𝑃(𝑥)

because fv(∀𝑧. 𝑄(𝑧, 𝑦)) ∪ fv(𝑃 (𝑥)) ⊈ {𝑥}.
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𝜑 ∶ Γ
(Assum)

Δ ∣ Γ ⊢ 𝜑
Δ ∣ Γ ⊢ ⊥

(⊥E)
Δ ∣ Γ ⊢ 𝜑

Δ ∣ Γ ⊢ 𝜑 ∧ 𝜓
(∧E1)Δ ∣ Γ ⊢ 𝜑

Δ ∣ Γ ⊢ 𝜑 ∧ 𝜓
(∧E2)Δ ∣ Γ ⊢ 𝜓

Δ ∣ Γ ⊢ 𝜑 Δ ∣ Γ ⊢ 𝜓
(∧I)

Δ ∣ Γ ⊢ 𝜑 ∧ 𝜓

Δ ∣ Γ ⊢ 𝜑
(∨I1)Δ ∣ Γ ⊢ 𝜑 ∨ 𝜓

Δ ∣ Γ ⊢ 𝜓
(∨I2)Δ ∣ Γ ⊢ 𝜑 ∨ 𝜓

Δ ∣ Γ ⊢ 𝜑 ∨ 𝜓 Δ ∣ Γ, 𝜑 ⊢ 𝛿 Δ ∣ Γ, 𝜓 ⊢ 𝛿
(∨E)

Δ ∣ Γ ⊢ 𝛿

Δ ∣ Γ, 𝜑 ⊢ 𝜓
(→I)

Δ ∣ Γ ⊢ 𝜑 → 𝜓
Δ ∣ Γ ⊢ 𝜑 → 𝜓 Δ ∣ Γ ⊢ 𝜑

(→E)
Δ ∣ Γ ⊢ 𝜓

Δ, 𝑥 ∣ Γ ⊢ 𝜑
(𝑥 ∉ Δ) (∀I)

Δ ∣ Γ ⊢ ∀𝑥. 𝜑
Δ ∣ Γ ⊢ ∀𝑥. 𝜑

(∀E)
Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]
(∃I)

Δ ∣ Γ ⊢ ∃𝑥. 𝜑
Δ ∣ Γ ⊢ ∃𝑥. 𝜑 Δ, 𝑥 ∣ Γ, 𝜑 ⊢ 𝜓

(𝑥 ∉ Δ) (∃E)
Δ ∣ Γ ⊢ 𝜓

Figure 7.5.: Deduction Rules of the natural deduction system ND1

Definition 7.7: Intuitionistic natural deduction for FOL

The system ND1 for FOL is given by the rules in fig. 7.5, where the
label 𝑥 ∉ Δ in the rules (∀I) and (∃E) are side-conditions that have to
be fulfilled to apply those rules. However, these side-condition will not
be displayed in proof trees.

Note about fig. 7.5:

• In (∀E) and (∃I), the definition of a sequent ensures in Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]
that all the free variables of 𝑡 appear in Δ.
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• Similarly, it is ensured in (∃E) that the variable 𝑥 does not occur freely
in 𝜓 because Δ ∣ Γ ⊢ 𝜓 is a sequent.

7.2.1. The Intuitionistic System ND1

Empty

7.2.2. Fitch-Style Deduction for ND1

Empty

7.2.3. The Classical System cND1

Definition 7.8

The system cND1 of natural deduction for classical first-order logic is
given by the system ND1 together with the contradiction rule:

Δ ∣ Γ, ¬𝜑 ⊢ ⊥
(Contra)

Δ ∣ Γ ⊢ 𝜑

7.3. Exercises

The following exercises allow you to practise the material of this chapter.

Exercise 1

Give the de Bruijn-tree representations of the following formulas.

𝑄(𝑥, 𝑔(𝑚))a) ∀𝑥. 𝑄(𝑥, 𝑔(𝑚))b)

(∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ ∀𝑦. 𝑄(𝑦, 𝑧)c) ∃𝑦. 𝑄(𝑦, 𝑔(𝑧))∧∀𝑥. 𝑄(𝑦, 𝑓(𝑥, 𝑧))d)

∀𝑥. ∃𝑥. 𝑃 (𝑥)e)
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Exercise 2

Let 𝜎 be given by
𝜎 = [𝑥 ≔ 𝑔(𝑥)][𝑦 ≔ 𝑥][𝑧 ≔ 𝑦].

Evaluate the following applications of 𝜎 to terms.

𝑥[𝜎]a) 𝑓(𝑥, 𝑦)[𝜎]b) (𝑦[𝜎])[𝜎]c) 𝑥[𝜎[𝑥 ≔ 𝑥]]d)

Exercise 3

Let 𝜎 be given by
𝜎 = [𝑥 ≔ 𝑔(𝑥)][𝑦 ≔ 𝑥][𝑧 ≔ 𝑦]

and 𝜑 by
𝜑 = ∀𝑥. 𝑄(𝑦, 𝑧).

Determine whether

𝑥 is fresh for 𝜎 in 𝜑.a) 𝑦 is fresh for 𝜎 in 𝜑.b)

𝑧 is fresh for 𝜎 in 𝜑.c)

Exercise 4

Let 𝜎 be given by
𝜎 = [𝑥 ≔ 𝑔(𝑥)][𝑦 ≔ 𝑥][𝑧 ≔ 𝑦].

Carry out the following substitutions.

𝑄(𝑥, 𝑔(𝑚))[𝜎]a) (∀𝑥. 𝑄(𝑥, 𝑔(𝑚)))[𝜎]b)

((∃𝑥. 𝑄(𝑥, 𝑔(𝑚))) ∧ ∀𝑦. 𝑄(𝑦, 𝑧))[𝜎]c)

(∃𝑦. 𝑄(𝑦, 𝑔(𝑧))∧∀𝑥. 𝑄(𝑦, 𝑓(𝑥, 𝑧)))[𝜎]d)



8. Semantics of First-Order Logic

In this chapter, we will discuss the following two questions:

1. When is a formula valid?

2. Are all derivable formulas valid?

The first question is answered by giving semantics to formulas in terms of
Boolean values 𝔹, as we did for propositional logic. The second question con-
cerns the soundness of our proof systems ND1 and cND1, again as for pro-
positional logic.

Before we can give semantics and prove soundness, we need to know when
predicates are true. This, in turn, requires us to know which objects terms
designates. We obtain both from models of FOL.

8.1. Models of First-Order Logic

Recall that in propositional logic a valuation 𝑣 ∶ PVar → 𝔹 on propositional
variables determined the truth value of formulas. In first-order logic we need
to provide interpretations instead for object variables, terms and predicates.
Finding the right structures to do so is the subject of this section.

First, we recall some notation.

Notation 8.1
We denote by 𝟙 the singleton set {∗}. Given a set 𝐴 and 𝑛 ∈ ℕ, we write 𝐴𝑛

for the𝑛-fold product of𝐴 defined inductively by the following two equations.

𝐴0 = 𝟙
𝐴𝑛+1 = 𝐴 × 𝐴𝑛

We identify 𝐴1 with 𝐴 for simplicity.
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For example, we then have

𝐴2 = 𝐴 × 𝐴1 = 𝐴 × 𝐴 = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝐴}.

Definition 8.2

Let ℒ be a signature with ℒ = (ℱ, ℛ, ar). An ℒ-model ℳ consists of

• a non-empty set 𝑈 , the universe of ℳ
• for each 𝑓 ∈ ℱ a map

𝑓ℳ ∶ 𝑈 ar(𝑓) → 𝑈

• for each 𝑃 ∈ ℛ a predicate

𝑃 ℳ ⊆ 𝑈 ar(𝑃)

We also write |ℳ| for 𝑈 .

Note that we require in definition 8.2 the universe to be non-empty. This re-
striction could in principle be dropped but that leads to some technical diffi-
culties, as we need to rule out constants in this case.

Further, observe that if 𝑐 ∈ ℱ is a constant, then 𝑐ℳ is a map of type 𝟙 → 𝑈 .
Since 𝟙 has one element, providing such a map corresponds to providing one
element 𝑎 ∈ 𝑈 :

𝑐ℳ(∗) = 𝑎

Let us unfold the definition for some specific arities.

Example 8.3

Suppose our signature ℒ consists of three function symbols 𝑐, 𝑓 and 𝑔
with arity 0, 1 and 2, respectively, and three predicate symbols 𝑃 , 𝑄,
𝑅 also of arity 0, 1 and 2. An ℒ-model ℳ consists of a universe 𝑈 ,
maps and predicates as in table 8.1.
We see that 𝑐ℳ denotes one element 𝑐ℳ(∗) ∈ 𝑈 , as discussed above;
𝑓ℳ is a unary map; and 𝑔ℳ is a binary map. Moreover, we find that
𝑃 ℳ is either the empty set ∅ or the singleton set 𝟙. In other words, 𝑃
is nothing but a propositional variable! Finally, 𝑄ℳ is a predicate, or
unary relation, while 𝑅ℳ is a binary relation.
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Symbol s ar(𝑠) Interpretation type

Function Symbols
𝑐 0 𝑐ℳ ∶ 𝟙 → 𝑈
𝑓 1 𝑓ℳ ∶ 𝑈 → 𝑈
𝑔 2 𝑔ℳ ∶ 𝑈2 → 𝑈

Predicate Symbols
𝑃 0 𝑃 ℳ ⊆ 𝟙
𝑄 1 𝑄ℳ ⊆ 𝑈
𝑅 2 𝑅ℳ ⊆ 𝑈2

Table 8.1.: Data of a model for the indicated signature

?
Let ℒ = (∅, ℛ, ar) with ℛ = {𝑃} and ar(𝑃 ) = 0. How many possib-
ilities are there to make a model for ℒ?

In the next example, we discuss a signature and two models that occur “in the
wild”.

Example 8.4

Let ℒ be given as follows.

ℱ = {0, 1, 𝑝} ℛ = {𝐼, 𝐿}
ar(0) = ar(1) = 0 ar(𝑝) = ar(𝐼) = ar(𝐿) = 2

The interpretation of this signature could be that 0 and 1 stand for the
numbers 0 and 1, 𝑝 for addition (plus), 𝐼 for equality (identity), and 𝐿
for less-than. Indeed, we can give such an interpretation, which leads
to the model ℳ𝑎 in table 8.2 with universe |ℳ𝑎| = ℕ.

It is not necessary to interpret ℒ as in example 8.4 and we can give different
meanings to the symbols and even the universe.
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Symbol Interpretation type Interpretation
0 0ℳ𝑎 ∶ 𝟙 → ℕ 0ℳ𝑎(∗) = 0
1 1ℳ𝑎 ∶ 𝟙 → ℕ 1ℳ𝑎(∗) = 1
𝑝 𝑝ℳ𝑎 ∶ ℕ × ℕ → ℕ 𝑝ℳ𝑎(𝑛, 𝑚) = 𝑛 + 𝑚
𝐼 𝐼ℳ𝑎 ⊆ ℕ × ℕ 𝐼ℳ𝑎 = {(𝑛, 𝑚) | 𝑛 = 𝑚}
𝐿 𝐿ℳ𝑎 ⊆ ℕ × ℕ 𝐿ℳ𝑎 = {(𝑛, 𝑚) | 𝑛 ≤ 𝑚}

Table 8.2.: Arithmetic model ℳ𝑎 over universe ℕ

Example 8.5

We show in this example how to use the same signature ℒ as in ex-
ample 8.4 to reason about formal languages, where we use the nota-
tion introduced in appendix A.1: The function symbols 0, 1 and 𝑝 cor-
respond to, respectively, the empty language, the language containing
only the empty and union of languages. The predicate symbols, on the
other hand, can be interpreted as language equality and language in-
clusion. All of this is summed up in table 8.3. Note that that 0 and 𝑝
behave similarly to 0 and addition under this interpretation. We will
discuss this later in more depth.

Symbol Interpretation type Interpretation
0 0ℳ𝑙 ∶ 𝟙 → 𝒫(𝐴∗) 0ℳ𝑙(∗) = ∅
1 1ℳ𝑙 ∶ 𝟙 → 𝒫(𝐴∗) 1ℳ𝑙(∗) = {𝜀}
𝑝 𝑝ℳ𝑙 ∶ 𝒫(𝐴∗)2 → 𝒫(𝐴∗) 𝑝ℳ𝑙(𝐿1, 𝐿2) = 𝐿1 ∪ 𝐿2
𝐼 𝐼ℳ𝑙 ⊆ 𝒫(𝐴∗) × 𝒫(𝐴∗) 𝐼ℳ𝑙 = {(𝐿1, 𝐿2) | 𝐿1 = 𝐿2}
𝐿 𝐿ℳ𝑙 ⊆ 𝒫(𝐴∗) × 𝒫(𝐴∗) 𝐿ℳ𝑙 = {(𝐿1, 𝐿2) | 𝐿1 ⊆ 𝐿2}

Table 8.3.: Language model ℳ𝑙 for ℒ over universe 𝒫(𝐴∗)

Clearly, the two models ℳ𝑎 and ℳ𝑙 in example 8.4 and example 8.5 are com-
pletely different interpretations of ℒ. This illustrates the power of first-order
logic: one language we can reason about an enormous variety of different
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structures. However, as we will see in chapter 9, this power can also become
a weakness of first-order logic.

8.2. Valuations and the Interpretion of FOL

Just as propositional variables in propositional logic, the object variables in
first-order formulas have no intrinsicmeaning. Instead, we have to givemean-
ing to them externally through valuations, which assign to each variable an
element of a given universe.

Definition 8.6

Given a signature ℒ and an ℒ-model ℳ, an ℳ-valuation, or simply
valuation, is a map 𝑣 of the following type.

𝑣 ∶ Var → |ℳ|

With interpretations of variables at our disposal, we can understand also the
meaning of terms.

Definition 8.7

A valuation 𝑣 in a model ℳ extends to the semantics of termsJ−Kℳ
𝑣 ∶ Term → |ℳ| by iteration on terms as follows.

J𝑥Kℳ
𝑣 = 𝑣(𝑥)J𝑐Kℳ
𝑣 = 𝑐ℳ(∗)J𝑓(𝑡1, … , 𝑡𝑛)Kℳ
𝑣 = 𝑓ℳ(J𝑡1Kℳ

𝑣 , … , J𝑡𝑛Kℳ
𝑣 )

Ifℳ is clear from the context, thenwe just write J−K𝑣 instead of J−Kℳ
𝑣 .

Let us demonstrate valuations and the term semantics for the models in ex-
amples 8.4 and 8.5.
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Example 8.8

We begin with the arithmetic model ℳ𝑎 from example 8.4. Let 𝑥 ∈ Var
be some variable and define

𝑣(𝑦) = {5, 𝑥 = 𝑦
0, 𝑥 ≠ 𝑦

Under this valuation, the term 𝑝(0, 𝑝(𝑥, 1)) gets the following se-
mantics assigned.

J𝑝(0, 𝑝(𝑥, 1))K𝑣 = J0K𝑣 + J𝑝(𝑥, 1)K𝑣
= J0K𝑣 + (J𝑥K𝑣 + J1K𝑣)
= 0ℳ𝑎(∗) + (𝑣(𝑥) + 1ℳ𝑎(∗))
= 0 + (5 + 1)
= 6

The next example provides semantics for the same term but in the language
model.

Example 8.9

Let 𝑥 ∈ Var be some variable and define

𝑣(𝑦) = {𝐴, 𝑥 = 𝑦
∅, 𝑥 ≠ 𝑦

Under this valuation, the term 𝑝(0, 𝑝(𝑥, 1)) gets the following se-
mantics assigned.

J𝑝(0, 𝑝(𝑥, 1))K𝑣 = J0K𝑣 ∪ J𝑝(𝑥, 1)K𝑣
= J0K𝑣 ∪ (J𝑥K𝑣 ∪ J1K𝑣)
= 0ℳ𝑙(∗) ∪ (𝑣(𝑥) ∪ 1ℳ𝑙(∗))
= ∅ ∪ (𝐴 ∪ {𝜀})
= {𝑤 ∈ 𝐴∗ | length(𝑤) ≤ 1}

Here, length(𝑤) is the length of the word 𝑤.

Now that we have an interpretation of terms, we can further extend it to an
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interpretation on formulas. Recall that we needed to update substitutions to
eliminate universal quantifiers and introduce existential quantifiers. A similar
operation on valuations is necessary in the semantics of FOL formulas.

Definition 8.10

Let 𝑣 be an ℳ valuation, 𝑥 ∈ Var and 𝑎 ∈ |ℳ|. We define the update
of valuations on 𝑣 by the following equation.

(𝑣[𝑥 ↦ 𝑎])(𝑦) = {𝑎, 𝑦 = 𝑥
𝑣(𝑦), 𝑦 ≠ 𝑥

Let us briefly illustrate the update of valuations.

Example 8.11

We start with the valuation 𝑣 ∶ Var → ℕ given by 𝑣(𝑦) = 0 for all
𝑦 ∈ Var. Given variables 𝑥, 𝑧 ∈ Var with 𝑥 ≠ 𝑧, we have

(𝑣[𝑥 ↦ 1])(𝑥) = 1
(𝑣[𝑥 ↦ 1])(𝑧) = 0
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2])(𝑥) = 1
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2])(𝑧) = 2
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2][𝑥 ↦ 3])(𝑥) = 3
(𝑣[𝑥 ↦ 1][𝑧 ↦ 2][𝑥 ↦ 3])(𝑧) = 2

The update operation of valuations allows us now to give semantics to quan-
tifiers and thereby to all formulas.

Definition 8.12

Let ℒ be a signature and ℳ an ℒ-model. We define for all ℳ-
valuations 𝑣 a map

J−K𝑣 ∶ Form → 𝔹
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by iteration on formulas.

J⊥K𝑣 = 0

J𝑃(𝑡1, … , 𝑡𝑛)K𝑣 = {1, (J𝑡1K𝑣, … , J𝑡𝑛K𝑣) ∈ 𝑃 ℳ

0, otherwiseJ𝜑 ∧ 𝜓K𝑣 = min{J𝜑K𝑣, J𝜓K𝑣}J𝜑 ∨ 𝜓K𝑣 = max{J𝜑K𝑣, J𝜓K𝑣}J𝜑 → 𝜓K𝑣 = J𝜑K𝑣 ⟹ J𝜓K𝑣J∀𝑥. 𝜑K𝑣 = min{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}J∃𝑥. 𝜑K𝑣 = max{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}

Note that the minimum and maximum are always taken over a non-empty
subset of 𝔹. The possibilities that arise in the semantics of quantifiers are
summed up in table 8.4 together with the corresponding quantification. Note

{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} J∀𝑥. 𝜑K𝑣 J∃𝑥. 𝜑K𝑣 Interpretation
{0} 0 0 𝜑 holds for no 𝑎
{1} 1 1 𝜑 holds for all 𝑎

{0, 1} 0 1 𝜑 holds for some 𝑎

Table 8.4.: Possibilities for quantifier semantics

that if would allow the universe to be empty, then we would have a fourth
option in the table, in which the universal quantifier would be always true
and the existential quantifier always false.

Let us now calculate the truth value of some formulas.

Example 8.13

Recall the signature ℒ and arithmetic model ℳ𝑎 from example 8.4.
Consider the formula

∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥)
that expresses under the arithmetical interpretation that 𝑥 + 0 = 𝑥.
In other words, the formula should be true for any valuation over ℳ𝑎.



8.2. Valuations and the Interpretion of FOL 33

Indeed, given a valuation 𝑣 and a natural number 𝑛, we have

J𝑝(𝑥, 0)K𝑣[𝑥 ↦𝑛] = 0 + 𝑛 = 𝑛
and thus

J𝐼(𝑝(𝑥, 0), 𝑥)K𝑣[𝑥 ↦𝑛] = {1, (J𝑝(𝑥, 0)K𝑣[𝑥 ↦𝑛], J𝑥K𝑣[𝑥 ↦𝑛]) ∈ 𝐼ℳ𝑎

0, otherwise

= {1, 𝑛 = 𝑛
0, otherwise

= 1.
As expected, this gives us

J∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥)K𝑣 = min{J𝐼(𝑝(𝑥, 0), 𝑥)K𝑣[𝑥 ↦𝑛] | 𝑛 ∈ ℕ}
= min{1}
= 1

and thus ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥) is true in ℳ𝑎.
As a second example, consider the formula

∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)
that states that for every number there is a strictly larger number. This
formula is true in the arithmetic model because for every 𝑛 ∈ ℕ we
have that 𝑛 < 𝑛 + 1. In other words, for every valuation 𝑣 and 𝑛 ∈ ℕ

J𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛][𝑦 ↦𝑛+1] = 1.
Thus,

J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛]

= max{J𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛][𝑦 ↦𝑚] | 𝑚 ∈ ℕ}
= 1 because 𝑛 + 1 ∈ ℕ

and

J∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣
= min{J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑛] | 𝑛 ∈ ℕ}
= min{1}
= 1
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?
Is the formula ∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦)∧¬𝐼(𝑥, 𝑦) from example 8.13 true in the
language model ℳ𝑙?

8.3. Entailment and Satisfiability for FOL

In section 8.2, we have defined the functional interpretation of first-order for-
mulas in terms of the mapping J−K. As for propositional logic, we can also
give a relational interpretation of formulas. This allows us to easily define
satisfiability and tautologies.

Definition 8.14

Let 𝜑 be a formula and Γ as set of formulas over ℒ. We define semantic
entailment relations, where JΓK𝑣 = {J𝜓K𝑣 | 𝜓 ∈ Γ}.

ℳ, 𝑣 ⊨ 𝜑 if J𝜑Kℳ
𝑣 = 1 (ℳ and 𝑣 satisfy 𝜑)

ℳ ⊨ 𝜑 if ℳ, 𝑣 ⊨ 𝜑 for all valuations 𝑣 (ℳ satisfies 𝜑)
Γ ⊨ 𝜑 if min(JΓKℳ

𝑣 ) ≤ J𝜑Kℳ
𝑣 (Γ entails 𝜑)

for all models ℳ and valuations 𝑣

Let us give some examples in the arithmetic model.

Example 8.15

Let 𝜑𝑒 be the formula ∃𝑦. 𝐼(𝑥, 𝑝(𝑦, 𝑦)) (“𝑥 is even”), and let 𝑣1 and 𝑣2
be given as follows.

𝑣1(𝑧) = {2, 𝑧 = 𝑦
1, 𝑧 ≠ 𝑦 𝑣2(𝑧) = {3, 𝑧 = 𝑦

1, 𝑧 ≠ 𝑦

Then ℳ𝑎 and 𝑣1 satisfy 𝜑𝑒, but ℳ𝑎 and 𝑣2 do not.
Next, we have seen in example 8.13 that J∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥)Kℳ𝑎

𝑣 = 1 for
any valuation 𝑣. Thus ℳ𝑎 ⊨ ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥). In contrast, not every
natural number is even. Thus, ℳ𝑎 does not satisfy 𝜑𝑒 and ℳ𝑎 ⊨ 𝜑𝑒
does not hold.
Finally, let Γ = {𝜑𝑒} and 𝜑𝑜 = ∃𝑦. 𝐼(𝑥, 𝑝(𝑝(𝑦, 𝑦), 1)). Then Γ ⊨
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𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] holds: If min(JΓK𝑣) = 1, then 𝑣(𝑥) must be an even
number. Thus, 𝑣(𝑥) + 1 is an odd number and J𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)]K𝑣 = 1.
Formally, we have

min(JΓK𝑣) = 1
iff J𝜑𝑒K𝑣 = 1
iff min{J𝐼(𝑥, 𝑝(𝑦, 𝑦))K𝑣[𝑦 ↦𝑛] | 𝑛 ∈ ℕ} = 1
iff J𝐼(𝑥, 𝑝(𝑦, 𝑦))K𝑣[𝑦 ↦𝑛] = 1 for some 𝑛 ∈ ℕ (see table 8.4)
iff 𝑣(𝑥) = 𝑛 + 𝑛 for some 𝑛 ∈ ℕ
iff 𝑣(𝑥) even

and under this assumption

J𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)]K𝑣 = J(∃𝑦. 𝐼(𝑥, 𝑝(𝑝(𝑦, 𝑦), 1)))[𝑥 ≔ 𝑝(𝑥, 1)]K𝑣
= J∃𝑦. 𝐼(𝑝(𝑥, 1), 𝑝(𝑝(𝑦, 𝑦), 1))K𝑣
= max{J𝐼(𝑝(𝑥, 1), 𝑝(𝑝(𝑦, 𝑦), 1))K𝑣[𝑦 ↦𝑛] | 𝑛 ∈ ℕ}
≥ J𝐼(𝑝(𝑥, 1), 𝑝(𝑝(𝑦, 𝑦), 1))K𝑣[𝑦 ↦𝑣(𝑥)/2]

= 1,

where we use the identity 𝑣(𝑥) + 1 = (𝑣(𝑥)/2 + 𝑣(𝑥)/2) + 1 in the
last line.

As in the case of propositional logic, we can designate classes of formulas that
hold somewhere or everywhere.

Definition 8.16

Let 𝜑 be a formula over ℒ. We say that 𝜑 is

• satisfiable, if there is a model ℳ with ℳ ⊨ 𝜑.

• valid or a tautology, written ⊨ 𝜑, if every model satisfies 𝜑:

⊨ 𝜑 if ℳ ⊨ 𝜑 for all models ℳ.

Note that the definition of tautology corresponds to entailment for the empty
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set of assumptions, that is

⊨ 𝜑 holds if and only if ∅ ⊨ 𝜑.

We have seen already some formulas that were satisfied in the arithmetic
model, but are not necessarily tautologies.

Example 8.17

Since ℳ𝑎 ⊨ ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥), the formula ∀𝑥. 𝐼(𝑝(𝑥, 0), 𝑥) is satis-
fiable, see example 8.15. However, it is not a tautology because it is not
satisfied by the model ℳ with |ℳ| = ℕ, 0ℳ = 1 and otherwise the
same interpretation as in the arithmetic model ℳ𝑎.

In chapter 7, we have seen formulas that were derivable in ND1, which are a
good source of tautologies, see also section 8.4 below.

Example 8.18

We claim that the formula (∀𝑥. 𝜑) → ¬∃𝑦. ¬𝜑 is a tautology for any
formula 𝜑. Indeed, let ℳ be a model for the signature ℒ, over which
𝜑 is a formula, and 𝑣 a valuation in ℳ. We obtain from table 8.4 that

J¬∃𝑦. ¬𝜑K𝑣 = 1 iff J∃𝑦. ¬𝜑K𝑣 = 0
iff J¬𝜑K𝑣[𝑦 ↦𝑏] = 0 for all 𝑏 ∈ |ℳ|
iff J𝜑K𝑣[𝑦 ↦𝑏] = 1 for all 𝑎 ∈ |ℳ|
iff J∀𝑥. 𝜑K𝑣 = 1

This implies that J∀𝑥. 𝜑K𝑣 ≤ J¬∃𝑦. ¬𝜑K𝑣

and thus

J(∀𝑥. 𝑃 (𝑥)) → ¬∃𝑦. ¬𝑃(𝑦)K𝑣
= J(∀𝑥. 𝑃 (𝑥))K𝑣 ⟹ J¬∃𝑦. ¬𝑃(𝑦)K𝑣
= 1.

Hence, (∀𝑥. 𝜑) → ¬∃𝑦. ¬𝜑 is a tautology.



8.4. Soundness of Natural Deduction for FOL 37

8.4. Soundness of Natural Deduction for FOL

We come now to the second initial question: Are all derivable formulas valid?
Using definition 8.14, we can state this question precisely by asking: if there is
a proof for the sequent Γ ⊢ 𝜑 in one of the systems from chapter 7, is 𝜑 then
entailed semantically by Γ? The answer to this question is the main result of
this chapter.

Theorem 8.19: Soundness

For every formula 𝜑 and list of formulas Γ over a signature ℒ
1. if Γ ⊢ 𝜑 is derivable in ND1, then Γ ⊨ 𝜑.

2. if Γ ⊢ 𝜑 is derivable in cND1, then Γ ⊨ 𝜑.

Instantiating theorem 8.19 with the empty list of assumptions, we obtain the
following corollary.

Corollary 8.20

For every formula 𝜑 over a signature ℒ the following holds.

1. If ⊢ 𝜑 is derivable in ND1, then 𝜑 is a tautology.

2. If ⊢ 𝜑 is derivable in cND1, then 𝜑 is a tautology.

The proof of theorem 8.19 requires some interesting results that essentially
show that substitutions are the syntactic counterpart of valuations. This is
proved below in lemma 8.21 for terms and in lemma 8.22 for formulas.
Lemma 8.21
For all substitutions 𝜎, terms 𝑡, valuations 𝑣 and variables 𝑥, where 𝑥 is fresh
for 𝜎 in 𝑡, the following equation holds.

J𝑡[𝜎]K𝑣 = J𝑡[𝜎[𝑥 ≔ 𝑥]]K𝑣[𝑥 ↦J𝜎(𝑥)K𝑣]

Proof. We let 𝜎′ = 𝜎[𝑥 ≔ 𝑥] and 𝑣′ = 𝑣[𝑥 ↦ J𝜎(𝑥)K𝑣], which means that we
have to prove J𝑡[𝜎]K𝑣 = J𝑡[𝜎′]K𝑣′

This proof proceeds by induction on the term 𝑡.
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• In the base case we have for a variable 𝑦:

J𝑦[𝜎]K𝑣 = J𝜎(𝑦)K𝑣 def. substitution

= {J𝜎(𝑥)K𝑣, 𝑦 = 𝑥J𝜎(𝑦)K𝑣, 𝑦 ≠ 𝑥

= {J𝑥K𝑣′ , 𝑦 = 𝑥J𝜎(𝑦)K𝑣, 𝑦 ≠ 𝑥 def. 𝑣′

= {J𝑥K𝑣′ , 𝑦 = 𝑥J𝜎(𝑦)K𝑣′ , 𝑦 ≠ 𝑥 𝑥 fresh for 𝜎

= J𝑦[𝜎′]K𝑣′ def. substitution update

• In the induction step, we have

J𝑓(𝑡1, … , 𝑡𝑛)[𝜎]K𝑣
= J𝑓(𝑡1[𝜎], … , 𝑡𝑛[𝜎])K𝑣 def. substitution
= 𝑓ℳ(J𝑡1[𝜎]K𝑣, … , J𝑡𝑛[𝜎]K𝑣) def. semantics
= 𝑓ℳ(J𝑡1[𝜎′]K𝑣′ , … , J𝑡𝑛[𝜎′]K𝑣′) induction hypothesis
= J𝑓(𝑡1, … , 𝑡𝑛)[𝜎′]K𝑣′ def. semantics and subst.

Thus, by induction on 𝑡, the sought after identity J𝑡[𝜎]K𝑣 = J𝑡[𝜎′]K𝑣′ holds.

Lemma 8.22
For all substitutions 𝜎, formulas 𝜑, valuations 𝑣 and variables 𝑥, where 𝑥 is
fresh for 𝜎 in 𝜑, the following equation holds.

J𝜑[𝜎]K𝑣 = J𝜑[𝜎[𝑥 ≔ 𝑥]]K𝑣[𝑥 ↦J𝜎(𝑥)K𝑣]

Proof. As in lemma 8.21, we let 𝜎′ = 𝜎[𝑥 ≔ 𝑥] and 𝑣′ = 𝑣[𝑥 ↦ J𝜎(𝑥)K𝑣], and
then prove J𝜑[𝜎]K𝑣 = J𝜑[𝜎′]K𝑣′

by induction on 𝜑.
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• In the predicate base case, we have

J𝑃(𝑡1, … , 𝑡𝑛)[𝜎]K𝑣 = J𝑃(𝑡1[𝜎], … , 𝑡𝑛[𝜎])K𝑣 def. substitution
= 𝑃 ℳ(J𝑡1[𝜎]K𝑣, … , J𝑡𝑛[𝜎]K𝑣) def. semantics
= 𝑃 ℳ(J𝑡1[𝜎′]K𝑣′ , … , J𝑡𝑛[𝜎′]K𝑣′) lemma 8.21
= J𝑃(𝑡1, … , 𝑡𝑛)[𝜎′]K𝑣′ def. semantics and subst.

• The base case for ⊥ is trivial: J⊥[𝜎]K𝑣 = 0 = J⊥[𝜎′]K𝑣′ .

• The cases for conjunction, disjunction and implication are immediate
by the induction hypothesis. We write 𝔹∧ = min, 𝔹∨ = max and
𝔹→(𝑥, 𝑦) = 𝑥 ⇒ 𝑦, which are the binary Boolean functions for their
corresponding connective. This gives us

J(𝜑1 □ 𝜑2)[𝜎]K𝑣 = 𝔹□(J𝜑1[𝜎]K𝑣, J𝜑2[𝜎]K𝑣)
def. subst. and semantics

= 𝔹□(J𝜑1[𝜎′]K𝑣′ , J𝜑2[𝜎′]K𝑣′) induction hyp.
= J(𝜑1 □ 𝜑2)[𝜎′]K𝑣′ def. semantics and subst.

• For quantifiers assume that 𝑦 is fresh for 𝜎 in 𝜓.

Before we continue, observe that for any 𝑎 ∈ 𝑈 , we can define 𝑤 =
𝑣[𝑦 ↦ 𝑎] and 𝑤′ = 𝑤[𝑥 ↦ J𝜎(𝑥)K𝑣]. By using the induction hypo-
thesis for 𝜓 with 𝑤, we obtain J𝜓[𝜎]K𝑤 = J𝜓[𝜎′]K𝑤′ . Since 𝑥 and 𝑦 are
fresh, we have that 𝑤′ = 𝑣′[𝑦 ↦ 𝑎]. Thus J𝜓[𝜎]K𝑤 = J𝜓[𝜎′]K𝑣′[𝑦 ↦𝑎].

With this observation, we have

J(∀𝑦. 𝜓)[𝜎]K𝑣 = J∀𝑦. 𝜓[𝜎]K𝑣 (SQ)
= min{J𝜓[𝜎]K𝑣[𝑦 ↦𝑎] | 𝑎 ∈ 𝑈} def. semantics
= min{J𝜓[𝜎′]K𝑣′[𝑦 ↦𝑎] | 𝑎 ∈ 𝑈} see above
= J(∀𝑦. 𝜓)[𝜎′]K𝑣′ def. semantics and (SQ)

The same reasoning, replacing min by max, gives us the result also for
the existential quantifier.

This concludes the induction and thereby the proof.
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Proof of theorem 8.19. We have to generalise the statement and prove that Δ ∣
Γ ⊢ 𝜑 implies Γ ⊨ 𝜑. To this end, we proceed by induction on the proof tree
for Δ ∣ Γ ⊢ 𝜑 in cND1. The statement for ND1 follows from this.

Thus, assume that we are given a proof tree for Δ ∣ Γ ⊢ 𝜑. We have to show
for all models ℳ and valuations 𝑣 in ℳ that min(JΓK𝑣) ≤ J𝜑K𝑣. Most of the
cases are dealt with in the same way as for propositional logic and we only
treat the rules for quantifier here.

• Suppose the proof tree ends in

Δ, 𝑥 ∣ Γ ⊢ 𝜑
(∀I)

Δ ∣ Γ ⊢ ∀𝑥. 𝜑

where 𝑥 does not appear in Δ. We now have

J∀𝑥. 𝜑K𝑣 = min{J𝜑K𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} def. semantics
≥ min{min(JΓK)𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|} by IH

= min(JΓK)𝑣, 𝑥 not in Γ

where we use the induction hypothesis (IH) for Δ, 𝑥 ∣ Γ ⊢ 𝜑 with
model ℳ and valuation 𝑣[𝑥 ↦ 𝑎]. This identity gives us Γ ⊨ ∀𝑥. 𝜑.

• TBD



9. Extensions and Limits of
First-Order Logic

First-order logic with the formal proof system cND1 is at the same time a
strong and expressive logic, but at the same time also severely limited. In this
chapter, we will see where this seeming contradiction comes from.

Before we get to that, we will first extend the syntax of first-order logic by a
special predicate that allows us to reason about the identity of objects.

9.1. First-Order Logic with Equality

Recall that we used in example 8.4 a binary predicate symbol 𝐼 to express that
two objects are equal. In the arithmetic model ℳ𝑎, we also interpreted 𝐼 as
the equality of numbers. However, a general model ℳ is not forced to give
this interpretation to 𝐼 , it can interpret 𝐼 as any binary relation. For example,
the interpretation as inequality is perfectly valid but is the exact opposite of
our intention: 𝐼ℳ = {(𝑎, 𝑏) | 𝑎 ≠ 𝑏}.
This problem can be fixed by giving equality a special status andmaking it part
of the syntax and proof system of first-order logic. To this end, we extend the
first-order formulas by one extra kind atomic formula of the form 𝑡 ≐ 𝑠 for
terms 𝑠 and 𝑡, which is a logical formula with the intent of expressing that
𝑡 is equal to 𝑠. We use this special notation the to carefully distinguish the
syntactic equality ≐ in the logic, from the equality that we use elsewhere to
express general equality of mathematical objects. In particular, we previously
wrote 𝑠 = 𝑡 to say that 𝑠 and 𝑡 are equal as terms. For instance, we reasoned
about identities like 𝑓(𝑥)[𝑥 ≔ 𝑐] = 𝑓(𝑐). The “dotted” notation is different
from this equality as it is just a syntactic formula. For example, we can form
the formula 𝑓(𝑥) ≐ 𝑐. This formula may be true or not, but the notation with
the dot does not assign any intrinsic meaning to such statements, whereas
𝑓(𝑥) = 𝑐 cannot be true as identity of terms. The meaning of ≐ will rather
come from the proof system and the semantics. It may happen that 𝑓(𝑥) ≐ 𝑐



42 9. Extensions and Limits of First-Order Logic

becomes true in a model, for example, by interpreting 𝑓 as the successor map
(𝑓ℳ(𝑛) = 𝑛 + 1), 𝑥 as the number 1 and 𝑐 as the number 2. Thus, it is
important to keep in mind that = and ≐ express generally different things.

Definition 9.1

Let ℒ be a signature. ℒ=-formulas 𝜑 are generated by the following
grammar.

𝜑 ∶∶= 𝜑 ∧ 𝜓 ∣ 𝜑 ∨ 𝜓 ∣ 𝜑 → 𝜓 ∣ ∀𝑥. 𝜑 ∣ ∃𝑥. 𝜑
∣ 𝑃 (𝑡1, … , 𝑡𝑛) ∣ 𝑡 ≐ 𝑠 ∣ ⊥ ∣ (𝜑)

where ar(𝑃 ) = 𝑛 and 𝑡1, … , 𝑡𝑛, 𝑡 and 𝑠 are terms over ℒ. The set of
ℒ=-formulas is denoted by Form(ℒ=) or Form= if ℒ is clear from the
context.

Since Form= is defined in the same way as Form with one extra case added
for 𝑠 ≐ 𝑡, we can easily extend the notions of free variables and substitution
to Form=. First of all, the map fv ∶ Form= → 𝒫(Var) is defined exactly as the
map as on Form, with the following extra case for equality.

fv(𝑠 ≐ 𝑡) = fv(𝑠) ∪ fv(𝑡)

The axioms for substitution on Form= are also the same as for Form, but we
need the following extra axiom (SE) to handle substitution on formulas that
involve equality. In this axiom, it is important that we distinguish clearly
between the atomic equality formulas and the equality of formulas them-
selves.

(𝑠 ≐ 𝑡)[𝜎] = (𝑠[𝜎] ≐ 𝑡[𝜎]) (SE)

Let us revisit the examples involving statements about natural numbers.

Example 9.2: Arithmetic with equality

In example 8.15, we have reasoned about even and odd numbers by us-
ing a predicate 𝐼 that was supposed to represent the equality of num-
bers. As we have mentioned in the introduction of this section, this
approach does not work very well. Let us instead consider the follow-
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ing signature ℒ.

ℱ = {0, 1, 𝑝} ℛ = {𝐿}
ar(0) = ar(1) = 0 ar(𝑝) = ar(𝐿) = 2

The symbols in this signature still have the same intent as in ex-
ample 8.4: 0 and 1 represent the numbers 0 and 1, 𝑝 addition, and
𝐿 less-than. We can now express in Form(ℒ=) the formulas that ap-
peared in examples 8.13 and 8.15 more naturally:

∀𝑥. 𝑥 ≐ 𝑝(𝑥, 0) (0 is neutral)
∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦) (𝑥 is even)
∃𝑦. 𝑥 ≐ 𝑝(𝑝(𝑦, 𝑦), 1) (𝑥 is odd)

Recall from table 8.4 that the existential quantifier in ∃𝑥. 𝜑 requires that there
is at least one object that has the property 𝜑. Suppose we want to express
that there is exactly one such object, that is, that there is a unique object with
property 𝜑. We can use equality to do exactly that. To say that 𝑥 is unique
with the property 𝜑 is expressed by requiring that 𝑥 is equal to any other
object with the same property:

∀𝑦. 𝜑[𝑥 ≔ 𝑦] → 𝑥 ≐ 𝑦
Using this expression of uniqueness, we can define unique existential quanti-
fication, typically written as ∃!𝑥. 𝜑, by the following formula.

∃𝑥. 𝜑 ∧ (∀𝑦. 𝜑[𝑥 ≔ 𝑦] → 𝑥 ≐ 𝑦)

As uniqueness is one of themost important applications of equality, it deserves
its own definition.

Definition 9.3: Uniqueness

Let 𝜑 be a formula, 𝑡 a term and 𝑥 a free variable in 𝜑. We define a for-
mula unique𝑥(𝑡, 𝜑) that expresses that 𝑡 is uniquely among all objects
that can be placed in the formula 𝜑 for 𝑥:

unique𝑥(𝑡, 𝜑) = ∀𝑦. 𝜑[𝑥 ≔ 𝑦] → 𝑡 ≐ 𝑦

The variable 𝑦 is chosen to be fresh for 𝜑 and 𝑡. Using uniqueness, we
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can define the uniqueness quantifier as follows.

∃!𝑥. 𝜑 = ∃𝑥. 𝜑 ∧ unique𝑥(𝑥, 𝜑)

Another useful application of equality is that it allows us to count how many
things there are with a certain property.

Example 9.4: Expressing finite quantities

Not only can we use equality to enforce uniqueness as in definition 9.3,
but we can even state that there must be at least or exactly a certain
amount of objects with some property. To do so, we need to express
that two objects are not identical, which we define here as the negation
of equality:

𝑠≐𝑡 = ¬(𝑠 ≐ 𝑡).
We can express that there are at least two objects with property 𝜑 by

∃𝑥. ∃𝑦. 𝜑[𝑥 ≔ 𝑥] ∧ 𝜑[𝑥 ≔ 𝑦] ∧ 𝑥≐𝑦

and that there must be exactly two objects for which 𝜑 holds by

∃𝑥. ∃𝑦. 𝜑[𝑥 ≔ 𝑥]∧𝜑[𝑥 ≔ 𝑦]∧𝑥≐𝑦∧(∀𝑧. 𝜑[𝑥 ≔ 𝑧] → 𝑧 ≐ 𝑥∨𝑧 ≐ 𝑦)

This is called counting quantification.

Besides counting objects, we can also use equality to make sure that objects
are given by a certain pattern. Let us demonstrate this by specifying the com-
mands of a simple protocol.

Figure 9.1.: Simple vending machine
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Example 9.5: Commands of a vending machine

Suppose we were to specify the interface of the vending machine in
fig. 9.1, which has that has a coin slot and button to select the product
that we wish to buy. Since vending machines occur everywhere across
computer science curricula, it is worthwhile to figure out how to make
such a specification formal.
We begin with the signature ℒ𝑣, where 𝑣 stands for “vending ma-
chine”, with predicate symbols Cmd and Prod of arity one for clas-
sifying commands, products, a constant coin, and a unary function
symbol sel for the product selection command. This model assumes
that our vending machine does not distinguish between coins and pos-
sible surpluses will be donated. Formally, we define ℒ𝑣 = (ℛ, ℱ, ar),
where ℛ = {Cmd, Prod}, ℱ = {coin, sel}, ar(coin) = 0, and
ar(Cmd) = ar(Prod) = ar(sel) = 1,
Within the signatureℒ𝑣, we can nowuse equality to specify that a com-
mand must either be the input of a coin or the selection of a product:

∀𝑥.Cmd(𝑥) ↔ 𝑥 ≐ coin ∨ ∃𝑦. 𝑥 ≐ sel(𝑦) ∧ Prod(𝑦)

This formula can be recognised as a typical data type declaration, here
in Haskell-style:

data Cmd = Coin | Sel Prod

Given that we know how commands look like, we can specify the be-
haviour of our vending machine. Our vending machine is going to be
a bit greedy and not very user friendly: It has two states 𝑠1 and 𝑠2, one
that waits for a coin and one that dispenses the chosen product. When
the machine is in the first state it will ignore any selection commands,
while in the second state it will continue accepting coins, even after
already receiving one. This is displayed in the following state diagram.

𝑠1 𝑠2

coin
sel(𝑥)

sel(𝑥)

coin

Before we can reason about this machine, we have to carry out the
mundane task of formally specifying this state diagram. To do so, we
have to extend the signature ℒ𝑣 with constants 𝑠1 and 𝑠2, a unary
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predicate symbol St to classify states, and a binary function symbol 𝑓
that represents that transitions of the machine. Our goal is to describe
𝑓 by a formula, such that

∀𝑥. ∀𝑦. St(𝑥) ∧ Cmd(𝑦) → ∃!𝑧. St(𝑧) ∧ 𝑓(𝑥, 𝑦) ≐ 𝑧

holds. The uniqueness quantifier is what makes 𝑓 a map, which means
that 𝑓 assigns to every state 𝑥 and command 𝑦 a unique state 𝑧.
Typically, we would specify 𝑓 by pattern matching:

𝑓(𝑠1, coin) = 𝑠2 𝑓(𝑠1, sel(𝑥)) = 𝑠1
𝑓(𝑠2, coin) = 𝑠2 𝑓(𝑠2, sel(𝑥)) = 𝑠1

Such a patternmatching definition ensures automatically that 𝑓 is well-
defined, if we know that there are exactly two states 𝑠1 and 𝑠2, and the
two commands coin and sel. We have specified already how commands
look like above. Similarly, we can specify that there are only two states:

∀𝑥. St(𝑥) ↔ 𝑥 ≐ 𝑠1 ∨ 𝑥 ≐ 𝑠2

Such pattern matching definition can be specified in first-order logic
with equality as follows.

∀𝑥. ∀𝑦. St(𝑥) ∧ Cmd(𝑦) →
(𝑥 ≐ 𝑠1 ∧ 𝑦 ≐ coin → 𝑓(𝑥, 𝑦) = 𝑠2)

∧ (𝑥 ≐ 𝑠2 ∧ 𝑦 ≐ coin → 𝑓(𝑥, 𝑦) = 𝑠2)
∧ (𝑥 ≐ 𝑠1 ∧ ∃𝑧. Prod(𝑧) ∧ 𝑦 ≐ sel(𝑧) → 𝑓(𝑥, 𝑦) = 𝑠1)
∧ (𝑥 ≐ 𝑠2 ∧ ∃𝑧. Prod(𝑧) ∧ 𝑦 ≐ sel(𝑧) → 𝑓(𝑥, 𝑦) = 𝑠1)

That this formulas specifies 𝑓 uniquely as a map, follows from the for-
mulas that declare the “data types” Cmd and St. We will, however, re-
frain from proving this here because such a proof would be quite long
and extremely boring. A better approach is to use an extension of first-
order logic with types [And02; Jac99], that allows the specification of
Cmd, St and 𝑓 directly by pattern matching. That being said, this ex-
ample shows that we can in principle handle data types and function
definitions in first-order logic with equality.

We could now go further and also specify and reason about the behaviour of
the vending machine, but at that point we should be really using a computer
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and a proof assistant.

9.1.1. Semantics of FOL with Equality

The intention of the new symbol ≐ is that it expresses that two objects are
identical. With this in mind, we can easily extend the semantics of formulas
to account for equality.

Definition 9.6: Formula semantics with equality

Let ℒ be a signature and ℳ an ℒ-model. The ℒ=-semantics or just
semantics of ℒ=-formulas is given for a valuation 𝑣 ∶ Var → |ℳ| by
the map

J−K=
𝑣 ∶ Form= → 𝔹

that is defined by iteration on formulas as follows.

J⊥K=
𝑣 = 0

J𝑃(𝑡1, … , 𝑡𝑛)K=
𝑣 = {1, (J𝑡1K𝑣, … , J𝑡𝑛K𝑣) ∈ 𝑃 ℳ

0, otherwise

J𝑠 ≐ 𝑡K=
𝑣 = {1, J𝑠K𝑣 = 𝑡𝑣

0, otherwiseJ𝜑 ∧ 𝜓K=
𝑣 = min{J𝜑K=

𝑣 , J𝜓K=
𝑣 }J𝜑 ∨ 𝜓K=𝑣 = max{J𝜑K=

𝑣 , J𝜓K=
𝑣 }J𝜑 → 𝜓K=

𝑣 = J𝜑K=
𝑣 ⟹ J𝜓K=

𝑣J∀𝑥. 𝜑K=
𝑣 = min{J𝜑K=

𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}J∃𝑥. 𝜑K=
𝑣 = max{J𝜑K=

𝑣[𝑥 ↦𝑎] | 𝑎 ∈ |ℳ|}

If it is clear from the context that J−K=
𝑣 is applied to an ℒ=-formula

𝜑, then we just write J𝜑K𝑣 instead of J𝜑K=
𝑣 . Semantic entailment for

formulas and assumptions in Form= is adapted accordingly: if Γ is a
set of formulas and 𝜑 a single formula in Form=, then we write,

Γ ⊨ 𝜑 if min(JΓK=
𝑣 ) ≤ J𝜑K=

𝑣 for all models ℳ and valuations 𝑣.
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Note that J−K=
𝑣 differs from the semantics of formulas without equality only

by the extra case for 𝑠 ≐ 𝑡. This means that whenever a formula does not
use the equality symbol, then its semantics is given by definition 8.12. The
following lemma makes this idea precise.

Lemma 9.7: Preservation of semantics
There is a map 𝑒 ∶ Form(ℒ) → Form(ℒ=), such that for all models ℳ, valu-
ations 𝑣 and formulas 𝜑 ∈ Form(ℒ) the following identity holds.

J𝑒(𝜑)K=
𝑣 = J𝜑K𝑣

Proof. The map 𝑒 is defined by iteratively mapping a formula in Form(ℒ) to
the same formula in Form(ℒ=): 𝑒(⊥) = ⊥, 𝑒(𝑃 (𝑡1, … , 𝑡𝑛)) = 𝑃(𝑡1, … , 𝑡𝑛),
𝑒(𝜑 ∧ 𝜓) = 𝑒(𝜑) ∧ 𝑒(𝜓) etc. That the semantics of 𝑒(𝜑) and 𝜑 agree is easily
proved by induction.

This result allows us also to use table 8.4 to determine the semantics of ℒ=-
formulas with quantifiers.

Let us go through the semantics of some formulas that use the equality pre-
dicate.

Example 9.8

Recall that the arithmetic model ℳ𝑎 in example 8.4 had to account for
the predicate 𝐼 that modelled equality explicitly. We can now forget
about the interpretation of 𝐼 and use ℳ𝑎 to give semantics to ℒ=-
formulas for the signature ℒ from example 9.2. For instance, we have
for a given valuation 𝑣 ∶ Var → ℕ that

J∀𝑥. 𝑥 ≐ 𝑝(𝑥, 0)K𝑣 = {1, J𝑥 ≐ 𝑝(𝑥, 0)K𝑣[𝑥 ↦𝑛] for all 𝑛 ∈ ℕ
0, otherwise

= {1, 𝑛 = 𝑛 + 0 for all 𝑛 ∈ ℕ
0, otherwise

= 1,
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where we used table 8.4 for the first identity. Similarly, we have

J∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)K𝑣 = {1, J𝑥 ≐ 𝑝(𝑦, 𝑦)K𝑣[𝑦 ↦𝑛] = 1 for some 𝑛 ∈ ℕ
0, otherwise

= {1, 𝑣(𝑥) = 2𝑛 for some 𝑛 ∈ ℕ
0, otherwise

= {1, 𝑣(𝑥) even
0, otherwise

9.1.2. Natural Deduction for FOL with Equality

The last step to complete the picture of first-order logic with equality is to give
the corresponding proof system. Keeping lemma 9.7 in mind, we expect that
such a proof system has the same rules as ND1 or cND1 for all connectives
and only adds rules for equality. Thus, let us briefly think about how we use
equality and try to deduce the proof rules from this intuition.

A common use of equality is equational reasoning. For instance, if 𝑎 and 𝑏 are
numbers, then

𝑎𝑏 + 𝑎(−𝑏) = 𝑎(𝑏 − 𝑏) = 𝑎0 = 0
establishes that 𝑎𝑏 + 𝑎(−𝑏) is identical to 0. In fact, if we calculate with con-
crete numbers, say 2 and 5, then 2⋅5+2⋅(−5) is just another way of writing 0.
This leads us to the most basic identity, the identity of an object with itself:

𝑥 = 𝑥

This identity is called reflexivity and will be the first rule that we adapt into
our proof system.

Reflexivity by itself is, however, not enough. We often replace “equals by
equals” in equational reasoning. For instance, if we know that 𝑐 = 0 then we
can infer

𝑑 = 0 + 𝑑 = 𝑐 + 𝑑.
From this and the previous identity, we can infer the following much more
complex identity.

𝑑 = (𝑎𝑏 + 𝑎(−𝑏)) + 𝑑
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The process of replacing equal objects can be generalised to arbitrary formulas
and leads us the so-called replacement rule.

Formally, the intuitionistic and classical natural deduction proof systems for
first-order logic with equality are given in the following definition.

Definition 9.9: Natural deduction with equality

The systemsND=
1 and cND=

1 are given by extending, respectively,ND1
and cND1 with the following two rules.

(Refl)
Δ ∣ Γ ⊢ 𝑡 ≐ 𝑡

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡 Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑠]
(Repl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]

The rule (Refl) is called reflexivity and (Repl) is called replacement.

We follow in definition 9.9 the traditional naming for the rules, although we
could also use the naming scheme of introduction and elimination rules that
we employed for other logical connectives. Under this naming scheme, (Refl)
would be an introduction rule, while (Repl) would be an elimination rule.

Surprisingly, the two rules (Refl) and (Repl) are enough to fully characterise
equality. To give a flavour of the power of the replacement rule, let us prove
that ≐ is symmetric and transitive. These two properties form the basis of
equational reasoning.

Lemma 9.10: Equality is an equivalence relation
The following two rules of symmetry and transitivity are admissible in ND=

1
and cND=

1 .

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡
(Sym)

Δ ∣ Γ ⊢ 𝑡 ≐ 𝑠
Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡 Δ ∣ Γ ⊢ 𝑡 ≐ 𝑟

(Trans)
Δ ∣ Γ ⊢ 𝑠 ≐ 𝑟

Proof. To derive transitivity, we will have to use the replacement rule. The
difficulty in using this rule lies in finding the correct formula 𝜑, in which we
replace equal terms. If we take a look at the conclusion of the transitivity rule,
then we have several options of choosing such a formula 𝜑. After a bit of trial
and error, we can come up with

𝑠 ≐ 𝑥
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for 𝜑. This formula works because 𝜑[𝑥 ≔ 𝑟] is the conclusion 𝑠 ≐ 𝑟 of (Trans)
and 𝜑[𝑥 ≔ 𝑡] is the first premise 𝑠 ≐ 𝑡 of (Trans). Thus, (Trans) is given by
the following application of (Repl), albeit with swapped premises.

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡] Δ ∣ Γ ⊢ 𝑡 ≐ 𝑟
(Repl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑟]
By the above discussion, this a proof tree for

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡 Δ ∣ Γ ⊢ 𝑡 ≐ 𝑟
(Trans)

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑟
by carrying out the substitution. This shows that the transitivity rule is deriv-
able from (Repl).

?
Can you find a derivation for the symmetry rule in lemma 9.10 in
ND=

1 ?

At this point, one may wonder why we have to introduce equality as a new
symbol and give new proof systems. Why can we not just add equality to the
signature and find axioms Γ so that that Γ, Γ′ ⊢ 𝜑 is derivable in ND1 if and
only if Γ′ ⊢ 𝜑 is derivable in ND=

1 ? For instance, the formula ∀𝑥. 𝑥 ≐ 𝑥
could serve as an axiom that represents reflexivity. The problem is that the
replacement rule ranges over all formulas, which would mean that we have to
add an axiom for each formula, including our axioms. This leads to a problem
that we cannot solve in first-order logic. Thus, we have to give equality a
special status in our logic.

Since the unique quantifier in definition 9.3 is a derived logical connective, we
can equip it with introduction and elimination rules. Especially the introduc-
tion rule shortens proofs considerably.
Lemma 9.11: Rules for uniqueness quantifier
The following rules are admissible in ND=

1 , where the variable 𝑦 in (∃!I) has
to be fresh.

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡] Δ, 𝑦 ∣ Γ, 𝜑[𝑥 ≔ 𝑦] ⊢ 𝑡 ≐ 𝑦
(∃!I)

Δ ∣ Γ ⊢ ∃!𝑥. 𝜑

Δ ∣ Γ ⊢ ∃!𝑥. 𝜑 Δ, 𝑥 ∣ Γ, 𝜑, unique𝑥(𝑥, 𝜑) ⊢ 𝜓
(∃!E)

Δ ∣ Γ ⊢ 𝜓
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?
Can you derive the two rules in lemma 9.11?

We finish this section with a few example proofs in the systems ND=
1 and

cND=
1 . As before, wewill use Fitch-style proofs tomake the proofs readable.

Example 9.12

In this example, we will formally prove the incredibly difficult fact that
the successor of an even number is odd. To this end, we use the for-
mulas 𝜑𝑒 and 𝜑𝑜 given by

𝜑𝑒 = ∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦) and 𝜑𝑜 = ∃𝑧. 𝑥 ≐ 𝑝(𝑝(𝑧, 𝑧), 1)
to describe even and odd numbers. We then derive the sequent

⊢ ∀𝑥. 𝜑𝑒 → 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)]
in ND=

1 by using Fitch-style.

1 𝑥 ∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)
2 𝑦 𝑥 ≐ 𝑝(𝑦, 𝑦)
3 𝑝(𝑥, 1) ≐ 𝑝(𝑥, 1) Refl

4 𝑝(𝑥, 1) ≐ 𝑝(𝑝(𝑦, 𝑦), 1) Repl, 2, 3
5 ∃𝑧. 𝑝(𝑥, 1) ≐ 𝑝(𝑝(𝑧, 𝑧), 1) ∃I, 4
6 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] ∃E, 2–5
7 𝜑𝑒 → 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] →I, 1–6
8 ∀𝑥. 𝜑𝑒 → 𝜑𝑜[𝑥 ≔ 𝑝(𝑥, 1)] ∀I, 1–7

In the proof, we use the reflexivity rule (Refl) in line 3 and the replace-
ment rule (Repl) in line 4. The rule (Repl) is thereby applied to the
formula 𝜓 given by 𝑝(𝑥, 1) ≐ 𝑝(𝑢, 1) and the substitutions [𝑢 ≔ 𝑥]
and [𝑢 ≔ 𝑝(𝑦, 𝑦))]:

Δ ∣ Γ ⊢ 𝑥 ≐ 𝑝(𝑦, 𝑦) Δ ∣ Γ ⊢ 𝜓[𝑢 ≔ 𝑥]
Δ ∣ Γ ⊢ 𝜓[𝑢 ≔ 𝑝(𝑦, 𝑦)]

where Δ = 𝑥, 𝑦 and Γ = 𝜑𝑒, 𝑥 ≐ 𝑝(𝑦, 𝑦) are the context and assump-
tions introduced in lines 1 and 2.
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The next example shows how equality can be used to prove uniqueness of
dividers

Example 9.13: Even numbers have unique divider

We all know that division gives a unique results, whenever it is defined.
In particular, if a number 𝑛 is even, then there should be a unique num-
ber 𝑘 with 𝑛 = 2𝑘. Formally, we use the formula

∀𝑥. 𝜑𝑒 → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) (∗)

to express uniqueness of divisors. In this example, we will prove
uniqueness of divisors, as expressed by (∗), in ND=

1 .
Underlying uniqueness of division by two is the fact that doubling a
number is an injective function, that is, 2𝑛 = 2𝑚 implies 𝑚 = 𝑛 for
all natural numbers 𝑚 and 𝑛:

𝜑double-inj = ∀𝑚. ∀𝑛. 𝑝(𝑚, 𝑚) ≐ 𝑝(𝑛, 𝑛) → 𝑚 ≐ 𝑛

Thus, what we will prove is that uniqueness of divisors is derivable
from injectivity of doubling:

𝜑double-inj ⊢ ∀𝑥. 𝜑𝑒 → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) (†)

To make injectivity of doubling better usable in the proof of (†) below,
let us derive for some context Δ, and terms 𝑟, 𝑠 and 𝑡 the following
sequent.

Δ ∣ 𝜑double-inj, 𝑟 ≐ 𝑝(𝑠, 𝑠), 𝑟 ≐ 𝑝(𝑡, 𝑡) ⊢ 𝑠 ≐ 𝑡 (♭)

This sequent allows us to use an intermediate term 𝑡 to relate the doub-
ling of 𝑠 and of 𝑡 to derive the equality of 𝑠 and 𝑡, and is proven as
follows. Note that the proof uses symmetry and transitivity that we
derived in lemma 9.10, and that the steps 4 and 5 are akin to the chain
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of equations 𝑝(𝑠, 𝑠) ≐ 𝑥 ≐ 𝑝(𝑡, 𝑡).

1 𝜑double-inj

2 𝑥 ≐ 𝑝(𝑠, 𝑠)
3 𝑥 ≐ 𝑝(𝑡, 𝑡)
4 𝑝(𝑠, 𝑠) ≐ 𝑥 Sym, 2
5 𝑝(𝑠, 𝑠) ≐ 𝑝(𝑡, 𝑡) Trans, 4, 3
6 ∀𝑛. 𝑝(𝑠, 𝑠) ≐ 𝑝(𝑛, 𝑛) → 𝑠 ≐ 𝑛 ∀E, 1
7 𝑝(𝑠, 𝑠) ≐ 𝑝(𝑡, 𝑡) → 𝑠 ≐ 𝑡 ∀E, 6
8 𝑠 ≐ 𝑡 →E, 7, 5

Using the identity, we can prove the uniqueness of the divisor of even
numbers. The derivation of (∗) uses a typical combination: assume that
an object with some property exists and prove that this object is unique.
In the course of this, we use existential elimination (line 4-7) to inspect
the object that we know to exist, and then introduce the uniqueness
quantifier in line 7 by appealing to the above identity (♭).

1 𝜑𝑑𝑜𝑢𝑏𝑙𝑒−𝑖𝑛𝑗

2 𝑥
3 ∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)
4 𝑦 𝑥 ≐ 𝑝(𝑦, 𝑦)
5 𝑦′ 𝑥 ≐ 𝑝(𝑦′, 𝑦′)
6 𝑦 ≐ 𝑦′ (♭), 4, 5
7 ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) ∃!I, 4, 5–6
8 ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) ∃E, 4–7
9 (∃𝑦. 𝑥 ≐ 𝑝(𝑦, 𝑦)) → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) →I, 3–8
10 ∀𝑥. 𝜑𝑒 → ∃!𝑧. 𝑥 ≐ 𝑝(𝑧, 𝑧) ∀I, 2–9
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Example 9.13 shows how ND=
1 can be used to do equational reasoning, as it

occurs in computer science and mathematics. Clearly, the proofs are fairly
lengthy because we have to make every step explicit, which we typically not
do on paper. However, the amount of boilerplate can be reduced by using a
computer to automate some, or even all, of the steps, while still retaining the
certainty of a formal proof as the one above.

9.2. Completeness

The strength of cND1 lies in the completeness theorem. Recall from the-
orem 8.19 that cND1 is sound, meaning that any statement that is provable
in the formal system cND1 is also true semantically:

If Γ ⊢ 𝜑 is derivable in cND1, then Γ ⊨ 𝜑.

The completeness theorem establishes the other direction of this implication.

Theorem 9.14: Completeness of cND1

Let Γ ⊢ 𝜑 be a first-order sequent. If Γ ⊨ 𝜑, then Γ ⊢ 𝜑 is derivable in
cND1.

Just as in the case of propositional logic, this remarkable result tells us that
there is a proof tree for any semantically true statement. Unfortunately, the
proof of this result is not effective, that is, we cannot extract an actual proof
tree from the proof of theorem 9.14 and we only know that such a proof tree
has to exist. The reason for this is that the proof of theorem 9.14 is a proof by
contradiction and therefore uses classical logic in an essential way. This can-
not be avoided, which renders the completeness theorem fairly useless from
a computational perspective. If we wanted to use it to derive Γ ⊢ 𝜑, then
we would have to quantify over all models and establish for each model ℳ
that the Γ entails 𝜑 in ℳ. As Γ and 𝜑 will likely contain quantifiers, we will
then have to quantify over all elements of the universe of ℳ, cf. example 8.18.
This is not only difficult, but generally undecidable. Even though the sound-
ness and completeness theorems establish cND1 as a good proof system for
first-order logic, finding a proof tree remains a difficult problem. In chapter 10,
we will see a proof system that can prove less than cND1 andND1, but allows
us to do proof search.
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9.3. Compactness and its Consequences

Closely related to completeness is also compactness. Where the completeness
theorem 9.14 told us that any semantically true formula has a formal proof, the
compactness theorem will establish limits on properties that we can express
as formulas in first-order logic.

Note that (first-order) sequents of the form Γ ⊢ 𝜑 always require that Γ is a
finite list of formulas, whereas the semantic entailment Γ ⊨ 𝜑 allows that Γ
can be any set, even an infinite set, of formulas. Theorem 9.14 can be formu-
lated differently to allow for such a general set Γ of assumption. However,
one then has to show that Γ ⊨ 𝜑 uses only a finite number of assumptions
from Γ to obtain completeness of cND1. This is because a the proof trees of
cND1 are finite and can therefore only use finitely many assumptions. As a
consequence, we get the following result.

Theorem 9.15: Compactness of first-order logic

Let Γ be an arbitrary set of first-order formulas. Then Γ ⊨ 𝜑 if and only
if there is a finite Γ0 ⊆ Γ such that Γ0 ⊨ 𝜑.

The right-to-left direction of the equivalence between the two conditions is
easily established: Observe that if Γ0 ⊆ Γ, then for any valuation 𝑣 we have

min(JΓK𝑣) ≤ min(JΓ0K𝑣) ≤ J𝜑K𝑣.

This shows that Γ0 ⊨ 𝜑 implies Γ ⊨ 𝜑 for any (finite) subset Γ0 of Γ. The other
direction is whatmakes theorem 9.15 so interesting, and it is this direction that
we use now to establish some limits of first-order logic with cND1.

9.3.1. Expressiveness of First-Order Logic

A (simple directed) graph 𝐺 is given by a finite set 𝑁 of nodes and a relation
𝐸 ⊆ 𝑁 × 𝑁 of edges. Graphs are typically drawn as diagrams like this:

𝑛1 𝑛2

𝑛3

𝑛4



9.3. Compactness and its Consequences 57

This graph 𝐺1 is given by the set 𝑁1 = {𝑛1, 𝑛2, 𝑛3, 𝑛4} of nodes and the
relation 𝐸1 of edges given by

𝐸1 = {(𝑛1, 𝑛2), (𝑛2, 𝑛2), (𝑛2, 𝑛3), (𝑛3, 𝑛1), (𝑛4, 𝑛2)}.

A typical problem in graph theory is reachability:

Given a graph 𝐺 and nodes 𝑚 and 𝑛 in 𝐺, can we reach 𝑛 from
𝑚 by traversing along edges of 𝐺?

In the above example, we have that 𝑛3 is reachable from 𝑛1 by using the edges
(𝑛1, 𝑛2) and (𝑛2, 𝑛3). Contrary to that, 𝑛4 is not reachable from 𝑛1 in 𝐺1.

This problem seems to lend itself to formalisation in first-order logic: Let ℒ be
the signature (∅, ℛ, ar) with ℛ = {𝑅} and ar(𝑅) = 2. The intention is that
the relation symbol 𝑅 represents a binary relation and therefore the edges of
a graph. Indeed, given a graph 𝐺 with nodes 𝑁 and edges 𝐸, we obtain an
ℒ-model ℳ𝐺 by defining

|ℳ𝐺| = 𝑁 and 𝑅ℳ𝐺 = 𝐸.

We can now ask if there is a first-order formula 𝜑 over ℒ with two free vari-
ables 𝑥 and 𝑦, such that for all graphs 𝐺, all nodes 𝑚 and 𝑛 in 𝐺 and valuations
𝑣 we have

J𝜑Kℳ𝐺
[𝑥 ↦𝑚][𝑦 ↦𝑛] = 1 if and only if 𝑛 is reachable from 𝑚 in 𝐺.

It is important to note that we ask for a formula that works for all graphs!
Let us try to write down such a formula. How can we reach a node 𝑦 from
𝑥? Either 𝑥 is already 𝑦, or an edge connects them, or we make a transition
via other nodes. The problem is that there is a priori no upper bound on the
number of nodes that we have to visit to get from 𝑥 to 𝑦 because the formula
has to work for any graph. Thus, we are left with the following attempt to
write down a formula, in which the dots indicate that such a formula would
have to be infinitely long, which is clearly not what we consider a formula.

𝑥 ≐ 𝑦
∨ 𝑅(𝑥, 𝑦)
∨ (∃𝑧. 𝑅(𝑥, 𝑧) ∧ 𝑅(𝑧, 𝑦))
∨ (∃𝑧1. ∃𝑧2. 𝑅(𝑥, 𝑧1) ∧ 𝑅(𝑧1, 𝑧2) ∧ 𝑅(𝑧2, 𝑦))
∨ ⋯

How do we get out of this? In just first-order logic with equality, we don’t!
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Theorem 9.16: Graph reachability cannot be expressed

There is no ℒ=-formula 𝜑 with fv(𝜑) = {𝑥, 𝑦}, such that 𝜑 is true if
and only if 𝑦 is reachable from 𝑥 via 𝑅.

Proof. Assume that there is an ℒ=-formula with fv(𝜑) = {𝑥, 𝑦}, such that for
every graph 𝐺 = (𝑁, 𝐸) with ℳ𝐺 as above and for all 𝑛, 𝑚 ∈ 𝑁

J𝜑Kℳ𝐺
[𝑥 ↦𝑚][𝑦 ↦𝑛] = 1 if and only if 𝑛 is reachable from 𝑚 in 𝐺.

We define now formulas 𝜑𝑘 with fv{𝑥, 𝑦}, such that

J𝜑𝑘Kℳ𝐺
[𝑥 ↦𝑚][𝑦 ↦𝑛] = 1 if and only if there is a path from 𝑛 to 𝑚 of length 𝑘.

Concretely, we define 𝜑𝑘 by iteration on 𝑘:

𝜑0 = 𝑥 ≐ 𝑦
𝜑𝑘+1 = ∃𝑧. 𝑅(𝑥, 𝑧) ∧ 𝜑𝑘[𝑥 ≔ 𝑧]

Let now Γ = {¬𝜑𝑘 | 𝑘 ∈ ℕ}, which expresses that there is no path of any
length and we clearly have Γ ⊨ ¬𝜑. By the compactness theorem 9.15, we get
a finite Γ0 ⊆ Γ with Γ0 ⊨ ¬𝜑. Let 𝑘 ∈ ℕ be the largest number, such that
𝜑𝑘 ∈ Γ0. Thus, any path longer than 𝑘 is not forbidden by Γ0!

To use this fact, we define a graph 𝐺 = (𝑁, 𝐸) by 𝑁 = {𝑛0, 𝑛1, … , 𝑛𝑘+1}
and 𝐸 = {(𝑛𝑖, 𝑛𝑖+1) | 𝑖 = 0, … , 𝑘}. This graph 𝐺 looks essentially like a list

𝑛0 𝑛1 ⋯ 𝑛𝑘+1

with only one path from 𝑛0 to 𝑛𝑘+1, which is furthermore of length 𝑘 + 1. In
other words, for this graph 𝐺, we have

min(JΓ0Kℳ𝐺
[𝑥 ↦𝑛0][𝑦 ↦𝑛𝑘+1]) = 1

but J¬𝜑Kℳ𝐺
[𝑥 ↦𝑛0][𝑦 ↦𝑛𝑘+1] = 0,

which contradicts Γ0 ⊨ ¬𝜑. Hence, the formula 𝜑 cannot exist.
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Theorem 9.16 is a severe limitation of first-order logic. Our robot from sec-
tion 6.1 was counting on FOL to find a route that leads it to its heart! However,
since routing is essentially graph reachability, our robot is now very sad But
there is hope! In the exercises and in chapter 10, we will see that our robot
can still be helped to find its heart.

9.4. Exercises

Exercise 5

Formalise the sentence

“Pavel owes money to everyone but himself”

as a formula 𝜑 in first-order logic with equality. You need one constant
𝑝 for “Pavel” and one binary predicate symbol 𝑂 for “owes to”.

a)

Derive for your formula 𝜑 the following sequent in ND=
1 using a Fitch-

style proof.
𝜑 ⊢ ¬𝑂(𝑝, 𝑝)

b)

Exercise 6

Let ℒ be a signature with a unary predicate symbol 𝑃 . We define 𝑃1 to be the
formula

𝑃1 = ∀𝑦. ∀𝑧. 𝑃 (𝑦) ∧ 𝑃(𝑧) → 𝑦 ≐ 𝑧,
which expresses that there can be maximally one object that fulfils 𝑃 . Prove
the following logical equivalence in ND=

1 :

⊢ (∃!𝑥. 𝑃 (𝑥)) ↔ ((∃𝑥. 𝑃 (𝑥)) ∧ 𝑃1)

To approach the proof of this formula, do both implications in separate proofs
and refer to them in the proof of the logical equivalence. Furthermore, use
the derived rules for the uniqueness quantifier from lemma 9.11 in the lecture
notes.
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Exercise 7 Graph Reachability

We have seen that compactness prevents us from giving a formula that ex-
presses reachability in graphs. In this exercise, we will see that reachability
can be expressed by appropriately defining a predicate. Let ℒ be the signa-
ture ({𝐸, 𝑅}, {𝑛1, … , 𝑛4}, ar) with ar(𝐸) = ar(𝑅) = 2 and ar(𝑛𝑘) = 0 for
𝑘 = 1, … 4. The intention is that 𝐸(𝑥, 𝑦) holds if there is an edge between 𝑥
and 𝑦 in a given graph, and 𝑅(𝑥, 𝑦) holds if the node 𝑦 is reachable from 𝑥.
We will use the constants 𝑛𝑘 later to model the nodes of a concrete graph.

Reachability 𝑅 is the reflexive and transitive closure of the edge relation 𝐸.
In other words, each node 𝑥 must be related to itself via 𝐸 (reflexivity), and
if there is an edge from 𝑥 to some 𝑧 and 𝑦 is reachable from 𝑧, then 𝑦 is also
reachable from 𝑥 (transitivity).

Give two formulas 𝜑𝑟 and 𝜑𝑡 with free variables 𝑥 and 𝑦 that express,
respectively, reflexivity and transitivity. That is to say, that the formula
𝜑𝑅 given by

∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) ↔ 𝜑𝑟 ∨ 𝜑𝑡

expresses that 𝑅 is the reachability relation in the graph with edges 𝐸.

a)

Let 𝜑𝑅,1, 𝜑𝑅,2 and 𝜑𝑅,3 be given by

𝜑𝑅,1 = ∀𝑥. ∀𝑦. 𝑅(𝑥, 𝑦) → 𝜑𝑟 ∨ 𝜑𝑡
𝜑𝑅,2 = ∀𝑥. ∀𝑦. 𝜑𝑟 → 𝑅(𝑥, 𝑦)
𝜑𝑅,3 = ∀𝑥. ∀𝑦. 𝜑𝑡 → 𝑅(𝑥, 𝑦)

Derive the following sequent in ND=
1 using Fitch-style.

𝜑𝑅,1, 𝜑𝑅,2, 𝜑𝑅,3 ⊢ 𝜑𝑅

Note that the proof merely uses the rules for quantifiers and proposi-
tional connectives, not those for equality.

b)
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Consider the following graph 𝐺.

𝑛1 𝑛2

𝑛3

𝑛4

Give formulas 𝜑𝐸,1, … , 𝜑𝐸,5 that describe the edge of 𝐺.

c)

Give a proof inND=
1 using Fitch-style of𝜑𝑅, 𝜑𝐸,1, … , 𝜑𝐸,5 ⊢ 𝑅(𝑛4, 𝑛3).

Use b) to simplify the task.
d)

Exercise 8

A group 𝐺 is given by a binary map ∔∶ 𝐺 × 𝐺 → 𝐺 and an element ̇0 of 𝐺,
such that

1. for all 𝑥 in 𝐺, 𝑥 ∔ ̇0 = ̇0 ∔ 𝑥 = 𝑥,
2. for all 𝑥, 𝑦, 𝑧 in 𝐺, 𝑥 ∔ (𝑦 ∔ 𝑧) = (𝑥 ∔ 𝑦) ∔ 𝑧, and
3. for every 𝑥 in 𝐺 there is a 𝑦 in 𝐺, such that 𝑥 ∔ 𝑦 = ̇0 and 𝑦 ∔ 𝑥 = ̇0.

The equations 1 - 3 are called the group axioms. Groups appear everywhere in
computer science and mathematics, with very popular applications in crypto-
graphy. The goal of this exercise is to formally reason about groups in first-
order logic with equality.

Let ℒ be the signature with function symbols ∔ and ̇0 of arity 2 and 0, re-
spectively. Let us write, as above, the symbol ∔ in infix notation, that is, we
write 𝑠 ∔ 𝑡 instead of ∔(𝑠, 𝑡) for terms 𝑠 and 𝑡. We define ℒ=-formulas 𝜑1,𝑙
and 𝜑1,𝑟 by

𝜑1,𝑙 = ∀𝑥. ̇0 ∔ 𝑥 ≐ 𝑥 and 𝜑1,𝑟 = ∀𝑥. 𝑥 ∔ ̇0 ≐ 𝑥

that formalise together the first group axiom.

Give ℒ=-formulas 𝜑2 and 𝜑3 that formalise the axioms 2 and 3 from
above.

a)

Give a formula 𝜑𝑢 that expresses the uniqueness of 𝑦 in the third group
axiom. The element 𝑦 is called the inverse of 𝑥.

b)
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Prove in ND=
1 that the inverse 𝑦 of 𝑥 in the third axiom is unique, that

is, derive ⊢ 𝜑𝑢 for your formula in ND=
1 . Use Fitch-style as usual.

c)



10. First-Order Horn Clauses and
Automatic Deduction

10.1. Automatic Deduction and the Cut-Rule

When approaching proofs of mathematical theorems, we usually decompose
the problem into intermediate results that are easier to prove on their own. In
the natural deduction systems, the approach is justified by the so-called cut
rule. This rule allows one to prove first a formula 𝜑, then prove a formula 𝜓
under the assumption of 𝜑, and finally the conclude that 𝜓 holds on its own.
The rule is formulated in the following theorem.

Theorem 10.1: Admissible Cut

The following cut rule is admissible in ND1.

Γ ⊢ 𝜑 Γ, 𝜑 ⊢ 𝜓
(Cut)Γ ⊢ 𝜓

Proof. The cut rule is given by the following proof tree.

Γ ⊢ 𝜑
Γ, 𝜑 ⊢ 𝜓

(→I)Γ ⊢ 𝜑 → 𝜓
(→E)Γ ⊢ 𝜓

The cut rule is very useful in structuring proofs, but horrendous for automatic
deduction because it requires ingenuity for inventing the intermediate lemma
𝜑 to prove 𝜓. There are techniques for generating such lemmas but we will
take another route here.

A first step to automatic deduction is to avoid the use of the cut rule and
thereby the introduction of an implication that is immediately followed by
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an implication elimination, as in the proof of the cut rule. Fortunately, it is
possible to avoid such detours and we can proceed without having to make
up formulas out of thin air. This is captured by the following theorem, the
proof [TS00; TvD88] of which we do not present here due to its complexity.

Theorem 10.2: Cut Elimination

Any proof tree in ND1 for a sequent Γ ⊢ 𝜑 can be transformed into a
proof tree in ND1 for the same sequent, which contains no instances
of the cut rule.

This is good news for automatic deduction because we can limit at each step
the rules that may be applied by inspecting the formula 𝜑 that we have to
prove. The approach of inspecting 𝜑 in finding a proof for Γ ⊢ 𝜑 is also called
goal-oriented because the search for the proof is driven by the goal 𝜑. How-
ever, restricting ourselves to proofs that avoid the cut rule is not enough for
fully automatic deduction because there are other choice-points. For instance,
if we try to prove ∃𝑥. 𝑃 (𝑥) ⊢ ¬∀𝑥. ¬𝑃(𝑥) do we first use the introduction of
the negation or the elimination of the existential quantifier? The problem is
that the principle formula of elimination rules, the formula that gives a rule
its name, appears among the premises of those rules. This means for the goal-
oriented construction of a proof that we have to guess the right formula to
eliminate from the goal, while there may be a non-trivial relation between
the two. In the above example, we have to guess that we have to eliminate
∃𝑥. 𝑃 (𝑥) to prove ¬∀𝑥. ¬𝑃(𝑥), which is difficult for human intelligence, let
alone for a computer. One way out of this is to limit the class of formulas that
may appear in proofs and thereby reduce the amount of guessing to a man-
ageable amount. Combined with limiting proof rules, we obtain a reasonable
fragment of first-order logic for automatic deduction.

10.2. First-Order Horn Clauses and Logic
Programming

In chapter 5, we have seen a class of propositional formulas that were called
Horn clauses. It turns out that there is an extremely useful generalisation to
first-order logic.
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Definition 10.3: Horn Clauses and Theories in FOL

A predicate atom over a signature ℒ is a formula of the form
𝑃(𝑡1, … , 𝑡𝑛), where 𝑃 is an 𝑛-ary predicate symbol in ℒ and 𝑡1, … , 𝑡𝑛
are ℒ-terms. Predicate atoms are denoted by letters 𝐴, 𝐵, 𝐶, … AHorn
clause is a formula of the form

∀𝑥1. ⋯ ∀𝑥𝑚. 𝐴1 ∧ ⋯ ∧ 𝐴𝑛 → 𝐴0

for 𝑚, 𝑛 ∈ ℕ and predicate atoms 𝐴0, 𝐴1, … , 𝐴𝑛 that use only the
variables 𝑥1, … , 𝑥𝑚. The atom 𝐴0 is called the head of the clause and
the set {𝐴1, … , 𝐴𝑛} is called the body of the clause. We call a list Γ of
Horn clauses a Horn clause theory or logic program.

The body of a clause may be empty, that is, 𝑛 may be zero, in which case we
leave out the implication in the Horn clause in definition 10.3 and just write
∀𝑥1. ⋯ ∀𝑥𝑚. 𝐴0. This is convenient when writing logic programs that con-
tain Horn clauses without assumptions, so called base facts. In the abstract
treatment of Horn clauses later in this chapter it will, however, not be neces-
sary to differentiate between base facts and general Horn clauses.

What makes Horn clause theories so useful? As the name “logic program”
indicates, we can use such theories for programming. In fact, we can describe
any Turing machine by a logic program Γ. A computation corresponds to giv-
ing a predicate atom 𝐴 with free variables 𝑥1, … , 𝑥𝑚 and asking for a deriv-
ation of Γ ⊢ ∃𝑥1. ⋯ ∃𝑥𝑚. 𝐴 in ND1. If the Turing machine halts, then such a
derivation exists. This correspondence makes it possible to automatically find
such a derivation if it exists.

Let us demonstrate the programming aspect of Horn clauses. We have come
across arithmetic several times in the context of first-order logic. So far, we
always relied on the correct interpretation of symbols. The following example
shows how we can express arithmetic on natural numbers in terms of Horn
clauses.

Example 10.4

In this example, we will use that every natural number is either zero or
the successor of another natural number. More specifically, the con-
stant 𝑧 represents in the following zero and the unary function symbol
𝑠 represents the successor of a number. With these two symbols, we
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can enumerate all the natural numbers:

𝑧, 𝑠(𝑧), 𝑠(𝑠(𝑧)), 𝑠(𝑠(𝑠(𝑧))), …
Writing natural numbers in this way is called unary encoding, which is
a very bad encoding from the perspective of complexity but very useful
for explanatory purposes.
We will be working in this example with a signature ℒ that contains
a constant 𝑧, a unary function symbol 𝑠, a unary predicate symbol 𝑁 ,
a binary predicate symbol 𝐿, and a ternary predicate symbol 𝑆. The
purpose of 𝑧 and 𝑠 to encode natural numbers was already explained
above. We use the unary predicate symbol 𝑁 to pin down the natural
numbers, in the sense that 𝑁(𝑡) holds if 𝑡 is the representation of a
natural number. The following two Horn clauses implement precisely
the initial description of natural numbers.

𝑁(𝑧)
∀𝑛. 𝑁(𝑛) → 𝑁(𝑠(𝑧))

We can now continue and implement arithmetic for natural numbers.
To use Horn clauses for this task, we have to switch from thinking in
terms of function to thinking in terms of relations. More specifically,
we use a ternary predicate symbol 𝑆 with the intent that 𝑆(𝑚, 𝑛, 𝑘)
holds if 𝑘 is the sum of 𝑚 and 𝑛. To provide Horn clauses that imple-
ment addition, we briefly need to think about the recursive specific-
ation of addition. It turns out that it suffices to consider two cases:
either 𝑚 is zero, or 𝑚 is the successor of some number 𝑖. In the first
case, 𝑘 will be 𝑛, which corresponds to 0 + 𝑛 = 𝑛. In the second case,
𝑘 will be the successor of the sum of 𝑖 and 𝑛, which corresponds to
(𝑝 + 1) + 𝑛 = (𝑖 + 𝑛) + 1. Assuming that 𝑚 and 𝑛 are given in the
above representation of natural numbers, we can represent this recurs-
ive specification of addition by the following two Horn clauses.

∀𝑛. 𝑆(𝑧, 𝑛, 𝑛)
∀𝑚. ∀𝑛. 𝑆(𝑚, 𝑛, 𝑘) → 𝑆(𝑠(𝑚), 𝑛, 𝑠(𝑘))

In a similar spirit, we can also define recursive relations on natural
numbers. For instance, to specify that the binary predicate𝐿 represents
the less or equal relation, wewould use the following twoHorn clauses.

∀𝑛. 𝐿(𝑛, 𝑛)
∀𝑚. ∀𝑛. 𝐿(𝑚, 𝑛) → 𝐿(𝑚, 𝑠(𝑛))
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The clauses say that every natural number is less or equal to itself (re-
flexivity) and that increasing the number on the right preserves the less
or equal relation.

?
Can you find two Horn clauses that describe the computation of mul-
tiplication as ternary predicate symbol 𝑀 analogously to 𝑆 in ex-
ample 10.4?

What makes logic programming so interesting compared to other program-
ming paradigms? The answer lies in its declarative nature, which allows us to
specify what the result of a computation should be rather than how the result
is computed. In his seminal work, Kowalski [Kow79] has expressed this in the
following equation.

Algorithm = Logic + Control

This equation essentially means that we can design algorithms by providing
logical formulas that describe the result of an algorithm and a control mechan-
ism that controls the use of these formulas to compute the result. A particular
property of this approach is that new algorithms can be obtained by exchan-
ging the control mechanism, while preserving the logical properties and cor-
rectness of the computed result. In terms of the above equation, we may have
a logical specification 𝐿 and algorithms 𝐴1 and 𝐴2 given by 𝐴1 = 𝐿+𝐶1 and
𝐴2 = 𝐿 + 𝐶2 for some control mechanisms 𝐶1 and 𝐶2. These two algorithms
will compute results with the same logical properties, but may have different
computational behaviour. For example, 𝐴2 may be more efficient than 𝐴1.

Let us return to concrete logic programming approach and illustrate it on our
initial robot example.

Example 10.5: Robot Path Finding

Remember our robot from fig. 6.1 on page 11 trying to find a heart? In
section 6.1, we used first-order logic to describe what moves the robot
is allowed to make and how a route towards the heart looks like. The
aim of this example is to use Horn clauses to give a logical description
of routes that will allow us, with an appropriate control mechanism, to
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derive an efficient algorithm for routing.
In section 9.3.1, we have seen that reachability in graphs cannot be
expressed by a first-order formula. Since routing for the robot can be
seen as reachability in a graph, we cannot directly express routes as
a formula. In exercise 3 of chapter 9, we saw how graph reachability
could still be expressed by introducing a new predicate that represented
the reflexive, transitive closure of the edge relation of a graph. And
even better, the two formulas that expressed this are Horn clauses and
we can therefore formulate graph reachability as a logic program! Let
us now use this approach to help the robot break this limitation of first-
order logic and to finally find its heart.
For this purpose, we will use the signature ℒ with constants 1, 2, … for
all positive natural numbers, one binary function symbol pos, three un-
ary predicate symbols 𝑅, 𝐻 and 𝐹 , and two binary predicate symbols
𝐴 and 𝐶 . Let us explain the intention of all these symbols. We will use
pos to describe positions on the field and will denote by pos(𝑥, 𝑦) the
position with horizontal coordinate 𝑥 and vertical coordinate 𝑦. For in-
stance, the robot is in fig. 6.1 in position pos(2, 3). The unary predicate
symbols 𝑅, 𝐻 and 𝐹 describe, respectively, the position of the Robot,
the position of the Heart and Free positions. Since the robot may only
move between adjacent positions, will use the binary predicate symbol
𝐴 to express when a position is Adjacent to another position. Finally,
the binary predicate symbol 𝐶 is what we are after: it will relate two
positions if they are Connected by a path via free and adjacent posi-
tions.
Our goal is to describe the situation in fig. 6.1 and the predicate symbol
𝐶 as a logic program, that is, a finite list of Horn clauses. All of the
following is provided in appendix B as a Prolog program that can be
directly run in your favourite Prolog interpreter.
Let us begin with the easy part: the position of the robot and the heart.
These are given by the following two formulas.

𝑅(pos(2, 3)) and 𝐻(pos(5, 1)) (10.1)

This two formulas are base facts, albeit with no quantifiers and an
empty body, that is, 𝑚 and 𝑛 in definition 10.3 are both zero.
Next, we describe the free position that our robot may visit by provid-



10.2. First-Order Horn Clauses and Logic Programming 69

ing a formula for each free position:

𝐹(pos(1, 1)) 𝐹(pos(2, 2)) 𝐹(pos(3, 1))
𝐹(pos(1, 4)) 𝐹(pos(2, 3)) 𝐹(pos(3, 2)) …

𝐹(pos(2, 4)) 𝐹(pos(3, 4))
(10.2)

You may have noticed that we have initially talked in section 6.1 about
the obstacles on the field and now we talk about free positions instead.
The reason for this is that obstacles are an inherently negative descrip-
tion of the allowed moves that our robot may make. More precisely,
we have the relation

∀𝑝. 𝐹(𝑝) ↔ ¬𝑂(𝑝) ,

where 𝑂 was the predicate symbol that we used for describing the po-
sitions of obstacles. This negative relation between 𝐹 and 𝑂 would
become a problem when we ask if the robot can move to a certain posi-
tion because the first-order Horn clauses in definition 10.3 may not use
⊥ and therefore no negation! Thus, we would not be able to formulate
the routing problem as a logic program if we describe positions with
obstacles instead of free positions.
To finish the field description, we have to give all the adjacent positions
by providing formulas that specify the predicate symbol𝐴. This predic-
ate should be read as, if𝐴(𝑝, 𝑞) holds then position 𝑝 and 𝑞 are adjacent.
For instance, we should have that 𝐴(pos(1, 1), pos(1, 2)) holds. How-
ever, neither 𝐴(pos(1, 1), pos(2, 2)) nor 𝐴(pos(6, 1), pos(7, 1)) should
not hold. In the first case, the two positions pos(1, 1) and pos(2, 2) are
not adjacent, as we do not allow diagonal steps. In the second case,
the term pos(7, 1) is not a valid position on the field because the ho-
rizontal coordinates range from 1 to 6 only. Formalising all of this as
Horn clauses is a bit tedious because we have to enumerate for each
position all its four neighbours, except for positions at the boundary
that have two or three neighbours:

𝐴(pos(𝑥, 𝑦), pos(𝑥 + 1, 𝑦)), 1 ≤ 𝑥 ≤ 5, 1 ≤ 𝑦 ≤ 4
𝐴(pos(𝑥, 𝑦), pos(𝑥, 𝑦 + 1)), 1 ≤ 𝑥 ≤ 6, 1 ≤ 𝑦 ≤ 3
𝐴(pos(𝑥, 𝑦), pos(𝑥 − 1, 𝑦)), 2 ≤ 𝑥 ≤ 6, 1 ≤ 𝑦 ≤ 4
𝐴(pos(𝑥, 𝑦), pos(𝑥, 𝑦 − 1)), 1 ≤ 𝑥 ≤ 6, 2 ≤ 𝑦 ≤ 4

(10.3)
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The first line of (10.3) states that every position pos(𝑥, 𝑦) is adjacent to
its east neighbour pos(𝑥 + 1, 𝑦). Note that pos(𝑥, 𝑦) only has a neigh-
bour in the east if it is not a boundary position, that is, if 𝑥 ≤ 5. In the
remaining three lines, we analogously provide the specification of the
southern, western and northern neighbours.
With the field layout described through the Horn clauses in eqs. (10.1)
to (10.3), we can now try to find a way for our robot to the heart. We
achieve this by providing a description of the predicate symbol 𝐶 with
the intention that 𝐶(𝑝, 𝑞) holds if position 𝑞 is reachable from 𝑝 via
free and adjacent positions. Reachability can be described by two Horn
clauses, one that states that every position can be reached from itself
and one for making an intermediate step via a free position:

∀𝑝. 𝐶(𝑝, 𝑝) (10.4)
∀𝑝. ∀𝑞. ∀𝑟. 𝐶(𝑞, 𝑟) ∧ 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) → 𝐶(𝑝, 𝑟) (10.5)

These two Horn clauses formulate reachability as backward search.
That is to say, we start with the final position we want to reach and
then try to find positions that make a path to the initial position.

10.3. Uniform Proofs

In example 10.5, we have used logical formulas to describe how a path from
the starting position of the robot to its goal looks like. What is missing to
get an algorithm for path finding is the control part of Kowalski’s equation,
which allows us to search for a path. Wewill introduce in this section a control
mechanism based on proof theory, called uniform proofs.

The idea of uniform proofs is that we devise a proof system tailored towards
proving goal formulas of a very specific shape only from Horn clauses. This
restriction of goals and assumptions has a two-fold effect:

1. we eliminate all the choice that appears through the cut rule, and

2. we concentrate all the choice of using assumptions in one proof rule.

Eliminating the cut rule removes an infinitude of choices andmakes the search
for proof rules more goal-oriented. As we will see, the second aspect of con-
centrating choice, reduces the amount of branching in proof search drastically
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to just a few options. All together, uniform proofs provide an operational per-
spective on proof search and will guide us in the construction of proofs, also
in ND1, relative to logic programs.

Before we come to the actual definition of uniform proofs, we will need to
talk about specific terms and substitutions that arise in proof search. In the
simplest case, which will be the only one that we treat here, we prove an
existentially quantified formula ∃𝑥. 𝜑 by providing a term 𝑡, which uses no
variables and for which 𝜑[𝑥 ≔ 𝑡] holds. For instance, let 𝜑 be 𝑅(pos(𝑥, 3))
and let 𝑡 be 2, as in example 10.5. Under the assumption of eq. (10.1), we have
that 𝜑[𝑥 ≔ 𝑡] holds and thus also ∃𝑥. (pos(𝑥, 3)). Note that 2 is a constant
and does not use any variables. Such a term without any variables will be the
only kind of term that we will be interested in the following when we prove
existential quantifiers.

Definition 10.6: Ground terms and atoms

A ground term 𝑡 is a term over a signature ℒ, such that fv(𝑡) = ∅. Sim-
ilarly, a ground predicate atom is a predicate atom 𝑃(𝑡1, … , 𝑡𝑛), where
all the terms 𝑡𝑘 are ground terms.

Let us provide some more examples of ground terms.

Example 10.7

We have already seen that 2 is a constant and thus ground term over
the signature of example 10.5. Other examples of ground terms over
that signature are pos(2, 3) or pos(2, pos(2, 3)). However, if 𝑥 ∈ Var,
then pos(𝑥, 3) is not a ground terms because fv(pos(𝑥, 3)) = {𝑥}.

?
Do signatures without constants admit ground terms?

Uniform proofs will allow us to introduce existential quantifiers in goals and
eliminate the universal quantifiers that appear in Horn clauses. Recall that
the natural deduction system ND1 involved substitutions in the two corres-
ponding rules (∃I) and (∀E). As we aim to only construct proofs that involve
ground terms, we need to restrict these two rules to substitutions that replace
variables by ground terms. These are the closing substitutions introduced in
the following definition.
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Definition 10.8: Closing substitution

Let 𝑋 ⊆ Var be a set of variables. An 𝑋-closing substitution is a substi-
tution 𝜎 ∶ Var → Term, such that 𝜎(𝑥) is a ground term for all 𝑥 ∈ 𝑋.

We mentioned initially that we obtain proof search by restricting the formu-
las 𝜑 that can appear as a goal, that is, in a sequent Γ ⊢ 𝜑 that we wish to
prove. There are several choices one can make to restrict the formula 𝜑, out of
which we will use that given in definition 10.9 below. Before we come to that
definition, let us briefly think what would be a reasonable set of formula that
we can search proofs for. First of all, we of course want to be able to prove
facts about predicates, hence predicate atoms of the form 𝑃(𝑡1, … , 𝑡𝑛) should
certainly be allowed as goals. Next, conjunction does certainly not pose any
problem because finding a proof for Γ ⊢ 𝜑 ∧ 𝜓 only requires us to find proofs
for Γ ⊢ 𝜑 and Γ ⊢ 𝜓 separately by the introduction rule (∧I). To be able to
state and prove more interesting properties, we will also allow disjunction and
existential quantification. These two connectives will make proof search more
difficult. Recall that the introduction rules (∨I1) and (∨I2) for disjunction re-
quire us to find proofs for either Γ ⊢ 𝜑 or Γ ⊢ 𝜓 in order to prove Γ ⊢ 𝜑 ∨ 𝜓.
Thus, to find a proof for the disjunction 𝜑 ∨ 𝜓 we have to try to prove one of
the options, say 𝜑, and if we fail to prove this option, then we try the other.
Trying out these different options is not difficult, but can be costly, depending
on how many proof steps we have to carry out before we find out that 𝜑 is
not provable. Finally, the proof of an existential quantifier ∃𝑥. 𝜑 requires us to
find a term 𝑡, such that 𝜑[𝑥 ≔ 𝑡] holds. As it turns out, it is possible to devise
procedure that construct a ground term 𝑡, if it exists, automatically and we
see how this can be done in section 10.4. Thus, we will also allow existential
quantifiers in proof goals. The following definition 10.9 sums up the formulas
that we allow as goals.

Definition 10.9: Goal formulas

The set Goal of all goal formulas 𝜑𝐺 is the set of ℒ-formulas over a
signature ℒ generated by the following grammar.

𝜑𝐺 ∶∶= 𝑃 (𝑡1, … , 𝑡𝑛) ∣ 𝜑𝐺 ∧ 𝜑𝐺 ∣ 𝜑𝐺 ∨ 𝜑𝐺 ∣ ∃𝑥. 𝜑𝐺

Let us now come to uniform proofs, which are given by a proof system that
allows us to prove goals 𝜑 (definition 10.9) fromHorn clause theories Γ (defin-
ition 10.3). To distinguish sequents for uniform proofs from those of ND1, we
will write Γ ⊢𝑢 𝜑 for a sequent that we intent to find a uniform proof for.
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Introduction Rules

Γ ⊢𝑢 𝜑1 Γ ⊢𝑢 𝜑2 (∧I)Γ ⊢𝑢 𝜑1 ∧ 𝜑2

Γ ⊢𝑢 𝜑[𝑥 ≔ 𝑡]
(∃I)Γ ⊢𝑢 ∃𝑥. 𝜑

Γ ⊢𝑢 𝜑1 (∨I1)Γ ⊢𝑢 𝜑1 ∨ 𝜑2

Γ ⊢𝑢 𝜑2 (∨I2)Γ ⊢𝑢 𝜑1 ∨ 𝜑2

Backchaining Rule

(∀𝑥1. ⋯ ∀𝑥𝑚. 𝐴1 ∧ ⋯ 𝐴𝑛 → 𝐴0) ∶ Γ Γ ⊢𝑢 𝐴1[𝜎] ⋯ Γ ⊢𝑢 𝐴𝑛[𝜎]
(B)

Γ ⊢𝑢 𝐴0[𝜎]

where 𝜎 is an {𝑥1, … , 𝑥𝑚}-closing substitution.

Figure 10.1.: Rules of Uniform Proofs

We have already explained the general approach to prove Γ ⊢𝑢 𝜑 above for
the case of conjunction, disjunction and existential quantification. This leads
us to the introduction rules in the upper part of fig. 10.1, which are exactly
the same rules as in ND1, just restricted to the introduction of goal formulas.
Let us consider the goal 𝜑 given by ∃𝑢. ∃𝑣. 𝑅(𝑢) ∧ (𝐴(𝑢, 𝑣) ∧ 𝐹(𝑣)) over the
signature from the robot path finding example 10.5. This formula says that the
robot is in some position on the field that has a free adjacent position. Such
positions exist, namely if we pick 𝑝 = pos(2, 3) for the robot position and
the adjacent position 𝑞 = pos(2, 4). Using only the introduction rules from
fig. 10.1, we can start a proof for 𝜑:
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1 ⋮
2 𝐴(𝑝, 𝑞) ⁇

3 𝐹(𝑞) ⁇

4 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) ∧I, 2, 3
5 𝑅(𝑝) ⁇

6 𝑅(𝑝) ∧ (𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞)) ∧I, 5, 4
7 ∃𝑣. 𝑅(𝑝) ∧ (𝐴(𝑝, 𝑣) ∧ 𝐹(𝑣)) ∃I, 6
8 ∃𝑢. ∃𝑣. 𝑅(𝑢) ∧ (𝐴(𝑢, 𝑣) ∧ 𝐹(𝑣)) ∃I, 7

However, we are not able to fill in the question marks, yet. Note that the for-
mulas that we have to prove in lines 2, 3 and 5 are ground predicate atoms. It
is easy to see that any proof attempt that starts with a goal formula and only
uses the introduction rules, must eventually reach predicate atoms. Thus, we
need a rule to prove such predicate atoms from a Horn clause theory. That is
the heart of logic programming: given a predicate atom, find a Horn clause
that matches the atom, and continue with the premises of the Horn clause.
This process is called backchaining and is captured by the rule (B) in fig. 10.1.
The idea of the backchaining rule is that, whenever we have to prove a pre-
dicate atom, then we choose a Horn clause from our logic program in such a
way that the head of the clause (definition 10.3) matches the atom. If we find
such a matching clause, then we continue by proving all the premises of the
chosen Horn clause. Note that the premises of a Horn clause are always pre-
dicate atoms, thus we will continue using the backchaining rule until we can
finish the proof by selecting a Horn clause without premises, that is, a fact.

Let us use this procedure to fill in the question marks in the proof above. For
the purpose of this, let us denote byΓ1 the logic program that consists of all the
Horn clauses in eqs. (10.1) to (10.3). In line 5, we have to prove 𝑅(pos(2, 3)),
which is exactly the fact that we assumed in (10.1). Thus, we can use the
following instance of the backchaining rule, where both 𝑛 and 𝑚 are 0 and
thus the substitution 𝜎 is irrelevant.

𝑅(pos(2, 3)) ∶ Γ1 (B)
Γ1 ⊢𝑢 𝑅(pos(2, 3))

The proofs for lines 2 and 3 are given analogously, which then results in the
following completed uniform proof in Fitch-style.
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1 Γ1

2 𝐴(𝑝, 𝑞) B, 1
3 𝐹(𝑞) B, 1
4 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) ∧I, 2, 3
5 𝑅(𝑝) B, 1
6 𝑅(𝑝) ∧ (𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞)) ∧I, 5, 4
7 ∃𝑣. 𝑅(𝑝) ∧ (𝐴(𝑝, 𝑣) ∧ 𝐹(𝑣)) ∃I, 6
8 ∃𝑢. ∃𝑣. 𝑅(𝑢) ∧ (𝐴(𝑢, 𝑣) ∧ 𝐹(𝑣)) ∃I, 7

Beforewe continue to explain the backchaining rule formore interesting cases,
let us formally define what we mean by a uniform proof.

Definition 10.10: Uniform proofs

Let Γ be a Horn clause theory and 𝜑 a goal formula with fv(𝜑) = ∅.
We say that 𝜑 can be proven from Γ by a uniform proof, if a proof for
Γ ⊢𝑢 𝜑 can be derived from the rules in fig. 10.1.

Note that the uniform proofs have no separate elimination rules. Instead,
backchaining combines the assumption rule (Assum), the universal quanti-
fier elimination (∀E) and the implication elimination (→E) into one rule. This
works only because the only assumptions that we can use are Horn clauses.

Let us demonstrate uniform proofs cases, in which we use the backchaining
rule on Horn clauses with assumptions and universal quantifiers.

Example 10.11

Suppose we want to show that our robot can reach some position, thus
we want to find a proof for

Γ ⊢𝑢 ∃𝑢. 𝐶(pos(2, 3), 𝑢) ,

where𝐶 is the predicate for connected positions from example 10.5 and
Γ the logic program that consists of eqs. (10.1) to (10.5). As above, we
will refer to the logic program given by eqs. (10.1) to (10.3) as Γ1. This
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allows us refer explicitly to the Horn clauses in eqs. (10.4) and (10.5).
There are many choices for the position 𝑢, but to make the example
non-trivial and not too lengthy, let us use pos(2, 4). The uniform proof
for the above sequent goes for this choice as follows.

1 Γ1

2 ∀𝑝. 𝐶(𝑝, 𝑝)
3 ∀𝑝. ∀𝑞. ∀𝑟. 𝐶(𝑞, 𝑟) ∧ 𝐴(𝑝, 𝑞) ∧ 𝐹(𝑞) → 𝐶(𝑝, 𝑟)
4 𝐶(pos(2, 4), pos(2, 4)) B, 2
5 𝐴(pos(2, 3), pos(2, 4)) B, 1
6 𝐹(pos(2, 4)) B, 1
7 𝐶(pos(2, 3), pos(2, 4)) B, 3, 4, 5, 6
8 ∃𝑢. 𝐶(pos(2, 3), 𝑢) ∃I, 7

The reader may notice that there is another choice hidden in example 10.11:
To apply the backchaining rule in line 7, we had to choose an “intermediate”
position, the variable 𝑞 in the transitivity rule from line 3. We chose the posi-
tion pos(2, 4) because it brought us directly to the position that we wanted to
go to. However, we could have chosen to take a completely different path, for
instance via pos(2, 2), pos(3, 2), pos(4, 2), pos(4, 3), pos(4, 4) and pos(3, 4).
This is where we have to find an appropriate control mechanism to guide the
search for a path. In appendix B, an implementation of example 10.5 is given
in a language called Prolog, a programming language based on Horn clause
theories. The control mechanism chosen there is “tabling” combined with the
search for a shortest path, which gives a very efficient search strategy for path
finding. We will not explain the details of this control mechanism or Prolog
here. For our purposes, it suffices to say that uniform proofs provide a found-
ation for the reasoning steps that Prolog takes and that an algorithm can be
obtained from the uniform proof system by complementing it with an appro-
priate search strategy for the substitution 𝜎 in the backchaining rule.

Remark. The uniform proof system has quite a few less rules than ND1: all
the elimination rules and the introduction rules for implication and universal
quantification are not present. We have already explained why the general
introduction and elimination rules for implication cause troubles. It is pos-
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sible to add restricted versions of the introduction rules for implication and
universal quantification [MN12; Mil+91]. However, the general elimination
rules need to be treated completely differently.

10.4. Unification*

This section will not be relevant for the exam.





Solutions

Answers to theQuizzes of Chapter 8

Answer to quiz on page 27 There are exactly two possibilities because𝑃 ℳ

must be a subset of 𝟙. Thus, either 𝑃 ℳ = ∅ or 𝑃 ℳ = 𝟙.

Answer to quiz on page 34 The formula ∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦) trans-
lates in the language model ℳ𝑙 to “for every language 𝑈 there is language 𝑉
that strictly contains 𝑈 : 𝑈 ⊂ 𝑉 .” This is not true because the total language
𝐴∗ is maximal. Indeed, formally we have for all valuations 𝑣 and 𝑉 ⊆ 𝐴∗ with
𝑤 = 𝑣[𝑥 ↦ 𝐴∗] that

J𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑤[𝑦 ↦𝑉 ] = {1, 𝐴∗ ⊆ 𝑈 and 𝐴∗ ≠ 𝑉
0, otherwise

= 0.

This gives J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑤 = 0 and thus

J∀𝑥. ∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣
= min{J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑣[𝑥 ↦𝑈] | 𝑈 ∈ 𝐴∗}
≤ J∃𝑦. 𝐿(𝑥, 𝑦) ∧ ¬𝐼(𝑥, 𝑦)K𝑤
= 0

Answers to theQuizzes of Chapter 9

Answer to quiz on page 51 To derive symmetry, we apply the replacement
rule to the formula 𝑥 ≐ 𝑠, which we refer to as 𝜑, as follows. First, we note
that 𝜑[𝑥 ≔ 𝑡] = 𝑡 ≐ 𝑠, which means that we can prove symmetry by showing
that 𝜑[𝑥 ≔ 𝑡] is derivable from 𝑠 ≐ 𝑡. Second, we note that 𝜑[𝑥 ≔ 𝑠] = 𝑠 ≐ 𝑠,
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whence 𝜑[𝑥 ≔ 𝑠] is provable by (Refl). Putting this together, we obtain the
following derivation for symmetry of ≐.

Δ ∣ Γ ⊢ 𝑠 ≐ 𝑡
(Refl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑠]
(Repl)

Δ ∣ Γ ⊢ 𝜑[𝑥 ≔ 𝑡]

Answers to theQuizzes of Chapter 10

Answer to quiz on page 67 The idea is that multiplication is given recurs-
ively by 0 ⋅ 𝑛 = 0 and (𝑚 + 1) ⋅ 𝑛 = (𝑚 ⋅ 𝑛) + 𝑛. This can be translated into
the following two Horn clauses.

∀𝑛. 𝑀(0, 𝑛, 0)
∀𝑚. ∀𝑛. ∀𝑖. ∀𝑘. 𝑀(𝑚, 𝑛, 𝑖) ∧ 𝑆(𝑖, 𝑛, 𝑘) → 𝑀(𝑠(𝑚), 𝑛, 𝑘)

Answer to quiz on page 71 No, if a signature ℒ has no constants, then it is
not possible to obtain an ℒ-term without variables. For example, suppose ℒ
is a signature with only one unary function symbol 𝑓 . Then the only terms we
can build over this signature are of the form 𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)), … for variables
𝑥. Thus, it is not possible to obtain a ground term without variables from ℒ.
This can formally be proven by induction over first-order terms.
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A. Tools

A.1. Formal Languages

Recall that 𝐴∗ denotes the set of words over an alphabet 𝐴. Concretely, the
set of words is given by

𝐴∗ = {𝜀} ∪ {𝑎0𝑎1 ⋯ 𝑎𝑛 | 𝑛 ∈ ℕ, 𝑎𝑘 ∈ 𝐴},

where 𝜀 is the empty word. For instance, if 𝐴 = {𝑎, 𝑏}, then 𝐴∗ contains the
singleton words 𝑎 and 𝑏, and longer words like 𝑎𝑏𝑏𝑎𝑎. The set of languages
over 𝐴 is the powerset 𝒫(𝐴∗), that is, the set of all subsets of 𝐴∗.
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1 % :- table path(_,_,lattice(shortest/3))
2 % :- table conn/2
3

4 % Partial order of lists by length; used in tabled execution
5 shortest(P1, P2, P) :-
6 length(P1, L1),
7 length(P2, L2),
8 (L1 < L2 -> P = P1; P = P2).
9

10 % Right
11 adjacent(pos(X1,Y1), pos(X2, Y1)) :- succ(X1, X2), X1 < 6.
12 % Down
13 adjacent(pos(X1,Y1), pos(X1, Y2)) :- succ(Y1, Y2), Y1 < 4.
14 % Left
15 adjacent(pos(X1,Y1), pos(X2, Y1)) :- succ(X2, X1).
16 % Up
17 adjacent(pos(X1,Y1), pos(X1, Y2)) :- succ(Y2, Y1).
18

19 % Can we go from U to V?
20 step(U, V) :- adjacent(U, V), free(V).
21

22 % conn(U, V) holds if two positions U and V connected.
23 conn(U, U).
24 conn(U, V) :-
25 conn(W, V),
26 step(U, W).
27

28 % Can our robot reach the goal?
29 connr :- robot(U), goal(V), conn(U, V).
30

31 % path(U, V, P) holds if P is a path from U to V. A path is here a list of
positions.

32 path(U, U, [U]).
33 path(U, V, [U|P]) :-
34 path(W, V, P),
35 step(U, W).
36

37 % A path P with route(P) leads our robot from the initial position to the
goal.

38 route(P) :- robot(U), goal(V), path(U, V, P).
39
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40 % Initial position of robot.
41 robot(pos(2, 3)).
42

43 % Position of goal.
44 goal(pos(5,1)).
45

46 % All the positions that do not contain an obstacle.
47 free(pos(1,1)).
48 free(pos(1,4)).
49

50 free(pos(2,2)).
51 free(pos(2,3)).
52 free(pos(2,4)).
53

54 free(pos(3,1)).
55 free(pos(3,2)).
56 free(pos(3,4)).
57

58 free(pos(4,1)).
59 free(pos(4,2)).
60 free(pos(4,3)).
61 free(pos(4,4)).
62

63 free(pos(5,1)).
64 free(pos(5,3)).
65

66 free(pos(6,1)).
67 free(pos(6,2)).
68 free(pos(6,3)).
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