Assignment 9

Exercises on lecture 9/chapter 9

5 November 2024

We will work on the following exercises during the next exercise class. You can choose among the problems of sheet 4 - 9 to work one out and submit it individually for feedback.

Exercise 9.1 – Complete the proof of theorem 9.5, by proving the remaining case of the induction that shows that

 $(\chi_1[\chi_2] \lhd (f,\sigma)) \Downarrow \sigma' \text{ iff } (\chi_1 \lhd (O\chi_2 f,\sigma)) \Downarrow \sigma'$

Exercise 9.2 – Prove lemma 9.7 by proving that the composition of natural transformations satisfies the unit and associativity laws.

Exercise 9.3 – Let $F, G: \mathcal{C} \to \mathcal{D}$ be functors and $\alpha: F \to G$ a natural transformation. Show that a family of morphisms $\beta_X: GX \to FX$ indexed by objects in \mathcal{C} with $\alpha_X \circ \beta_X = \mathrm{id}_{FX}$ and $\beta_X \circ \alpha_X = \mathrm{id}_{GX}$ for all X, gives a natural transformation $\beta: G \to F$ that is inverse to α .

Exercise 9.4 – Complete the proof of lemma 9.8 by proving that for all χ , σ and σ' ,

 $(\chi \lhd (f, \sigma)) \Downarrow \sigma'$ implies $(D\chi)(f)(\sigma) = \eta(\sigma')$

by induction on derivations for the big-step operational semantics.

Exercise 9.5 – Prove corollary 9.10 (full abstraction of Imp) from theorem 9.9 (equivalence of denotational and operational semantics).

Problem 9.6 — The goal of this problem is to define a syntactic model O' of Imp and relate it to the denotational model D. This new model is given on objects by $S \bullet^A = \text{Disc AExp}$, $S \bullet^B = \text{Disc BExp and } \bullet^C = \text{Disc Com}$, and on morphisms by $(S \chi)u = \chi[u]$ for all contexts χ and expressions/commands u.

- a) Prove that S is a functor $\mathcal{C}_{Imp} \to \omega CPO$.
- **b)** Show that there is a natural transformation $\gamma \colon S \to D$.

c) Analyse what it means to give a natural transformation $D \rightarrow S$ and prove that such a natural transformation cannot exist. (Hint: You can use that Imp can only implement computable functions.)