Assignment 13

Exercises on lecture 13/chapter 13

03 December 2024

We will work on the following exercises during the next exercise class.

Exercise 13.1 – Calculate the denotational semantics of the terms $\Omega_{\mathbf{N}}$ from example 11.10, $\lambda x. \mathbf{if}_0 x \mathbf{then} \ 0 \mathbf{else} \ \Omega_{\mathbf{N}}$, and subtraction as given in example 11.7.

Exercise 13.2 – Let \mathcal{C} be a category with binary products and a terminal object T. Show for all objects A that $A \times T \cong A \cong T \times A$. Use this to show that $[T, A] \cong A$ if \mathcal{C} is Cartesian closed.

Exercise 13.3 – Give an explicit description of ite₀ in each of the characterisation of adjunctions in theorem 10.9.

Exercise 13.4 – Prove naturality of $fix_{P,Q}$ in *P*, that is, prove lemma 13.1.

Exercise 13.5 – Complete the proof of lemma 13.2 by showing that $[[(\lambda x. t)[\sigma]]] = [[\lambda x. t]] \circ D\sigma$.

Exercise 13.6 – Prove lemma 13.3 by induction on contexts.

Exercise 13.7 Let x, y and z be distinct variables. Prove that the contexts $(x : \mathbf{N}, y : \mathbf{N})$ and $(z : \mathbf{N} \times \mathbf{N})$ are isomorphic in $cC_{\lambda Y}^0$. Discuss why this does not happen in $C_{\lambda Y}^0$.

Exercise 13.8 – Prove lemma 13.9 by induction on types.

Problem 13.9 — We let, for this problem, λ_{\times} be the language that arises from λ_{Y} by not allowing any fixed point terms. That is, the terms and contexts of λ_{\times} are the terms and contexts of λ_{Y} that do not contain any context of the form **fix** *x*. *C*. You may assume, in what follows, that contextual equivalence thus restricts to λ_{\times} and is a congruence. This language is also called the with product types. We denote by $\mathcal{C}_{\lambda\times}$ the classifying category of λ_{\times} , which is given by restricting the classifying category $\mathcal{C}_{\lambda Y}$ to λ_{\times} , and by the $I: \mathcal{C}_{\lambda\times} \to \mathcal{C}_{\lambda Y}$ the inclusion functor. Similarly, we obtain a subcategory $i_{\times}: \mathcal{C}_{\lambda\times}^{0} \to \mathcal{C}_{\lambda\times}$ of terms at zero-order type. Finally, since contextual equivalence is a congruence, we also obtain quotient categories $Q_{\times}: \mathcal{C}_{\lambda\times} \to c\mathcal{C}_{\lambda\times}$ and $Q_{\times}^{0}: \mathcal{C}_{\lambda\times}^{0} \to c\mathcal{C}_{\lambda\times}^{0}$

a) Assume that we are given a Cartesian closed category \mathcal{C} . Show that there is a product-preserving functor $S \colon \mathcal{C}_{\lambda \times} \to \mathcal{C}$.

b) Consider Set as Cartesian closed category and show that $S: \mathcal{C}_{\lambda \times} \to \mathbf{Set}$ is part of a good

semantics pair, in the sense that there is a faithful functor $S^0 \colon c\mathcal{C}^0_{\lambda\times} \to \mathbf{Set}$ with $S^0 \circ Q^0_{\times} = S \circ i_{\times}$. You will have to use a suitably defined logical relation, similar to the approach in section 13.2.

c) Conclude that for every term $\vdash t : A$ in λ_{\times} there is a value v with $t \Downarrow_A v$.