
Assignment 11
Exercises on lecture 11/chapter 11

19 November 2024

We will work on the following exercises during the next exercise class.

Exercise 11.1 — Give 𝜆Y-terms ⊢ ∗ ∶ 𝐍 → 𝐍 → 𝐍 and ⊢ fib ∶ 𝐍 → 𝐍 → 𝐍 that
implement, respectively, the computation of multiplication and Fibonacci numbers.

Exercise 11.2— Recall that the class of primitive recursive functions on the natural numbers
consists of constant 0 maps, successor, projections, composition and primitive recursion. Ex-
cept the last two, all the others are already built into 𝜆Y, and composition is straightforward
to implement in 𝜆Y. A map ℎ∶ ℕ × 𝑌 → 𝑍 is said to be given by primitive recursion of
functions 𝑓 ∶ 𝑌 → 𝑍 and 𝑔 ∶ ℕ × 𝑌 × 𝑍 → 𝑍 if the following two equations hold.

ℎ(0, 𝑦) = 𝑓(𝑦)
ℎ(𝑛 + 1, 𝑦) = 𝑔(𝑛, 𝑦, ℎ(𝑛, 𝑦))

Given terms 𝑡 ∶ 𝐴 → 𝐵 and 𝑠∶ 𝐍 → 𝐴 → 𝐵 → 𝐵, define primitive recursion as a term
PR(𝑡, 𝑠) ∶ 𝐍 → 𝐴 → 𝐵 in 𝜆Y.

Exercise 11.3 — Define a 𝜆Y-term of type 𝐍 → 𝐍 → 𝐍 that implements the Ackermann
function. This is a function that cannot be implemented by just primitive recursion on natural
numbers but requires you to use (primitive) recursion on function types.

Exercise 11.4 — The final piece to Turing-completeness, when combined with exercise 11.2,
is the so-called minimisation operator or 𝜇-recursion. A function 𝑓 ∶ ℕ → ℕ⊥ is said to be
given by 𝜇-recursion from a function 𝑔 ∶ ℕ → ℕ, if the following holds.

𝑓(𝑛) = {min{𝑘 ∈ ℕ | 𝑘 ≥ 𝑛 and 𝑔(𝑘) = 0}, if there is a 𝑘 ≥ 𝑛 with 𝑔(𝑘) = 0
⊥, otherwise

For a term 𝑡 ∶ 𝐍 → 𝐍, give a term Min(𝑡) ∶ 𝐍 → 𝐍 that implements minimisation in 𝜆Y.

Exercise 11.5 — Pick a term 𝑡 ∶ 𝐍 → 𝐍 and evaluate the term Min(𝑡) that you constructed
in exercise 11.4 on an input using the big-step semantics of 𝜆Y.

Problem 11.6— The goal of this problem is to show that the product type of 𝜆Y is not strictly
necessary by translating a program with product types in 𝜆× into one without in 𝜆→. The
idea is that a map 𝐴 × 𝐵 → 𝑅 is the same as a map 𝐴 → 𝐵 → 𝑅 by currying, but this

1



forces that products should only ever occur on the left of an arrow. In order to then remove
𝐴 × 𝐵, we need to turn this type into one with where the product is on the left of an arrow.
To this end, let 𝑅 be a fixed result type and write 𝐴∗ for the type 𝐴 → 𝑅. We then define a
translation 𝐴† of types as follows.

𝐴† = (𝐴𝑢)∗

𝐍𝑢 = 𝐍∗

(𝐴 × 𝐵)𝑢 = 𝐴† → 𝐵† → 𝑅
(𝐴 → 𝐵)𝑢 = (𝐴† → 𝐵†)∗

Clearly, 𝐴† has no product types left in it. For example, we get

(𝐍 × 𝐍)† = (𝐍∗∗ → 𝐍∗∗ → 𝑅) → 𝑅 .

Given a context Γ, we define Γ† to be element-wise translation:

(𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛)† = 𝑥1 ∶ 𝐴†
1, … , 𝑥𝑛 ∶ 𝐴†

𝑛

Your task for this problem is to translate a term Γ ⊢ 𝑡 ∶ 𝐴 into a term Γ† ⊢ 𝑡† ∶ 𝐴†.
The type 𝐴∗ can be understood as a kind of negation of 𝐴, if we see 𝐴 as a proposition and 𝑅
is the false proposition. Under this view, 𝐴∗∗ is like a double negation of 𝐴. Analogously to
intuitionistic logic, we have a term 𝜆𝑥. 𝜆𝑓. 𝑓𝑥 ∶ 𝐴 → 𝐴∗∗ but there is not necessarily a term
going the other direction.

Problem 11.7 — Define evaluation contexts 𝐸 for 𝜆Y to be given by the following grammar.

𝐸 ⩴ − ∣ 𝐸 𝑡 ∣ 𝐬𝐮𝐜𝐜 𝐸 ∣ 𝐩𝐫𝐞𝐝 𝐸 ∣ 𝐢𝐟0 𝐸 𝐭𝐡𝐞𝐧 𝑠1 𝐞𝐥𝐬𝐞 𝑠2 ∣ ⟨𝐸, 𝑡⟩ ∣ ⟨𝑡, 𝐸⟩ ∣ 𝐟𝐬𝐭 𝐸 ∣ 𝐬𝐧𝐝 𝐸

a) Define a relation ≻ on 𝜆Y terms, such that the contextual closure ⟶ given by

𝑡 ≻ 𝑠
𝐸[𝑡] ⟶ 𝐸[𝑠]

agrees with the big-step operational semantics in the following sense.

b) Recall from problem 4.6 that we denote by the preorder closure rt(⟶) of ⟶. Prove
that if 𝑡 ⇓𝐴 𝑣, then 𝑡 𝑣.

2


