Assignment 11

Exercises on lecture 11/chapter 11

19 November 2024

We will work on the following exercises during the next exercise class.

Exercise 11.1 — Give A\y-terms - * : N — N — Noand - fib : N — N — N that
implement, respectively, the computation of multiplication and Fibonacci numbers.

Exercise 11.2 — Recall that the class of primitive recursive functions on the natural numbers
consists of constant 0 maps, successor, projections, composition and primitive recursion. Ex-
cept the last two, all the others are already built into Ay, and composition is straightforward
to implement in A\y. Amap h: N X Y — Z is said to be given by primitive recursion of
functions f: Y — Zand g: N x Y x Z — Z if the following two equations hold.

h(0,y) = f(y)
h(n + 17y) = g(nvy’ h(nvy)>

Given terms t: A — B and s: N — A — B — B, define primitive recursion as a term
PR(t,s): N — A — Bin \y.

Exercise 11.3 — Define a Ay-term of type N — N — N that implements the Ackermann
function. This is a function that cannot be implemented by just primitive recursion on natural
numbers but requires you to use (primitive) recursion on function types.

Exercise 11.4 — The final piece to Turing-completeness, when combined with exercise [L1.4,
is the so-called minimisation operator or g-recursion. A function f: N — N, is said to be
given by p-recursion from a function g: N — N, if the following holds.

1, otherwise

F(n) {min{keh\l|k2nandg(k):0}, if there is a k > n with g(k) =0
n) =

Foratermt: N — N, give a term Min(¢): N — N that implements minimisation in \y.

Exercise 11.5 — Pick a term ¢t: N — N and evaluate the term Min(t) that you constructed
in exercise on an input using the big-step semantics of Ay.

Problem 11.6 — The goal of this problem is to show that the product type of Ay is not strictly
necessary by translating a program with product types in A, into one without in A_,. The
idea is that a map A x B — R is the same as a map A — B — R by currying, but this

forces that products should only ever occur on the left of an arrow. In order to then remove
A x B, we need to turn this type into one with where the product is on the left of an arrow.
To this end, let R be a fixed result type and write A* for the type A — R. We then define a
translation A" of types as follows.
At = (Aw)”
N" = N*
(Ax B)*=A" - Bl - R
(A— B)* = (Al = Bt)’

Clearly, A" has no product types left in it. For example, we get
(NxN) = (N* - N* - R) = R.
Given a context I', we define I'T to be element-wise translation:

(wy: Ay, sz, s AT = AJ{, ey Ty A},

Your task for this problem is to translate a term I' - ¢ : A into a term I'T - ¢T : AT,

The type A* can be understood as a kind of negation of A, if we see A as a proposition and R
is the false proposition. Under this view, A** is like a double negation of A. Analogously to
intuitionistic logic, we have a term Ax. Af. fz : A — A** but there is not necessarily a term
going the other direction.

Problem 11.7 — Define evaluation contexts I for Ay to be given by the following grammar.
E==—| Et|succ E | pred F | if, E then s, else s, | (E,t) | (t,E) | fst E | snd F

a) Define a relation > on A, terms, such that the contextual closure — given by

t>s
E[t] — Els]

agrees with the big-step operational semantics in the following sense.

b) Recall from problem [t.6 that we denote by —s the preorder closure rt(—s) of —s. Prove
thatif¢ | 4 v, thent —» v.

