Assignment 11

Exercises on lecture 11/chapter 11

19 November 2024

We will work on the following exercises during the next exercise class.

Exercise 11.1 – Give λ_{Y} -terms $\vdash * : \mathbf{N} \to \mathbf{N} \to \mathbf{N}$ and \vdash fib $: \mathbf{N} \to \mathbf{N} \to \mathbf{N}$ that implement, respectively, the computation of multiplication and Fibonacci numbers.

Exercise 11.2 – Recall that the class of primitive recursive functions on the natural numbers consists of constant 0 maps, successor, projections, composition and primitive recursion. Except the last two, all the others are already built into λ_{Y} , and composition is straightforward to implement in λ_{Y} . A map $h: \mathbb{N} \times Y \to Z$ is said to be given by primitive recursion of functions $f: Y \to Z$ and $g: \mathbb{N} \times Y \times Z \to Z$ if the following two equations hold. h(0, y) = f(y)

$$h(0, y) = f(y)$$

 $h(n + 1, y) = g(n, y, h(n, y))$

Given terms $t: A \to B$ and $s: \mathbb{N} \to A \to B \to B$, define primitive recursion as a term $PR(t,s): \mathbb{N} \to A \to B$ in λ_{Y} .

Exercise 11.3 – Define a λ_{Y} -term of type $\mathbf{N} \to \mathbf{N} \to \mathbf{N}$ that implements the Ackermann function. This is a function that cannot be implemented by just primitive recursion on natural numbers but requires you to use (primitive) recursion on function types.

Exercise 11.4 — The final piece to Turing-completeness, when combined with exercise 11.2, is the so-called minimisation operator or μ -recursion. A function $f \colon \mathbb{N} \to \mathbb{N}_{\perp}$ is said to be given by μ -recursion from a function $g \colon \mathbb{N} \to \mathbb{N}$, if the following holds.

$$f(n) = \begin{cases} \min\{k \in \mathbb{N} \mid k \ge n \text{ and } g(k) = 0\}, & \text{if there is a } k \ge n \text{ with } g(k) = 0\\ \bot, & \text{otherwise} \end{cases}$$

For a term $t \colon \mathbf{N} \to \mathbf{N}$, give a term $\operatorname{Min}(t) \colon \mathbf{N} \to \mathbf{N}$ that implements minimisation in $\lambda_{\mathbf{Y}}$.

Exercise 11.5 – Pick a term $t: \mathbf{N} \to \mathbf{N}$ and evaluate the term Min(t) that you constructed in exercise 11.4 on an input using the big-step semantics of λ_{Y} .

Problem 11.6 — The goal of this problem is to show that the product type of λ_{Y} is not strictly necessary by translating a program with product types in λ_{\times} into one without in λ_{\rightarrow} . The idea is that a map $A \times B \rightarrow R$ is the same as a map $A \rightarrow B \rightarrow R$ by currying, but this

forces that products should only ever occur on the left of an arrow. In order to then remove $A \times B$, we need to turn this type into one with where the product is on the left of an arrow. To this end, let R be a fixed result type and write A^* for the type $A \to R$. We then define a translation A^{\dagger} of types as follows.

$$A^{\dagger} = (A^{u})^{*}$$
$$\mathbf{N}^{u} = \mathbf{N}^{*}$$
$$(A \times B)^{u} = A^{\dagger} \to B^{\dagger} \to R$$
$$(A \to B)^{u} = (A^{\dagger} \to B^{\dagger})^{*}$$

Clearly, A^{\dagger} has no product types left in it. For example, we get

$$(\mathbf{N} \times \mathbf{N})^{\dagger} = (\mathbf{N}^{**} \to \mathbf{N}^{**} \to R) \to R.$$

Given a context $\Gamma,$ we define Γ^{\dagger} to be element-wise translation:

$$(x_1:A_1,\ldots,x_n:A_n)^\dagger=x_1:A_1^\dagger,\ldots,x_n:A_n^\dagger$$

Your task for this problem is to translate a term $\Gamma \vdash t : A$ into a term $\Gamma^{\dagger} \vdash t^{\dagger} : A^{\dagger}$.

The type A^* can be understood as a kind of negation of A, if we see A as a proposition and R is the false proposition. Under this view, A^{**} is like a double negation of A. Analogously to intuitionistic logic, we have a term λx . λf . $fx : A \to A^{**}$ but there is not necessarily a term going the other direction.

Problem 11.7 – Define evaluation contexts *E* for $\lambda_{\rm Y}$ to be given by the following grammar.

 $E \coloneqq - \mid E t \mid \textbf{succ} \ E \mid \textbf{pred} \ E \mid \textbf{if}_0 \ E \ \textbf{then} \ s_1 \ \textbf{else} \ s_2 \mid \langle E, t \rangle \mid \langle t, E \rangle \mid \textbf{fst} \ E \mid \textbf{snd} \ E$

a) Define a relation \succ on $\lambda_{\rm Y}$ terms, such that the contextual closure \longrightarrow given by

$$\frac{t \succ s}{E[t] \longrightarrow E[s]}$$

agrees with the big-step operational semantics in the following sense.

b) Recall from problem 4.6 that we denote by \twoheadrightarrow the preorder closure $\operatorname{rt}(\longrightarrow)$ of \longrightarrow . Prove that if $t \Downarrow_A v$, then $t \twoheadrightarrow v$.