Assignment 10

Exercises on lecture 10/chapter 10

12 November 2024

We will work on the following exercises during the next exercise class.

Exercise 10.1 – Let \mathcal{C} and \mathcal{D} be categories, and $G: \mathcal{D} \to \mathcal{C}$. Suppose that there is a object map $F_0: |\mathcal{C}| \to |\mathcal{D}|$ together with a family of morphisms $\eta_A: A \to G_0(F_0A)$ indexed by objects A in \mathcal{C} , such that (F_0A, η_A) is a reflection of A along G for all A in \mathcal{C} . Show that F_0 can be extended to a functor F, such that the family $\{\eta_A\}_{A \in |\mathcal{C}|}$ assembles into a natural transformation and $F \dashv G$.

Exercise 10.2 — Let P and Q be posets, and consider them as small categories \mathcal{P} and Q like in example 2.4.4. Prove that the functor category $[\mathcal{P}, Q]$ is isomorphic to the poset [P, Q] of monotone maps considered as small category.

Exercise 10.3 – Prove the interchange law from lemma 10.7.

Exercise 10.4 — Let \mathcal{C} be a locally small category. Prove that the mapping $\mathcal{C}(-,+)$ defined in definition 10.3 is indeed a functor $\mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathbf{Set}$. Show moreover that $f \colon A \to B$ is an isomorphism in \mathcal{C} if and only if $\mathcal{C}(f,+) \colon \mathcal{C}(B,+) \to \mathcal{C}(A,+)$ is an isomorphism of functors.

Exercise 10.5 – Prove the Yoneda lemma 10.4.

Exercise 10.6 – Finish the proof of theorem 10.9, by showing that in the first step $\lambda_{A,B} \circ \rho_{A,B} =$ id, and that **??** 10.3 commutes in the second step.

Exercise 10.7 — Let $I: \omega \mathbf{CPO}_s \to \omega \mathbf{CPO}_\perp$ be the inclusion of strict continuous maps into all continuous maps. Is the composed functor $I \circ \text{Flat}: \mathbf{Set} \to \omega \mathbf{CPO}_\perp$ left adjoint to the forgetful functor $\omega \mathbf{CPO}_\perp \to \mathbf{Set}$? If not, provide a counterexample.

Exercise 10.8 – Prove the essential uniqueness of adjoints in theorem 10.14 and formulate its dual.

Exercise 10.9 – Show that terminal objects can be characterised as adjunctions. (Hint: Consider the category 1 with one object 0 and only the identity morphism id₀.)

Exercise 10.10 – Show that the categories Set, Pos, ωCPO and ωCPO_{\perp} have terminal objects.

Exercise 10.11 – Prove that **Pos** and ω **CPO** are Cartesian closed. (Hint: Use definition 5.6, lemma 8.1, and theorems 7.5, 8.4 and 8.6 and the Cartesian closure of **Set**.)

Exercise 10.12 – Show that the category \mathbf{Set}_{\bullet} of based sets and maps is not Cartesian closed. Hint: The issue is the base point of the product.

Problem 10.13 — Recall from example 2.4 that a preorder \leq on a set P is a reflexive and transitive relation, not necessarily anti-symmetric. Let **Preord** be the category of pairs (P, \leq) of a set P with preorder on it and monotone maps between them (as for posets: $p \leq q \implies f(p) \leq f(q)$). There is an inclusion functor $I: \mathbf{Pos} \to \mathbf{Preord}$. Show that I has a left adjoint $F: \mathbf{Preord} \to \mathbf{Pos}$.

Problem 10.14 – Denote by $I: \omega CPO \rightarrow Pos$ the inclusion of $\omega CPOs$ and continuous maps into poset and monotone maps. Show that *I* has a left adjoint.