Robotics

Erwin M. Bakker| LIACS Media Lab

Universiteit Leiden

Bij ons leer je de wereld kennen

Organization and Overview

 Period:
 February 7th – May 23rd 2022

 Time:
 Monday 16.15 – 18.00

 Place:
 Room 407 - 409

 Lecturer:
 Erwin M. Bakker (<u>erwin@liacs.nl</u>)

 Assistant:
 Hainan Yu (<u>h.yu@liacs.leidenuniv.nl</u>)

NB Register on Brightspace

Schedule:	
7-2	Introduction and Overview
14-2	Locomotion and Inverse Kinematics
21-2	Robotics Sensors and Image Processing
28-2	SLAM + SLAM Workshop
7-3	Mobile Robot Challenge Introduction
14-3	Project Proposals I (presentation by students)
21-3	Project Proposals II (presentation by students)
28-3	Robotics Vision
4-4	Robotics Reinforcement Learning
11-4	Robotics Reinforcement Learning Workshop II
18-4	No Class (Eastern)
25-4	Project Progress I (presentations by students)
2-5	Project Progress II (presentations by students)
9-5	Mobile Robot Challenge
16-5	Project Demos I
23-5	Project Demos II

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

Grading (6 ECTS):

- Presentations and Robotics Project (60% of grade).
- Class discussions, attendance, workshops and assignments (40% of grade).
- It is necessary to be at every class and to complete every workshop and assignment.

Overview

- Sensors
- Lane Tracking
- OpenCV
- Line Tracking

Universiteit Leiden. Bij ons leer je de wereld kennen

ROBOTICS SENSORS

- Bumper switches
- Acceleration, Orientation, Magnetic
- IR/Visible Light
- Pressure, Force
- Ultrasonic, Lidar, Radar
- Camera's, stereo camera's
- Structured Light Camera's

<section-header><section-header><section-header><text><text><text>

Illusion and Dazzle: Adversarial Optical Channel Exploits against Lidars for Automotive Applications (2017)

Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim

Korea Advanced Institute of Science and Technology, Dajeon, Republic of Korea, {h.c.shin, dohyunjk, dbwls8724, yongdaek}@kaist.ac.kr

Abstract. With the advancement in computing, sensing, and vehicle electronics, autonomous vehicles are being realized. For autonomous driving, environment perception sensors such as radars, lidars, and vision sensors play core roles as the eyes of a vehicle; therefore, their reliability cannot be compromised. In this work, we present a spoofing by relaying attack, which can not only induce illusions in the lidar output but can also cause the illusions to appear closer than the location of a spoofing device. In a recent work, the former attack is shown to be effective, but the latter one was never shown. Additionally, we present a novel saturation attack against lidars, which can completely incapacitate a lidar from sensing a certain direction. The effectiveness of both the approaches is experimentally verified against Velodyne's VLP-16.

Keywords: attack, autonomous car, sensor, lidar, saturating, spoofing /Multiple induced fake dots

Many more studies since, also attacks against multimodal systems, e.g., Y. Chao et al., Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks, June 2021

The perfect anti-collision solution for any environment Technology Comparison distance sensors for robotics Infrared Triangulation TeraRange Ultrasound Laser Time-of-Fli High reading frequency \checkmark X × × × Long range \checkmark \checkmark Minimal weight \checkmark × × Small form factor \checkmark \checkmark Class 1 lasers only \checkmark \checkmark Eye safety Use with multiple sensors × X ×

Universiteit Leiden. Bij ons leer je de wereld kennen

RaspberryPi Sensors Kit

GrovePi+ Board for Raspberry Pi

De ATMEGA328 microcontroller communicates with the Raspberry Pi.

- Sound Sensor
- Temperature & Humidity
- Light Sensor
- Button
- UItrasonic Ranger
- Rotary Angle Sensor
- Gas Sensor

Symbol	MQ-2	MQ-3	MQ-5	MQ-9
Detect Gas	Combustible Gas, Smoke	Alcohol Vapor	LPG, Natural Gas, Town Gas	Carbon Monoxide, Coal Gas, Liquified Gas
Detect Concentration	300-10000ppm	0.04-4mg/L Alcohol	300-10000ppm	10-1000ppm CO;100-10000PPm Gas

Lane Tracking

- · Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006
- A. Bar Hillel, R. Lerner, D. Levi, G. Raz, Recent progress in road and lane detection: a survey. Machine Vision and Applications (2014) 25:727-745
- · J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.
- J. Sattar, J. Mo, SafeDrive: A Robust Lane Tracking System for Autonomous and Assisted Driving Under Limited Visibility. January 31, 2017

(<u>https://arxiv.org/abs/1701.08449</u>)

Some example project for detecting road features using OpenCV: https://navoshta.com/detecting-road-features/ by Alex Staravoitau

Universiteit Leiden. Bij ons leer je de wereld kennen

Lane Tracking

Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006

(a) lane departure warning (b) driver attention monitoring

(c) vehicle control

Universiteit Leiden. Bij ons leer je de wereld kennen

segmented line lane markings

(a) A simple road with solid and (b) Circular reflectors and solidline lane markings with nonuniform pavement texture

(c) Dark on light lane markings (d) A combination of segmented with circular reflectors lines, circular reflectors, and phys-

trees obscuring lane markings

(e) Highly cluttered shadows from (f) Freeway overpass causing extreme lighting changes and reducing road marking contrast

Fig. 3. Images of the same stretch of road shown in the daytime and nighttime

Universiteit Leiden. Bij ons leer je de wereld kennen

Kalman Filter: Linear Quadratic Estimation to cope with noisy data.

System	Use	^a Road Model	Feature Extraction	Postprocessing	Tracking	Evaluation	Comments
VaMoRs (1992) [16]	A	Clothoid Model with vertical curvature	Edge Elements	eliminates points which are not collinear	Linear vehi- cle dynam- ics model	Single frame images	Limited processing power. Simple edge detection fails in difficult situations.
YARF (1995) [33]	A	Circular road segments on flat plane	Hue based segmentation and edge detection	Averaging and linear median squares estima- tion	Operation on single frame	Positive detection rates for feature extraction, single frame images	Multiple detectors. Limited to yellow and white stripes.
ALVINN (1996) [19], [36]	A	Flat road model for generating training data	Image intensity	Neural Network	None	Road tests, various er- ror measure associated with neural networks	Neural network makes it difficult to decouple control from detection, requires lots of training
RALPH (1996) [25]	A B	Constant curvature on flat plane	scan line matched to template	Template matching to slowly evolving near template and fast evolv- ing far template	No inter- frame tracking described	Single frame images	template methods can fail near construction zone or areas where the road has changed. Shows limited quantita- tive results
GOLD (1998) [20]	С	Constant lane width on flat plane	Adaptive thresh- olding of pixel differences	Morphological widen- ing	Operation on single frame	Single frame images	Assumes line markings on dark road, some ro- bustness to lighting and occlusion
LOIS (1998) [34]	B A	Parabolic approxima- tion on flat plane	Edge magnitudes and orientations	Maximum a posteriori estimation evaluated by Metropolis algorithm	Kalman fil- tering	Error histogram from one drive. Standard de- viation of error 13cm	Robust to shadowing in presence of strong lane markings. Other- wise untested.
LANA (1999) [24]	B A	Parabolic approxima- tion on flat plane	DCT coefficients for diagonally dominant edges	Maximum a posteriori estimation	Operation on single frame	Single frame images, comparison to LOIS shown	Only using diagonal DCT coefficients limits detection based on orientation of vehicle
Taylor et al. (1999) [12]	A	Constant curvature on flat plane	Template match- ing	Hough transform	Kalman Fil- ter input into various con- trol schemes	Performance of con- trollers shown	Focussed on controller performance. Limited real-world testing.
Ma et al. (2000) [13]	A B C	Circular road model on flat plane	Likelihood based on gradient im- age	Fusion on radar and op- tical images	Operation on single frame	Single frame images	Designed for elevated or bordered rural roads.

System	Use	^a Road Model	Feature Extraction	Postprocessing	Tracking	Evaluation	Comments
Southall et al. (2001) [30]	С	Curvature and rate of change of curvature	Threshold both pixel values and cross-correlation to dark-bright- dark function	Factored sampling for particle filter	Particle Filtering via CONDEN- SATION	Estimates shown for an image sequence, no ground truth or quantitative results	Very limited results and testing. Unclear whether feature extraction will work in difficult situations.
Kwon and Lee (2002) [4], [31]	В	Piecewise linear	multiple "feature transformation modules"	combined with data fu- sion and constraint sat- isfaction, heuristic de- parture warning func- tion	nonlinear filtering	analysis of departure warning system given	Good architecture for sensor fusion. Testing limited to false alarm rate of departure warn- ing.
DARVIN (2002) [5]	A B	DGPS based maps of roads	Image gradient	match to DGPS data	nonlinear filtering	selected frames from experimentation	Directed towards urban driving. Heavy reliance on GPS data.
Lee et al. (2003) [37], [38]	В	Straight road on flat plane	Edge distribution function	Hough transform to ex- tract lanes	Not discussed	Detection rate of lane departure warning	Robust to lighting. Will not work for circular re- flectors.
Apostoloff et al. (2003) [29]	С	Not discussed	lane markers, road edge, color, width	Cue scheduling to de- termine which cues are used	Particle Filtering via Distillation	Success rate, mean ab- solute error for position, yaw, and road width.	Possibly fail in condi- tions of strong cues that contradict each other (i.e. fig. 2b)
Kang et al. (2003) [28]	D	Straight road on flat plane	Edge direction and magnitude	Connected-component analysis, Dynamic programming	Single frame operation	Qualitative comparison to hough transform based techniques, Single images shown	Focusses on showing visual comparison to hough transform based technique.
Nedevschi et al. (2004) [22]	D	3D model based on clothoids and roll angle	edge detection	outlier removal based on 3D location found with stereo camera sys- tem, roll angle detected	Kalman fil- tering	single images from road scenes with clearly marked lane boundaries	Simple edge detection not robust to shadows, occlusions
This paper (2004)	C B	Parabolic approxima- tion on flat plane	Steerable filters, adaptive road template	Statistical and motion based outlier removal	Kalman Fil- tering	Extensive error evalua- tion described in sec- tion V-B	

Steerable Filters

Fig. 7. A basis set for steerable filters based on the second derivatives of a two-dimensional Gaussian.

(b) Detection results for lines tuned to the lane angle.

Fig. 9. Filter results when lane markings are shadowed with complex shadows and non-uniform road materials.

Universiteit Leiden. Bij ons leer je de wereld kennen

Fig. 8. Application of Steerable filter road marking recognition for circular reflectors and solid lines on a highway

Inverse Perspective Warping and Template Matching

A perspective transformation, can be used to obtain an overview of the road ahead of the vehicle. This can make the problem of lane boundaries extraction easier.

• Curvature detection done by using an intensity template of past images in order to detect the curvature of the road ahead.

Inverse Perspective Warping Universiteit Leiden. Bij ons leer je de wereld kennen

(b) Inverse perspective warping showing curvature detection (small white dots) and template (lower left corner)

Fig. 10. Curvature detection in the VioLET lane tracking Document1 - Word

A. System Test-bed Configuration and Test Conditions

Fig. 11. The LISA-Q intelligent vehicle test bed. Inset are close up views of the front camera (left inset) used for detection and tracking and side camera (right inset) used for generating ground truth.

Fig. 14. The 65Km route in San Diego used in the evaluation. The route is overlayed on aerial photography. Points A, B, C, and D are sections of road used in the evaluation (photography courtesy USGS)

Challenges: Occlusions and Highlights

Fig. 17. Scenes from the special case scenarios of complex shadowing (top row) and tunnels (bottom row). These scenes highlight the extreme variability that can occur within short sections of road.

Fig. 16. Error due to occlusion of the road by a vehicle on the dusk dataset on road segment C. The red horizontal line shows the proximity of the occluding vehicle detected by the in-vehicle LASER RADAR sensors.

Universiteit Leiden. Bij ons leer je de wereld kennen

Road Detection

- 1. H. Kong, et al. General road detection from a single image, IEEE Transactions on Image Processing, Vol. 19, Issue 8, Aug. 2010.
- 2. J.M. Alvarez, et al., Road Detection Based on Illuminant Invariance, IEEE Transactions on Intelligent Transportation Systems, 2010.

Road Detection Based on Illuminant Invariance

Goal: Identify all pixels that belong to the road. Challenges:

- Images from a mobile platform, outdoor: shadows, sunlight, etc.
- Changing background: trees, buildings and many (moving) objects: cars, bikes, pedestrians, dogs, signs, etc.
- Road types in different shapes and forms.

Sensors:

• Monocular => Features: Color, Texture, etc.

J.M. Alvarez, et al. 2010

Universiteit Leiden. Bij ons leer je de wereld kennen

Road Detection Based on Illuminant Invariance

Road Detection Based on Illuminant Invariance

Fig. 7. (Left) Color image I_{RGB} . (Middle) Corresponding \mathcal{I} computed using the invariant angle θ . (Right) Nonparametric road model built using the normalized histogram formed with the surrounding region of several seeds (nine in this case) placed at the bottom part of \mathcal{I} .

Entropy based camera calibration resulted in Θ is the invariant angle that allows us to compute I a grayscale image invariant to lighting variations.

Fig. 12. Road-detection results. Example results include the following: (First column) Images from a sunny day with annoying shadows and traffic; (second column) images from a wet road without puddles with dim shadows and traffic; (third column) different scenarios; (fourth column) different road shapes; (last column) presence of other vehicles.

General road detection from a single image H. Kong et al. 2010

Road in different shapes and forms under different lighting with changes in colors, and textures.

General road detection from a single image H. Kong et al. 2010

Road in different shapes and forms under different lighting with changes in colors, and textures.

Detection

- 1. Vanishing point estimation of main road
- 2. Segmentation based on this vanishing point

Voting scheme:

- High-confidence voters using texture orientations resulting from Gabor filters (5 scales 36 orientations)
- Vanishing-point-constrained edge detection for road boundaries

Gabor complex responses for 4 points.

Max average response over 5 scales

Gabor kernels: real part (row 1-5), imaginary part (row 6-10)

Universiteit Leiden. Bij ons leer je de wereld kennen

General road detection from a single image H. Kong et al. 2010

Road in different shapes and forms under different lighting with changes in colors, and textures.

Detection

- 1. Vanishing point estimation of main road
- 2. Segmentation based on this vanishing point

Voting scheme:

- High-confidence voters using texture orientations resulting from Gabor filters (5 scales 36 orientations)
- Vanishing-point-constrained edge detection for road boundaries

Universiteit Leiden. Bij ons leer je de wereld kennen

Line segments

vanishing point with rays orientation consistent rays compute color difference of neighboring regions

dominant border (red) => vanishing point adaptation

Lane Tracking

J. Fritsch, T. Kühnl, F. Kummert, **Monocular Road Terrain Detection by Combining Visual and Spatial Information.** IEEE Transactions on Intelligent Transportation Systems, 2014.

Ground Truth

Results

• Ego Lanes

Universiteit Leiden. Bij ons leer je de wereld kennen

Results

RESULTS OF PIXEL-BASED EVALUATION.

	perspective road area						
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}
BL	89.1	85.6	79.4	92.8	78.9	50.4	74.8
SPRAY	95.6	94.5	94.0	95.0	92.5	12.8	89.5
		1	netric ro	ad area			
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}
BL	70.0	66.3	56.4	80.5	68.1	39.7	49.6
SPRAY	89.8	87.0	87.1	86.9	89.9	8.2	77.0
	perspective ego-lane						
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}
BL	80.1	81.7	76.4	87.7	90.2	9.0	69.1
SPRAY	85.2	87.6	84.7	90.6	93.6	5.4	77.9
	metric ego-lane						
	AP	Fmax	Prec.	Recall	Acc	FPR	Q_{test}
DI		CO 0	566	CAC	02.5	4.0	42.0
BL	61.7	60.3	56.6	04.0	92.5	4.0	45.2

(BL = Baseline)

Harmonic mean of precision and recall.

Image Processing using OpenCV

Core module: the basic building blocks of this library for manipulating the images on a pixel level. Imgproc module: the image processing (manipulation) functions inside OpenCV. High Level GUI and Media (highgui module) Image Input and Output (imgcodecs module) Video Input and Output (videoio module) Camera calibration and 3D reconstruction (calib3d module) 2D Features framework (feature2d module): feature points detectors, descriptors and matching framework found inside OpenCV. Video analysis (video module) algorithms usable on your video streams like motion extraction, feature tracking and foreground extractions. Object Detection (objdetect module) face detectors, etc. Deep Neural Networks (dnn module) Machine Learning (ml module) machine learning classes for statistical classification, regression and clustering of data. Graph API (gapi module) Computational photography (photo module) for advanced photo processing. Images stitching (stitching module) create photo panoramas and more with OpenCV stitching pipeline. GPU-Accelerated Computer Vision (cuda module); OpenCV iOS:

Universiteit Leiden. Bij ons leer je de wereld kennen

Lane Tracking

Some example project for detecting road features using OpenCV: <u>https://navoshta.com/detecting-road-features/</u> by Alex Staravoitau

Overview Processing Pipeline

Camera calibration

• Each camera gives image distortions, these can be rectified using information from a camera calibration. OpenCV has functionality to calibrate and correct camera images. Calibration is done using chessboard images.

Edge detection

• OpenCV has many different edge detectors using gradient and color information. These edges can be used for the detection of structures such as lines etc.

Perspective transformation

• A perspective transformation, can be used to obtain an overview of the road ahead of the vehicle. This can make the problem of lane boundaries extraction easier.

Fitting boundary lines

- The resulting frame pixels are determined that may belong to lane boundaries.
- · These are then used to approximate lines, road properties and vehicle position.
- Furthermore a rough estimate on road curvature and vehicle position within the lane is determined using known road dimensions.

Universiteit Leiden. Bij ons leer je de wereld kennen

Processing Pipeline: Camera Calibration

Original vs. calibrated images

... cv2.findChessboardCorners(image, (9, 6), None)

// Inner corners 9x6 ... cv2.calibrateCamera(pattern_points, image_points, (image.shape[1], image.shape[0]), None, None)

corrected_image = cv2.undistort(image, self.camera_matrix, self.dist_coefficients, None, self.camera_matrix)

Image Processing usi	ing Cor	volutio	nal Kerne
0	Operation	Kernel ω	Image result g(x,y)
$g(x,y)=\omega*f(x,y)=\sum_{dx=-a}^{a}\sum_{dy=-b}^{b}\omega(dx,dy)f(x+dx,y+dy)$	Identity	$\left[\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$	C.
		$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
f(x,y)	Edge detection	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
		$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
	Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	https://en.wikiped	<u>lia.org/wiki/Kernel_(im</u>	age processing)
Universiteit Leiden. Bij ons leer je de wereld kennen			

Processing Pipeline: Perspective Transformation

Original vs. bird's eye view

.... transform_matrix = cv2.getPerspectiveTransform(source, destination)
.... image = cv2.warpPerspective(image, transform_matrix, (w, h))

Universiteit Leiden. Bij ons leer je de wereld kennen

Processing Pipeline: Perspective Transformation

Boundary detection pipeline

Left: The *original* image after the camera calibration and perspective transform.

Right:After edge detection with edges highlighted in green and blue.Scanning windows boundaries for areas with pixel that may belong to lines are highlighted in yellow,
A second order polynomial approximation of the collected points in red.

<section-header>

Universiteit Leiden. Bij ons leer je de wereld kennen

Some remarks

Alex Staravoitau:

"This clearly is a very naive way of detecting and tracking road features, and wouldn't be used in real world application as-is, since it is likely to fail in too many scenarios: "

- Going up or down the hill.
- Changing weather conditions.
- Worn out lane markings.
- Obstruction by other vehicles or vehicles obstructing each other.
- Vehicles and vehicle positions different from those classifier was trained on.
- ...

Robotics Project Proposals Presentations Monday 14-3 2022

Present your Robotics Project Proposal during a **5 minute (max)** talk. Clearly state the title of your project, the team members, your goals, how you will pursue them, what are the challenges and what at least can and should be delivered on the demo day on May 16th and May 23rd 2022.

Note: Groups of 1-5 members are allowed.

The presentation should contain slides for:

- 1. Title and group members.
- 2. Goal of the project.
- 3. How will you pursue these goals.
- 4. What are the challenges.
- 5. What at least can and should be delivered on the demo days on May 16th and May 23rd 2022.

The LIACS Media Lab can support your project with some materials for your project. Please clearly state any materials that you would need for your proposal. Note that these materials are limited so project goals may need to be adjusted accordingly.

Each presentation will be followed by a short class discussion.

Previous Projects

- 1. Evolutionary Locomotion
- 2. Nao plays Tic-Tac-Toe
- 3. Slam Robot Project.
- 4. Dolphin Drone: Drone Recognition and Maneuvering 4. BorrelBot with Hoops.
- 5. Delivery Drone.
- 6. Programming a NAO to play a tune using a xylophone.
- 7. Floor mapping with Swarm Robotics
- 8. Tootballing Yetiborg
- 9. Cat Flap Opening Based on Audio/Video/RFID
- 10. DrawBot
- 11. Traffic coordination (simulation).
- 12. Plane filling curves (simulation).

- 1. AimBot
- 2. Artificial Muscles
- 3. Ball Tracking Car
- 5. Fetch Bot
- 6. Floor Mapping Robot
- 7. Gesture Control Pachenko
- 8. Hexapod
- 9. Nao Pose
- 10. Position Estimation
- 11. Race Car Training
- 12. Face Touch

33

Traffic coordination (simulation).

S.P.I.N. - Spider Python INator

Marcel Huijben (s1780107) Martijn Swenne (s1923889) Sebastiaan Alvarez Rodriguez (s1810979) Robin Voetter (s1835130)

References

- 1. Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006
- 2. A. Bar Hillel, R. Lerner, D. Levi, G. Raz, Recent progress in road and lane detection: a survey. Machine Vision and Applications (2014) 25:727–745
- 3. J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.
- 4. J. Sattar, J. Mo, SafeDrive: A Robust Lane Tracking System for Autonomous and Assisted Driving Under Limited Visibility. January 31, 2017 (https://arxiv.org/abs/1701.08449)
- 5. https://navoshta.com/detecting-road-features/ by Alex Staravoitau
- 6. OpenCV.org

Robotics

Bij ons leer je de wereld kennen

Robotics Discussion Session Wednesday 24-2 at 15.15 Robotics Kaltura Room

During this session we discuss some practical aspects of robotics in an informal and interactive setting.

Especially for people who did not work with microcontrollers, servo's, sensors etc. before.

Team 1	Team 2	Team 3
Joost Mollen	Yannick Ligthart	Rachel Losacco
Marianne Bossema	Aaron Kannangara	Ioannis Politopoulos
Martijn Wester	Renzo Baasdam	Stella Tsilia
ordy van Miltenburg	Orson Peters	Alex Tripsas
	Mihai Ghidoveanu	Micha Heilman
Team 4	Team 5	Team 6
Feam 4	Team 5	Team 6
Abhishek Sira Chandrashekar	Jesse Jonathan ('Nathan') van der Putten	Liyang He
Ankita Parashar	Aaron Dunlea	Yuxin Xiong
Hassan Ibrahim	Malte Wilhelm	Hansha Leng
Thomas Gmelig Meyling	Sophie van der Bliek	Jiakun Sun
		Jincheng Li
Team 7	Team 8	Team 9
Robin Voetter	Rick Boks	Elgar van der Zande
Sebastiaan Alvarez-Rodriguez	Rens Dofferhoff	Luc de Jonckheere
Martijn Swenne	Levi Vos	
-		

ſ

Visual lane tracking on several urban scenes from YouTubeTM videos. Snapshot (1a) (output in (1b)): lane markers not distinct in the center, though side markers are detectable. Snapshot (1c) (output in (1d)): lane markers mostly washed out. Snapshot (1e) (output in (1f)): evening drive, low-light conditions make the lane markers almost undetectable. Snapshot (1g) (output in (1h)): snow-covered roads, no lane markers visible.

Universiteit Leiden. Bij ons leer je de wereld kennen

System Overview

The process of extracting pixels with common" visual content.

The feature-based matching (in red lines) are used to choose the point features, and for each feature point, a square subwindow is extracted from the candidate image, centered on that feature point.

Stitching together all these windows results in an image with most uncommon" visual elements removed.

Road Detection

- 1. H. Kong, et al. General road detection from a single image, IEEE Transactions on Image Processing, Vol. 19, Issue 8, Aug. 2010.
- 2. J.M. Alvarez, et al., Road Detection Based on Illuminant Invariance, IEEE Transactions on Intelligent Transportation Systems, 2010.

Road Detection Based on Illuminant Invariance

Goal: Identify all pixels that belong to the road. Challenges:

- Images from a mobile platform, outdoor: shadows, sunlight, etc.
- Changing background: trees, buildings and many (moving) objects: cars, bikes, pedestrians, dogs, signs, etc.
- Road types in different shapes and forms.

Sensors:

• Monocular => Features: Color, Texture, etc.

J.M. Alvarez, et al. 2010

Universiteit Leiden. Bij ons leer je de wereld kennen

Road Detection Based on Illuminant Invariance

Road Detection Based on Illuminant Invariance

Fig. 7. (Left) Color image I_{RGB} . (Middle) Corresponding \mathcal{I} computed using the invariant angle θ . (Right) Nonparametric road model built using the normalized histogram formed with the surrounding region of several seeds (nine in this case) placed at the bottom part of \mathcal{I} .

Entropy based camera calibration: can be used for onboard self calibration and image content. Θ is the absolute minimum of the average distribution of entropy values for Image_{RGB} (minimization procedure)

Fig. 12. Road-detection results. Example results include the following: (First column) Images from a sunny day with annoying shadows and traffic; (second column) images from a wet road without puddles with dim shadows and traffic; (third column) different scenarios; (fourth column) different road shapes; (last column) presence of other vehicles.

General road detection from a single image H. Kong et al. 2010

Road in different shapes and forms under different lighting with changes in colors, and textures.

General road detection from a single image H. Kong et al. 2010

Road in different shapes and forms under different lighting with changes in colors, and textures.

Detection

- 1. Vanishing point estimation of main road
- 2. Segmentation based on this vanishing point

Voting scheme:

- High-confidence voters using texture orientations resulting from Gabor filters (5 scales 36 orientations)
- Vanishing-point-constrained edge detection for road boundaries

Gabor complex responses for 4 points.

Gabor kernels: real part (row 1-5), imaginary part (row 6-10)

Universiteit Leiden. Bij ons leer je de wereld kennen

General road detection from a single image H. Kong et al. 2010

Road in different shapes and forms under different lighting with changes in colors, and textures.

Detection

- 1. Vanishing point estimation of main road
- 2. Segmentation based on this vanishing point

Voting scheme:

- High-confidence voters using texture orientations resulting from Gabor filters (5 scales 36 orientations)
- Vanishing-point-constrained edge detection for road boundaries

Universiteit Leiden. Bij ons leer je de wereld kennen

Line segments

vanishing point with rays orientation consistent rays compute color difference of neighboring regions

dominant border (red) => vanishing point adaptation

