Robotics

Erwin M. Bakker| LIACS Media Lab

21-2 2021

Universiteit Leiden

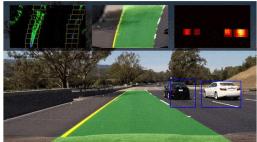
Bij ons leer je de wereld kennen

Organization and Overview

Period:	February 1st – May 10th 2021
Time:	Tuesday 16.15 - 18.00
Place:	https://smart.newrow.com/#/room/qba-943
Lecturer:	Dr Erwin M. Bakker (erwin@liacs.nl)
Assistant:	Erqian Tang

NB Register on Brightspace

Schedule:	
1-2	Introduction and Overview
8-2	No Class (Dies)
15-2	Locomotion and Inverse Kinematics
22-2	Robotics Sensors and Image Processing
1-3	Yetiborg Introduction + SLAM Workshop I
8-3	Project Proposals (presentation by students)
15-3	Robotics Vision
22-3	Robotics Reinforcement Learning
29-3	Yetiborg Qualification +
	Robotics Reinforcement Learning Workshop II
5-4	No Class (Eastern)
12-4	Project Progress (presentations by students)
19-4	Yetiborg Challenge
26-4	Project Team Meetings
3-5	Project Team Meetings
10-5	Online Project Demos
Website: <u>htt</u>	p://liacs.leidenuniv.nl/~bakkerem2/robotics/

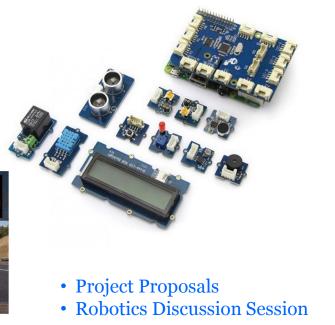

verview

Grading (6 ECTS):

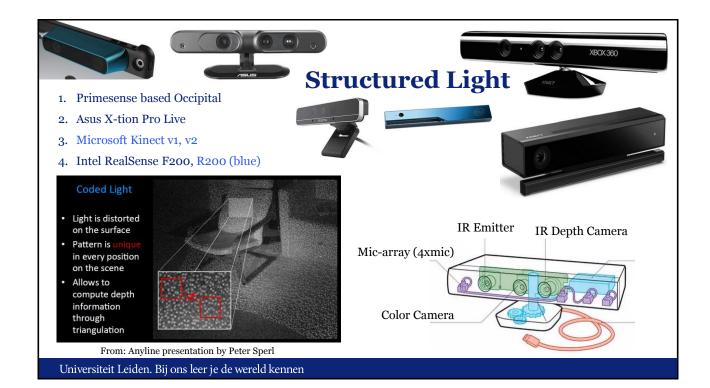
- Presentations and Robotics Project (60% of grade).
- Class discussions, attendance, workshops and assignments (40% of grade).
- It is necessary to be at every class and to complete every workshop.

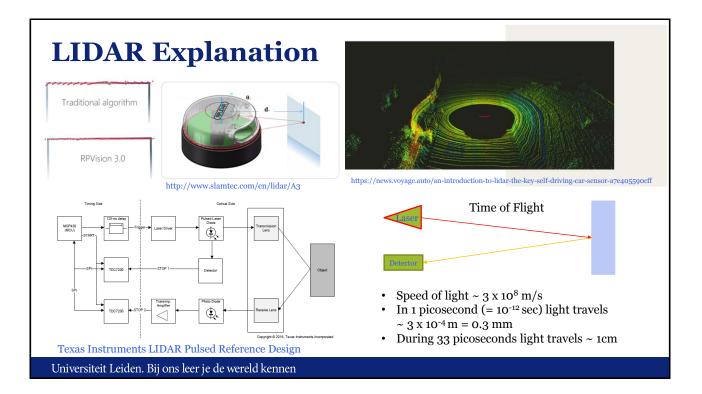
Overview

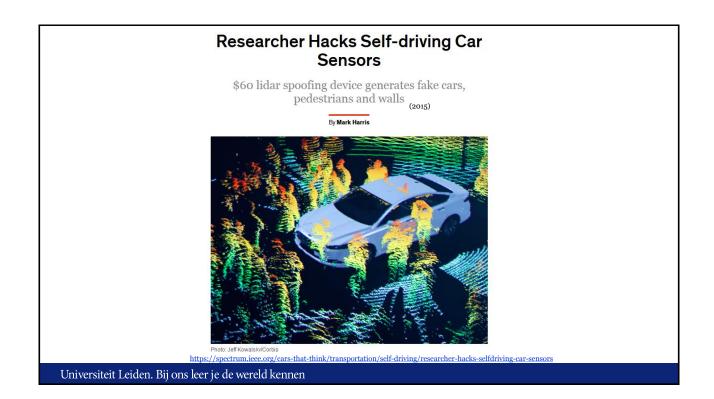
- Sensors
- Lane Tracking
- OpenCV
- Line Tracking

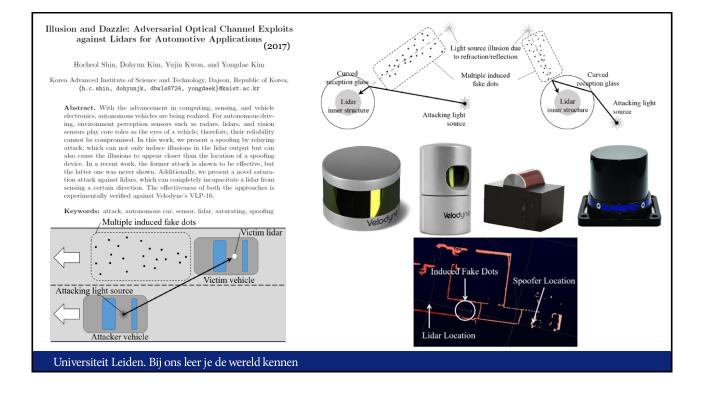


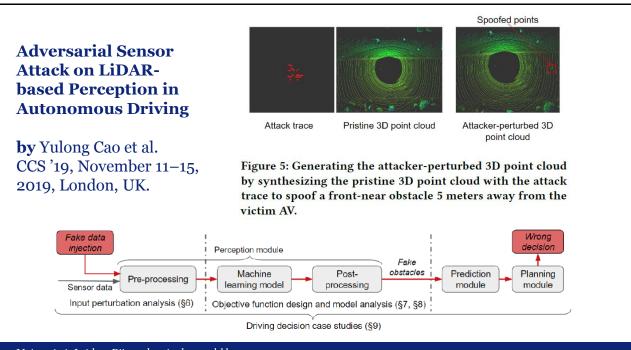

Universiteit Leiden. Bij ons leer je de wereld kennen


ROBOTICS SENSORS


- Bumper switches
- Acceleration, Orientation, Magnetic
- IR/Visible Light
- Pressure, Force
- Ultrasonic, Lidar, Radar
- Camera's, stereo camera's
- Structured Light Camera's







The perfect anti-collision solution for any environment

Technology Comparison distance sensors for robotics						
	Ultrasound	Infrared Triangulation	Laser	TeraRanger Time-of-Flight		
High reading frequency	×	×	\checkmark	\checkmark		
Long range	×	×	1	\checkmark		
Minimal weight	\checkmark	 ✓ 	×	\checkmark		
Small form factor	1	 ✓ 	×	\checkmark		
Eye safety	1	\checkmark	Class 1 lasers only	\checkmark		
Use with multiple sensors	×	×	×	\checkmark		

Universiteit Leiden. Bij ons leer je de wereld kennen

RaspberryPi Sensors Kit

GrovePi+ Board for Raspberry Pi

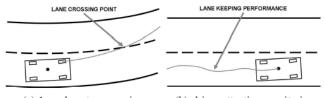
De ATMEGA328 microcontroller communicates with the Raspberry Pi.

- Sound Sensor
- Temperature & Humidity
- Light Sensor
- Button
- UItrasonic Ranger
- Rotary Angle Sensor
- Gas Sensor

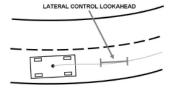
Symbol	MQ-2	MQ-3	MQ-5	MQ-9
Detect Gas	Combustible Gas, Smoke	Alcohol Vapor	I PG Natural	Carbon Monoxide, Coal Gas, Liquified Gas
Detect Concentration	300-10000ppm	0.04-4mg/L Alcohol		10-1000ppm CO;100-10000PPm Gas

Lane Tracking

- · Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006
- A. Bar Hillel, R. Lerner, D. Levi, G. Raz, Recent progress in road and lane detection: a survey. Machine Vision and Applications (2014) 25:727-745
- · J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.
- J. Sattar, J. Mo, SafeDrive: A Robust Lane Tracking System for Autonomous and Assisted Driving Under Limited Visibility. January 31, 2017


(<u>https://arxiv.org/abs/1701.08449</u>)

Some example project for detecting road features using OpenCV: https://navoshta.com/detecting-road-features/ by Alex Staravoitau


Universiteit Leiden. Bij ons leer je de wereld kennen

Lane Tracking

Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006

(a) lane departure warning (b) driver attention monitoring

(c) vehicle control

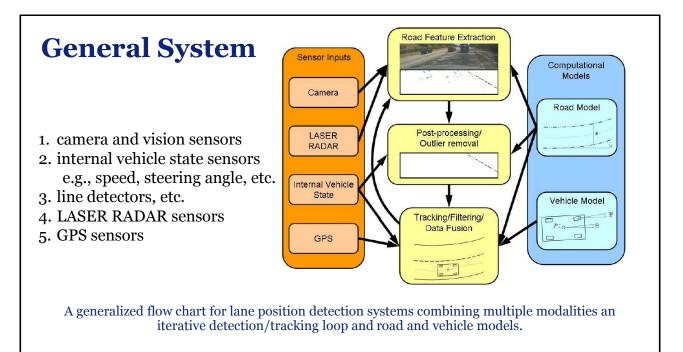
Universiteit Leiden. Bij ons leer je de wereld kennen

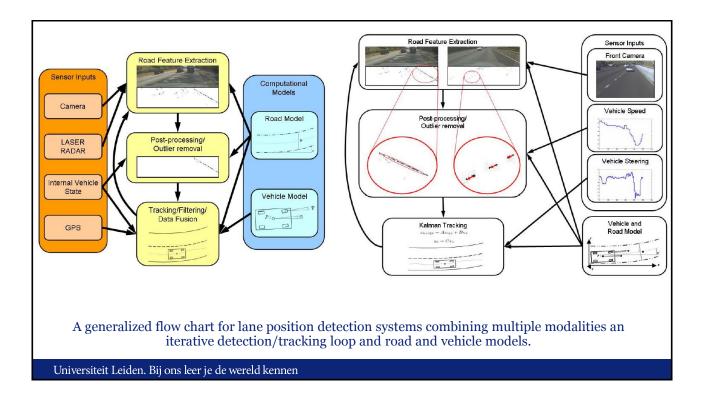
segmented line lane markings

(a) A simple road with solid and (b) Circular reflectors and solidline lane markings with nonuniform pavement texture

(c) Dark on light lane markings (d) A combination of segmented with circular reflectors lines, circular reflectors, and physical barrier marking lane location

trees obscuring lane markings




(e) Highly cluttered shadows from (f) Freeway overpass causing extreme lighting changes and reducing road marking contrast

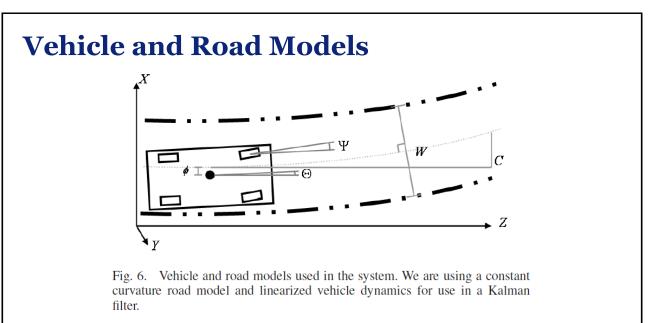


Fig. 3. Images of the same stretch of road shown in the daytime and nighttime

Universiteit Leiden. Bij ons leer je de wereld kennen

Kalman Filter: Linear Quadratic Estimation to cope with noisy data.

System	Use	^a Road Model	Feature Extraction	Postprocessing	Tracking	Evaluation	Comments
VaMoRs (1992) [16]	A	Clothoid Model with vertical curvature	Edge Elements	eliminates points which are not collinear	Linear vehi- cle dynam- ics model	Single frame images	Limited processin power. Simple edg detection fails i difficult situations.
YARF (1995) [33]	A	Circular road segments on flat plane	Hue based segmentation and edge detection	Averaging and linear median squares estima- tion	Operation on single frame	Positive detection rates for feature extraction, single frame images	Multiple detector Limited to yellow an white stripes.
ALVINN (1996) [19], [36]	A	Flat road model for generating training data	Image intensity	Neural Network	None	Road tests, various er- ror measure associated with neural networks	Neural network make it difficult to decoupl control from detection requires lots of training
RALPH (1996) [25]	A B	Constant curvature on flat plane	scan line matched to template	Template matching to slowly evolving near template and fast evolv- ing far template	No inter- frame tracking described	Single frame images	template methods can fail near construction zone or areas when the road has changed Shows limited quantita tive results
GOLD (1998) [20]	С	Constant lane width on flat plane	Adaptive thresh- olding of pixel differences	Morphological widen- ing	Operation on single frame	Single frame images	Assumes line marking on dark road, some ro bustness to lighting and occlusion
LOIS (1998) [34]	B A	Parabolic approxima- tion on flat plane	Edge magnitudes and orientations	Maximum a posteriori estimation evaluated by Metropolis algorithm	Kalman fil- tering	Error histogram from one drive. Standard de- viation of error 13cm	Robust to shadowing in presence of strong lane markings. Other wise untested.
LANA (1999) [24]	B A	Parabolic approxima- tion on flat plane	DCT coefficients for diagonally dominant edges	Maximum a posteriori estimation	Operation on single frame	Single frame images, comparison to LOIS shown	Only using diagona DCT coefficients limit detection based on orientation of vehicle
Taylor et al. (1999) [12]	A	Constant curvature on flat plane	Template match- ing	Hough transform	Kalman Fil- ter input into various con- trol schemes	Performance of con- trollers shown	Focussed on controlle performance. Limited real-world testing.
Ma et al. (2000) [13]	A B C	Circular road model on flat plane	Likelihood based on gradient im- age	Fusion on radar and op- tical images	Operation on single frame	Single frame images	Designed for elevate or bordered rural roads

System	Use	^a Road Model	Feature Extraction	Postprocessing	Tracking	Evaluation	Comments
Southall et al. (2001) [30]	С	Curvature and rate of change of curvature	Threshold both pixel values and cross-correlation to dark-bright- dark function	Factored sampling for particle filter	Particle Filtering via CONDEN- SATION	Estimates shown for an image sequence, no ground truth or quantitative results	Very limited results and testing. Unclear whether feature extraction will work in difficult situations.
Kwon and Lee (2002) [4], [31]	В	Piecewise linear	multiple "feature transformation modules"	combined with data fu- sion and constraint sat- isfaction, heuristic de- parture warning func- tion	nonlinear filtering	analysis of departure warning system given	Good architecture for sensor fusion. Testing limited to false alarm rate of departure warn- ing.
DARVIN (2002) [5]	A B	DGPS based maps of roads	Image gradient	match to DGPS data	nonlinear filtering	selected frames from experimentation	Directed towards urban driving. Heavy reliance on GPS data.
Lee et al. (2003) [37], [38]	В	Straight road on flat plane	Edge distribution function	Hough transform to ex- tract lanes	Not discussed	Detection rate of lane departure warning	Robust to lighting. Will not work for circular re- flectors.
Apostoloff et al. (2003) [29]	С	Not discussed	lane markers, road edge, color, width	Cue scheduling to de- termine which cues are used	Particle Filtering via Distillation	Success rate, mean ab- solute error for position, yaw, and road width.	Possibly fail in condi- tions of strong cues that contradict each other (i.e. fig. 2b)
Kang et al. (2003) [28]	D	Straight road on flat plane	Edge direction and magnitude	Connected-component analysis, Dynamic programming	Single frame operation	Qualitative comparison to hough transform based techniques, Single images shown	Focusses on showing visual comparison to hough transform based technique.
Nedevschi et al. (2004) [22]	D	3D model based on clothoids and roll angle	edge detection	outlier removal based on 3D location found with stereo camera sys- tem, roll angle detected	Kalman fil- tering	single images from road scenes with clearly marked lane boundaries	Simple edge detection not robust to shadows, occlusions
This paper (2004)	C B	Parabolic approxima- tion on flat plane	Steerable filters, adaptive road template	Statistical and motion based outlier removal	Kalman Fil- tering	Extensive error evalua- tion described in sec- tion V-B	

Steerable Filters

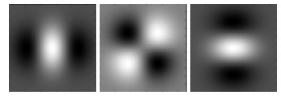


Fig. 7. A basis set for steerable filters based on the second derivatives of a two-dimensional Gaussian.

(b) Detection results for lines tuned to the lane angle.

Fig. 9. Filter results when lane markings are shadowed with complex shadows and non-uniform road materials.

Universiteit Leiden. Bij ons leer je de wereld kennen

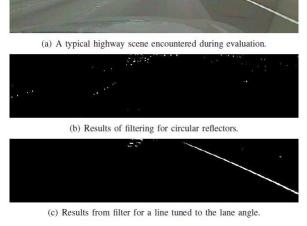
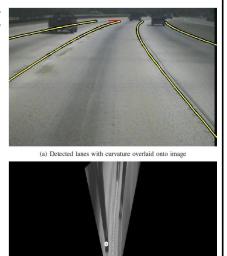



Fig. 8. Application of Steerable filter road marking recognition for circular reflectors and solid lines on a highway

Inverse Perspective Warping and Template Matching

A perspective transformation, can be used to obtain an overview of the road ahead of the vehicle. This can make the problem of lane boundaries extraction easier.

• Curvature detection done by using an intensity template of past images in order to detect the curvature of the road ahead.

(b) Inverse perspective warping showing curvature detection (small white dots) and template (lower left corner)

Fig. 10. Curvature detection in the VioLET lane tracking Document1 - Word

A. System Test-bed Configuration and Test Conditions

Fig. 11. The LISA-Q intelligent vehicle test bed. Inset are close up views of the front camera (left inset) used for detection and tracking and side camera (right inset) used for generating ground truth.

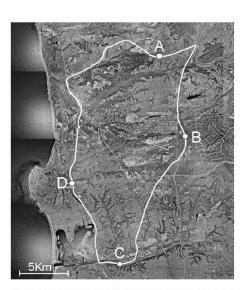
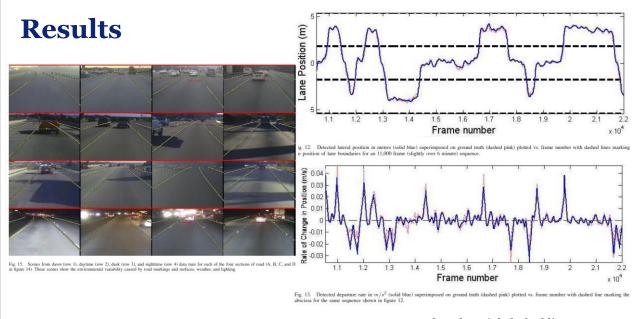
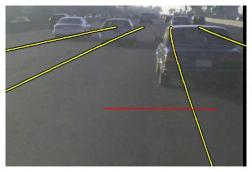
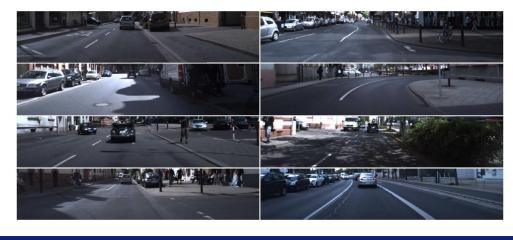



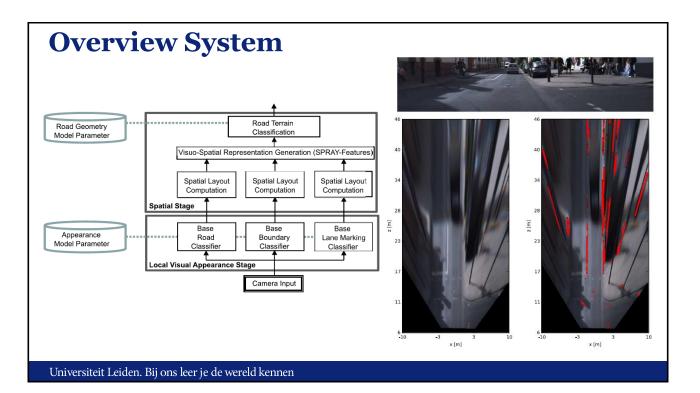
Fig. 14. The 65Km route in San Diego used in the evaluation. The route is overlayed on aerial photography. Points A, B, C, and D are sections of road used in the evaluation (photography courtesy USGS)

Ground truth = pink dashed line

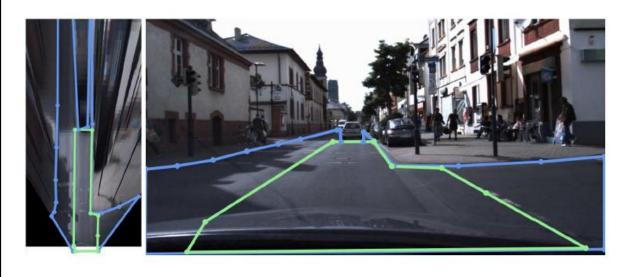
Challenges: Occlusions and Highlights

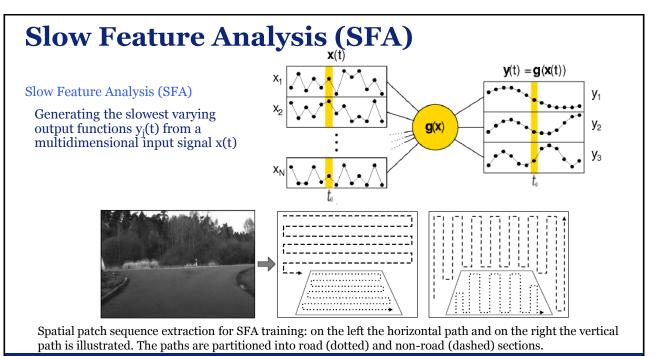


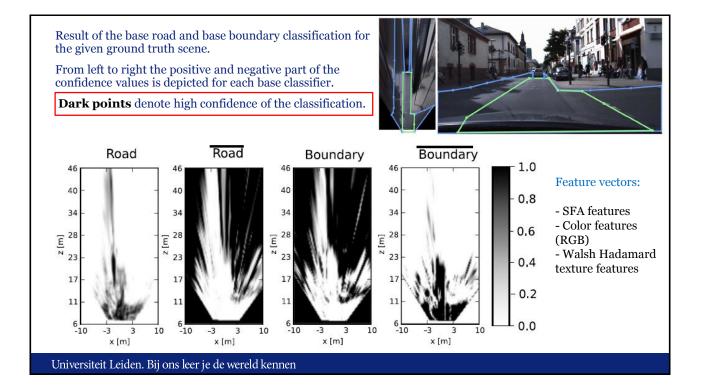

Fig. 17. Scenes from the special case scenarios of complex shadowing (top row) and tunnels (bottom row). These scenes highlight the extreme variability that can occur within short sections of road.

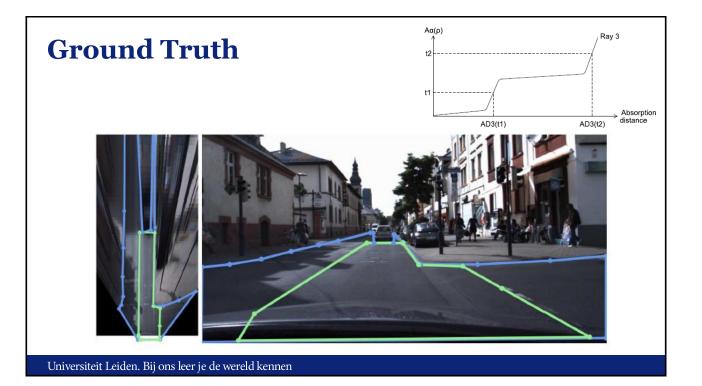

Fig. 16. Error due to occlusion of the road by a vehicle on the dusk dataset on road segment C. The red horizontal line shows the proximity of the occluding vehicle detected by the in-vehicle LASER RADAR sensors.

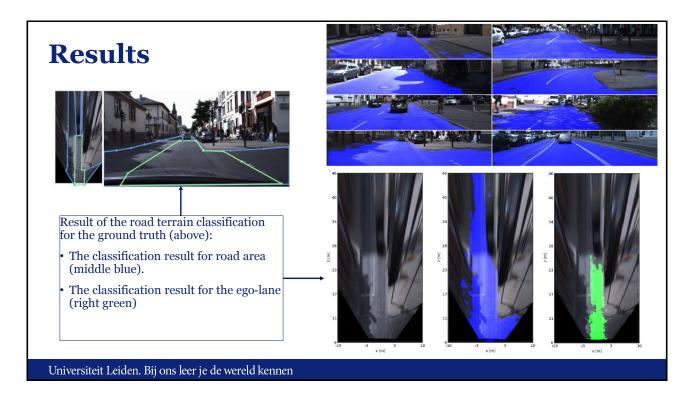
Universiteit Leiden. Bij ons leer je de wereld kennen


Lane Tracking


J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.

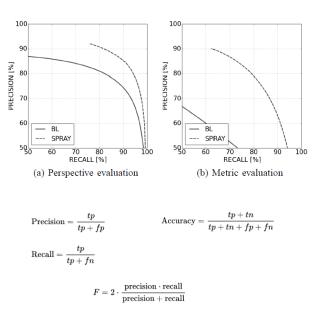





Ground Truth

Results

• Ego Lanes


Universiteit Leiden. Bij ons leer je de wereld kennen

Results

RESULTS OF PIXEL-BASED EVALUATION.

	perspective road area							
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}	
BL	89.1	85.6	79.4	92.8	78.9	50.4	74.8	
SPRAY	95.6	94.5	94.0	95.0	92.5	12.8	89.5	
		1	netric ro	ad area				
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}	
BL	70.0	66.3	56.4	80.5	68.1	39.7	49.6	
SPRAY	89.8	87.0	87.1	86.9	89.9	8.2	77.0	
	perspective ego-lane							
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}	
BL	80.1	81.7	76.4	87.7	90.2	9.0	69.1	
SPRAY	85.2	87.6	84.7	90.6	93.6	5.4	77.9	
metric ego-lane								
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}	
BL	61.7	60.3	56.6	64.6	92.5	4.8	43.2	
SPRAY	78.9	79.5	79.6	79.4	96.4	2.0	66.0	

(BL = Baseline)

Harmonic mean of precision and recall.

Image Processing using OpenCV

Core module: the basic building blocks of this library for manipulating the images on a pixel level. Imgproc module: the image processing (manipulation) functions inside OpenCV. High Level GUI and Media (highgui module) Image Input and Output (imgcodecs module) Video Input and Output (videoio module) Camera calibration and 3D reconstruction (calib3d module) 2D Features framework (feature2d module): feature points detectors, descriptors and matching framework found inside OpenCV. Video analysis (video module) algorithms usable on your video streams like motion extraction, feature tracking and foreground extractions. Object Detection (objdetect module) face detectors, etc. Deep Neural Networks (dnn module) Machine Learning (ml module) machine learning classes for statistical classification, regression and clustering of data. Graph API (gapi module) Computational photography (photo module) for advanced photo processing. Images stitching (stitching module) create photo panoramas and more with OpenCV stitching pipeline. GPU-Accelerated Computer Vision (cuda module); OpenCV iOS:

Universiteit Leiden. Bij ons leer je de wereld kennen

Lane Tracking

Some example project for detecting road features using OpenCV: <u>https://navoshta.com/detecting-road-features/</u> by Alex Staravoitau

Overview Processing Pipeline

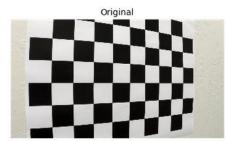
Camera calibration

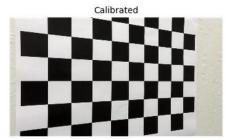
• Each camera gives image distortions, these can be rectified using information from a camera calibration. OpenCV has functionality to calibrate and correct camera images. Calibration is done using chessboard images.

Edge detection

• OpenCV has many different edge detectors using gradient and color information. These edges can be used for the detection of structures such as lines etc.

Perspective transformation

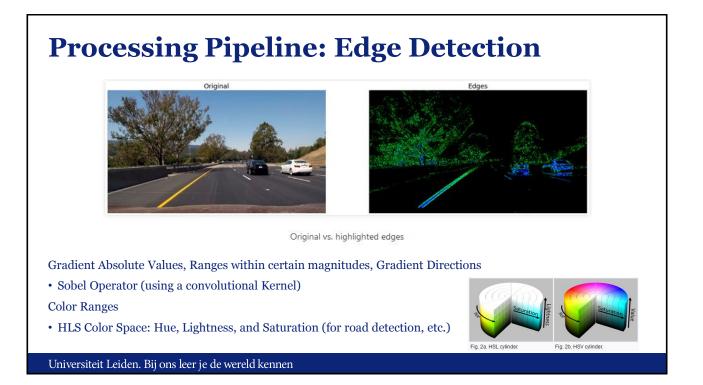

• A perspective transformation, can be used to obtain an overview of the road ahead of the vehicle. This can make the problem of lane boundaries extraction easier.

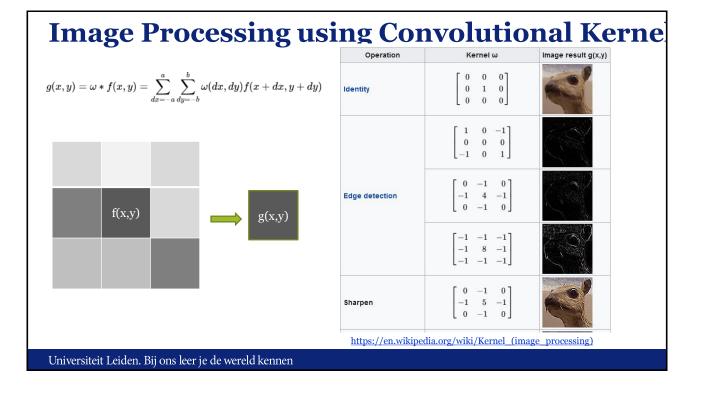

Fitting boundary lines

- The resulting frame pixels are determined that may belong to lane boundaries.
- · These are then used to approximate lines, road properties and vehicle position.
- Furthermore a rough estimate on road curvature and vehicle position within the lane is determined using known road dimensions.

Universiteit Leiden. Bij ons leer je de wereld kennen

Processing Pipeline: Camera Calibration



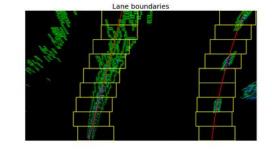

Original vs. calibrated images

... cv2.findChessboardCorners(image, (9, 6), None)

// Inner corners 9x6 ... cv2.calibrateCamera(pattern_points, image_points, (image.shape[1], image.shape[0]), None, None)

corrected_image = cv2.undistort(image, self.camera_matrix, self.dist_coefficients, None, self.camera_matrix)

Processing Pipeline: Perspective Transformation


Original vs. bird's eye view

.... transform_matrix = cv2.getPerspectiveTransform(source, destination)
.... image = cv2.warpPerspective(image, transform_matrix, (w, h))

Universiteit Leiden. Bij ons leer je de wereld kennen

Processing Pipeline: Perspective Transformation

Boundary detection pipeline

Left: The *original* image after the camera calibration and perspective transform.

Right:After edge detection with edges highlighted in green and blue.Scanning windows boundaries for areas with pixel that may belong to lines are highlighted in yellow,
A second order polynomial approximation of the collected points in red.

<section-header><image>

Some remarks

Alex Staravoitau:

"This clearly is a very naive way of detecting and tracking road features, and wouldn't be used in real world application as-is, since it is likely to fail in too many scenarios: "

- Going up or down the hill.
- Changing weather conditions.
- Worn out lane markings.
- Obstruction by other vehicles or vehicles obstructing each other.
- Vehicles and vehicle positions different from those classifier was trained on.
- ...

Organization and Overview

Period:	February 1st – May 10th 2021
Time:	Tuesday 16.15 - 18.00
Place:	https://smart.newrow.com/#/room/qba-943
Lecturer:	Dr Erwin M. Bakker (erwin@liacs.nl)
Assistant:	Erqian Tang

NB Register on Brightspace

Schedule:	
1-2	Introduction and Overview
8-2	No Class (Dies)
15-2	Locomotion and Inverse Kinematics
22-2	Robotics Sensors and Image Processing
1-3	Yetiborg Introduction + SLAM Workshop I
8-3	Project Proposals (presentation by students)
15-3	Robotics Vision
22-3	Robotics Reinforcement Learning
29-3	Yetiborg Qualification +
	Robotics Reinforcement Learning Workshop II
5-4	No Class (Eastern)
12-4	Project Progress (presentations by students)
19-4	Yetiborg Challenge
26-4	Project Team Meetings
3-5	Project Team Meetings
10-5	Online Project Demos

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

Universiteit Leiden. Bij ons leer je de wereld kennen

Grading (6 ECTS):

- Presentations and Robotics Project (60% of grade).
- Class discussions, attendance, workshops and assignments (40% of grade).
- It is necessary to be at every class and to complete every workshop.

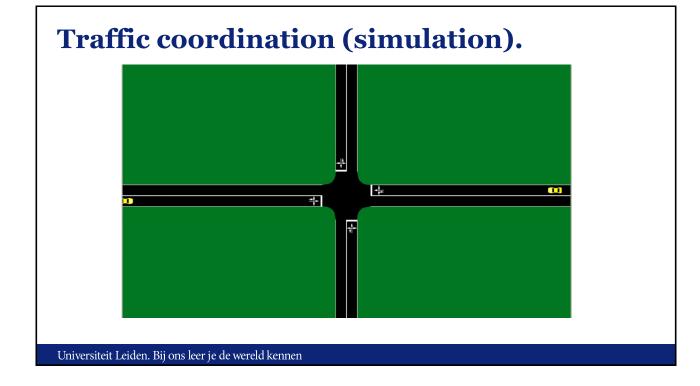
Robotics Project Proposals Presentations Monday 8-3 2021

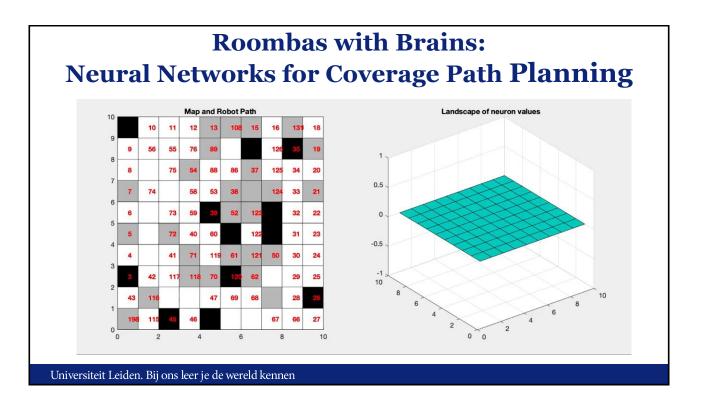
Present your Robotics Project Proposal during a **5 minute (max)** talk. Clearly state the title of your project, the team members, your goals, how you will pursue them, what are the challenges and what at least can and should be delivered on the demo day on May 10th 2021.

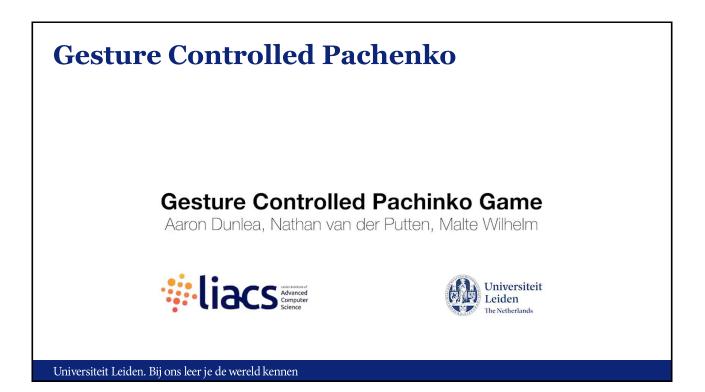
Note: Groups of 4-5 members are allowed.

The presentation should contain slides for:

- 1. Title and group members.
- 2. Goal of the project.
- 3. How will you pursue these goals.
- 4. What are the challenges.
- 5. What at least can and should be delivered on the demo day on May 10th 2021.

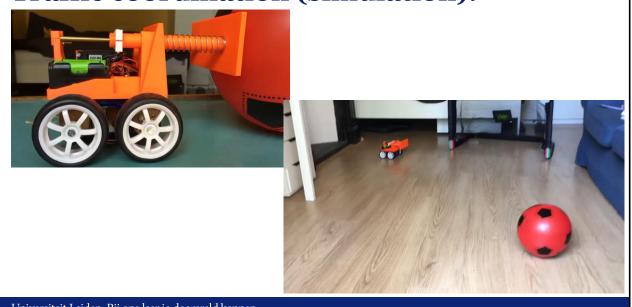

The LIACS Media Lab can support your project with some materials for your project. Please clearly state any materials that you would need for your proposal. Note that these materials are limited so project goals may need to be adjusted accordingly.


Each presentation will be followed by a short class discussion.


Previous Projects

- 1. Evolutionary Locomotion
- 2. Nao plays Tic-Tac-Toe
- 3. Slam Robot Project.
- 4. Dolphin Drone: Drone Recognition and Maneuvering 4. BorrelBot with Hoops.
- 5. Delivery Drone.
- 6. Programming a NAO to play a tune using a xylophone.
- 7. Floor mapping with Swarm Robotics
- 8. Tootballing Yetiborg
- 9. Cat Flap Opening Based on Audio/Video/RFID
- 10. DrawBot
- 11. Traffic coordination (simulation).
- 12. Plane filling curves (simulation).

- 1. AimBot
- 2. Artificial Muscles
- 3. Ball Tracking Car
- 5. Fetch Bot
- 6. Floor Mapping Robot
- 7. Gesture Control Pachenko
- 8. Hexapod
- 9. Nao Pose
- 10. Position Estimation
- 11. Race Car Training
- 12. Face Touch



26

Traffic coordination (simulation).

S.P.I.N. - Spider Python INator

Marcel Huijben (s1780107) Martijn Swenne (s1923889) Sebastiaan Alvarez Rodriguez (s1810979) Robin Voetter (s1835130)

References

- 1. Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006
- 2. A. Bar Hillel, R. Lerner, D. Levi, G. Raz, Recent progress in road and lane detection: a survey. Machine Vision and Applications (2014) 25:727–745
- 3. J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.
- 4. J. Sattar, J. Mo, SafeDrive: A Robust Lane Tracking System for Autonomous and Assisted Driving Under Limited Visibility. January 31, 2017 (https://arxiv.org/abs/1701.08449)
- 5. https://navoshta.com/detecting-road-features/ by Alex Staravoitau
- 6. OpenCV.org

Robotics Discussion Session Wednesday 24-2 at 15.15 Robotics Kaltura Room

During this session we discuss some practical aspects of robotics in an informal and interactive setting.

Especially for people who did not work with microcontrollers, servo's, sensors etc. before.