Robotics

Erwin M. Bakker| LIACS Media Lab

29-2 2019

26-4

3-5

10-5

Universiteit Leiden

Bij ons leer je de wereld kennen

Organization and Overview Period: February 15th - May 10th 2019 Friday 09.00 - 10.45 Time: Place: LIACS, Room 401 (Workshops Room 303) Lecturer: Dr Erwin M. Bakker (erwin@liacs.nl) Assistant: Andrius Bernatavicius NB E-mail your name and student number to erwin@liacs.nl Schedule: Introduction and Overview 15-2 22-2 Control Space, Locomotion and Kinematics Inverse Kinematics and Sensors 1-3 8-3 Yetiborg Introduction and SLAM Workshop I Project Proposals (presentation by students) 15-3 Yetiborg Qualification 22-3 **Robotics Image Processing** 29-3 Yetiborg Race and ROS Workshop II 5-4 Robotics Image Processing and Understanding 12-4 19-4 No Class Robotics Reinforcement Learning.

Grading (6 ECTS): Presentations and Robotics Project (60% of grade). Class discussions, attendance, workshops and assignments (40% of grade). It is necessary to be at every class and to complete every workshop.

Universiteit Leiden. Bij ons leer je de wereld kennen

Project Demos (by students)

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

Robotics Reinforcement Learning Workshop III

Overview

- Sensors
- Lane Tracking
- OpenCV
- Line Tracking

Universiteit Leiden. Bij ons leer je de wereld kennen

ROBOTICS SENSORS

- Bumper switches
- Acceleration, Orientation, Magnetic
- IR/Visible Light
- Pressure, Force
- Ultrasonic, Lidar, Radar
- Camera's, stereo camera's
- Structured Light Camera's

The for a	per	fec	t ar 11ro	ti-c	ollis ent	sio	n s	501	utior
Techn	olog stance se	y Con nsors for		TeraRanger			Color		
High reading frequency	×	×	✓		GER	Pa 1	0		
Long range	×	×	<	\checkmark	100	AR .		13	ACTO
Minimal weight	1	1	×	\checkmark	1911	0 6	-	1	TIME
Small form factor	1	✓	×	\checkmark	TANT.	20	2	C	• 38
Eye safety	 ✓ 	✓	Class 1 lasers only	\checkmark			-		
Use with	×	×	×				State of the local division of the local div		

RaspberryPi Sensors Kit

GrovePi+ Board for Raspberry Pi

De ATMEGA328 microcontroller communicates with the Raspberry Pi.

- Sound Sensor
- Temperature & Humidity
- Light Sensor
- Button
- Ultrasonic Ranger
- Rotary Angle Sensor

Universiteit Leiden. Bij ons leer je de wereld kennen

Lane Tracking

Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006

A. Bar Hillel, R. Lerner, D. Levi, G. Raz, Recent progress in road and lane detection: a survey. Machine Vision and Applications (2014) 25:727–745

J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.

J. Sattar, J. Mo, SafeDrive: A Robust Lane Tracking System for Autonomous and Assisted Driving Under Limited Visibility. January 31, 2017

(<u>https://arxiv.org/abs/1701.08449</u>)

Some example project for detecting road features using OpenCV: <u>https://navoshta.com/detecting-road-features/</u> by Alex Staravoitau

Lane Tracking by Day and Night

Fig. 3. Images of the same stretch of road shown in the daytime and nighttime

System	Use	^a Road Model	Feature Extraction	Postprocessing	Tracking	Evaluation	Comments
VaMoRs (1992) [16] YARF	A	Clothoid Model with vertical curvature Circular	Edge Elements	eliminates points which are not collinear Averaging and linear	Linear vehi- cle dynam- ics model	Single frame images Positive detection rates	Limited processing power. Simple edge detection fails in difficult situations. Multiple detectors.
(1995) [33]		road segments on flat plane	segmentation and edge detection	median squares estima- tion	on single frame	for feature extraction, single frame images	Limited to yellow and white stripes.
ALVINN (1996) [19], [36]	A	Flat road model for generating training data	Image intensity	Neural Network	None	Road tests, various er- ror measure associated with neural networks	Neural network makes it difficult to decouple control from detection, requires lots of training
RALPH (1996) [25]	A B	Constant curvature on flat plane	scan line matched to template	Template matching to slowly evolving near template and fast evolv- ing far template	No inter- frame tracking described	Single frame images	template methods can fail near construction zone or areas where the road has changed. Shows limited quantita- tive results
GOLD (1998) [20]	С	Constant lane width on flat plane	Adaptive thresh- olding of pixel differences	Morphological widen- ing	Operation on single frame	Single frame images	Assumes line markings on dark road, some ro- bustness to lighting and occlusion
LOIS (1998) [34]	B A	Parabolic approxima- tion on flat plane	Edge magnitudes and orientations	Maximum a posteriori estimation evaluated by Metropolis algorithm	Kalman fil- tering	Error histogram from one drive. Standard de- viation of error 13cm	Robust to shadowing in presence of strong lane markings. Other- wise untested.
LANA (1999) [24]	B A	Parabolic approxima- tion on flat plane	DCT coefficients for diagonally dominant edges	Maximum a posteriori estimation	Operation on single frame	Single frame images, comparison to LOIS shown	Only using diagonal DCT coefficients limits detection based on orientation of vehicle
Taylor et al. (1999) [12]	A	Constant curvature on flat plane	Template match- ing	Hough transform	Kalman Fil- ter input into various con- trol schemes	Performance of con- trollers shown	Focussed on controller performance. Limited real-world testing.
Ma et al. (2000) [13]	A B C	Circular road model on flat plane	Likelihood based on gradient im- age	Fusion on radar and op- tical images	Operation on single frame	Single frame images	Designed for elevated or bordered rural roads.

System	Use	^a Road Model	Feature Extraction	Postprocessing	Tracking	Evaluation	Comments
Southall et al. (2001) [30]	С	Curvature and rate of change of curvature	Threshold both pixel values and cross-correlation to dark-bright- dark function	Factored sampling for particle filter	Particle Filtering via CONDEN- SATION	Estimates shown for an image sequence, no ground truth or quantitative results	Very limited results and testing. Unclear whether feature extraction will work in difficult situations.
Kwon and Lee (2002) [4], [31]	В	Piecewise linear	multiple "feature transformation modules"	combined with data fu- sion and constraint sat- isfaction, heuristic de- parture warning func- tion	nonlinear filtering	analysis of departure warning system given	Good architecture for sensor fusion. Testing limited to false alarm rate of departure warn- ing.
DARVIN (2002) [5]	A B	DGPS based maps of roads	Image gradient	match to DGPS data	nonlinear filtering	selected frames from experimentation	Directed towards urban driving. Heavy reliance on GPS data.
Lee et al. (2003) [37], [38]	В	Straight road on flat plane	Edge distribution function	Hough transform to ex- tract lanes	Not discussed	Detection rate of lane departure warning	Robust to lighting. Will not work for circular re- flectors.
Apostoloff et al. (2003) [29]	С	Not discussed	lane markers, road edge, color, width	Cue scheduling to de- termine which cues are used	Particle Filtering via Distillation	Success rate, mean ab- solute error for position, yaw, and road width.	Possibly fail in condi- tions of strong cues that contradict each other (i.e. fig. 2b)
Kang et al. (2003) [28]	D	Straight road on flat plane	Edge direction and magnitude	Connected-component analysis, Dynamic programming	Single frame operation	Qualitative comparison to hough transform based techniques, Single images shown	Focusses on showing visual comparison to hough transform based technique.
Nedevschi et al. (2004) [22]	D	3D model based on clothoids and roll angle	edge detection	outlier removal based on 3D location found with stereo camera sys- tem, roll angle detected	Kalman fil- tering	single images from road scenes with clearly marked lane boundaries	Simple edge detection not robust to shadows, occlusions
This paper (2004)	C B	Parabolic approxima- tion on flat plane	Steerable filters, adaptive road template	Statistical and motion based outlier removal	Kalman Fil- tering	Extensive error evalua- tion described in sec- tion V-B	

Steerable Filters

Fig. 7. A basis set for steerable filters based on the second derivatives of a two-dimensional Gaussian.

(b) Detection results for lines tuned to the lane angle.

Fig. 9. Filter results when lane markings are shadowed with complex shadows and non-uniform road materials.

Universiteit Leiden. Bij ons leer je de wereld kennen

(a) A typical highway scene encountered during evaluation.

(b) Results of filtering for circular reflectors.

(c) Results from filter for a line tuned to the lane angle.

Fig. 8. Application of Steerable filter road marking recognition for circular reflectors and solid lines on a highway

Inverse Perspective Warping and Template Matching

• Curvature detection done by using an intensity template of past images in order to detect the curvature of the road ahead.

(a) Detected lanes with curvature overlaid onto image

(b) Inverse perspective warping showing curvature detection (small white dots) and template (lower left corner)

Fig. 10. Curvature detection in the VioLET lane tracking [Document1-Word]

Universiteit Leiden. Bij ons leer je de wereld kennen

A. System Test-bed Configuration and Test Conditions

Fig. 11. The LISA-Q intelligent vehicle test bed. Inset are close up views of the front camera (left inset) used for detection and tracking and side camera (right inset) used for generating ground truth.

Fig. 14. The 65Km route in San Diego used in the evaluation. The route is overlayed on aerial photography. Points A, B, C, and D are sections of road used in the evaluation (photography courtesy USGS)

Challenges: Occlusions and Highlights

Fig. 17. Scenes from the special case scenarios of complex shadowing (top row) and tunnels (bottom row). These scenes highlight the extreme variability that can occur within short sections of road.

Fig. 16. Error due to occlusion of the road by a vehicle on the dusk dataset on road segment C. The red horizontal line shows the proximity of the occluding vehicle detected by the in-vehicle LASER RADAR sensors.

Slow Feature Analysis (SFA) Generating the slowest varying output functions $y_i(t)$ from a multidimensional input signal x(t) x_N x_N t_h t_h

Spatial patch sequence extraction for SFA training: on the left the horizontal path and on the right the vertical path is illustrated. The paths are partitioned into road (dotted) and non-road (dashed) sections.

Universiteit Leiden. Bij ons leer je de wereld kennen

 $\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t))$

y₁

y₂

Уз

Results

• Ego Lanes

Universiteit Leiden. Bij ons leer je de wereld kennen

Results

RESULTS OF PIXEL-BASED EVALUATION.

		per	spective	road area			
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}
BL	89.1	85.6	79.4	92.8	78.9	50.4	74.8
SPRAY	95.6	94.5	94.0	95.0	92.5	12.8	89.5
		1	netric ro	ad area			
	AP	F _{max}	Prec.	Recall	Acc	FPR	Q_{test}
BL	70.0	66.3	56.4	80.5	68.1	39.7	49.6
SPRAY	89.8	87.0	87.1	86.9	89.9	8.2	77.0
		pe	rspective	ego-lane			
	AP	pe F _{max}	rspective Prec.	ego-lane Recall	Acc	FPR	Q _{test}
BL	AP 80.1	pe: F _{max} 81.7	rspective Prec. 76.4	ego-lane Recall 87.7	Acc 90.2	FPR 9.0	Q _{test} 69.1
BL SPRAY	AP 80.1 85.2	pe F _{max} 81.7 87.6	rspective Prec. 76.4 84.7	ego-lane Recall 87.7 90.6	Acc 90.2 93.6	FPR 9.0 5.4	Q _{test} 69.1 77.9
BL SPRAY	AP 80.1 85.2	pe: F _{max} 81.7 87.6	rspective Prec. 76.4 84.7 metric eg	ego-lane Recall 87.7 90.6 go-lane	Acc 90.2 93.6	FPR 9.0 5.4	Q _{test} 69.1 77.9
BL SPRAY	AP 80.1 85.2 AP	$\begin{array}{c c} & \text{per} \\ F_{\text{max}} \\ 81.7 \\ 87.6 \\ \hline \\ F_{\text{max}} \end{array}$	rspective Prec. 76.4 84.7 metric eg Prec.	ego-lane Recall 87.7 90.6 go-lane Recall	Acc 90.2 93.6 Acc	FPR 9.0 5.4 FPR	Q _{test} 69.1 77.9 Q _{test}
BL SPRAY BL	AP 80.1 85.2 AP 61.7	per F _{max} 81.7 87.6 F _{max} 60.3	rspective Prec. 76.4 84.7 metric eg Prec. 56.6	ego-lane Recall 87.7 90.6 go-lane Recall 64.6	Acc 90.2 93.6 Acc 92.5	FPR 9.0 5.4 FPR 4.8	Q _{test} 69.1 77.9 Q _{test} 43.2

(BL = Baseline)

Visual lane tracking on several urban scenes from YouTubeTM videos. Snapshot (1a) (output in (1b)): lane markers not distinct in the center, though side markers are detectable. Snapshot (1c) (output in (1d)): lane markers mostly washed out. Snapshot (1e) (output in (1f)): evening drive, low-light conditions make the lane markers almost undetectable. Snapshot (1g) (output in (1h)): snow-covered roads, no lane markers visible.

Universiteit Leiden. Bij ons leer je de wereld kennen

System Overview

The process of extracting pixels with \common" visual content. The feature-based matching (in red lines) are used to choose the point features, and for each feature point, a square subwindow is extracted from the candidateimage, centered on that feature point. Stitching together all these windowsresults in an image with most \uncommon" visual elements removed.

Image Processing using OpenCV

Core module: the basic building blocks of this library for manipulating the images on a pixel level.

Imgproc module: the image processing (manipulation) functions inside OpenCV.

High Level GUI and Media (highgui module)

Image Input and Output (imgcodecs module)

Video Input and Output (videoio module)

Camera calibration and 3D reconstruction (calib3d module)

2D Features framework (feature2d module): feature points detectors, descriptors and matching framework found inside OpenCV. Video analysis (video module) algorithms usable on your video streams like motion extraction, feature tracking and foreground extractions. **Object Detection** (objdetect module) face detectors, etc.

Object Detection (objdetect module) face detectors, e

Deep Neural Networks (dnn module)

Machine Learning (ml module) machine learning classes for statistical classification, regression and clustering of data.

Graph API (gapi module)

Computational photography (photo module) for advanced photo processing.

Images stitching (stitching module) create photo panoramas and more with OpenCV stitching pipeline.

GPU-Accelerated Computer Vision (cuda module); OpenCV iOS:

Lane Tracking

Some example project for detecting road features using OpenCV: <u>https://navoshta.com/detecting-road-features/</u> by Alex Staravoitau

Universiteit Leiden. Bij ons leer je de wereld kennen

Overview Processing Pipeline

Camera calibration

• Each camera gives image distortions, these can be rectified using information from a camera calibration. OpenCV has functionality to calibrate and correct camera images. Calibration is done using chessboard images.

Edge detection

• OpenCV has many different edge detectors using gradient and color information. These edges can be used for the detection of structures such as lines etc.

Perspective transformation

• Aperspective transformation, can be used to obtain an overview of the road ahead of the vehicle. This can make the problem of lane boundaries extraction easier.

Fitting boundary lines

- The resulting frame pixels are determined that may belong to lane boundaries.
- These are then used to approximate lines, road properties and vehicle position.
- Furthermore a rough estimate on road curvature and vehicle position within the lane is determined using known road dimensions.

Processing Pipeline: Edge Detection

Original vs. highlighted edges

Gradient Absolute Values, Ranges within certain magnitudes, Gradient Directions

• Sobel Operator (using a convolutional Kernel)

Color Ranges

• HLS Color Space: Hue, Saturation, and Level (for road detection, etc.)

Processing Pipeline: Perspective Transformation

Original vs. bird's eye view

.... transform_matrix = cv2.getPerspectiveTransform(source, destination)
.... image = cv2.warpPerspective(image, transform_matrix, (w, h))

Universiteit Leiden. Bij ons leer je de wereld kennen

Processing Pipeline: Perspective Transformation

Boundary detection pipeline

Left: The *original* image after the camera calibration and perspective transform.

Right:After edge detection with edges highlighted in green and blue.Scanning windows boundaries for areas with pixel that may belong to lines are highlighted in yellow,
A second order polynomial approximation of the collected points in red.

<section-header>

Universiteit Leiden. Bij ons leer je de wereld kennen

Some remarks

Alex Staravoitau:

"This clearly is a very naive way of detecting and tracking road features, and wouldn't be used in real world application as-is, since it is likely to fail in too many scenarios: "

- Going up or down the hill.
- Changing weather conditions.
- Worn out lane markings.
- Obstruction by other vehicles or vehicles obstructing each other.
- Vehicles and vehicle positions different from those classifier was trained on.
- ...

YetiBorg Race

- 1) Each time 2 teams will race 2 times against each other. The second time lanes will be switched.
- 2) Note, the second race will take place after all teams have completed their first race. So you have ample time to restart and change batteries and setup, if necessary.
- 3) The teams that won at least one race will proceed to the next round.
- 4) The YetiBorg should not cross the inner orange line with a complete tire. If that happens you should manually place it to the middle of the track parallel to where it first crossed the inner orange line.
- 5) If the YetiBorg crosses the outer white line completely, it should be manually placed to the middle of the track parallel to where it first crossed the outer white line.
- 6) If the placement as in 4) and 5) is not possible because the other YetiBorg is driving there, it should be placed to the right of the other YetiBorg. If that is not possible you should wait until it passed.
- 7) The rough shape of the racing track will be available Friday 29th onwards.
- 8) The race will continue until one winner remains.

Universiteit Leiden. Bij ons leer je de wereld kennen

References

- 1. Joel C. McCall and Mohan M. Trivedi, Video Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2006
- 2. A. Bar Hillel, R. Lerner, D. Levi, G. Raz, Recent progress in road and lane detection: a survey. Machine Vision and Applications (2014) 25:727–745
- 3. J. Fritsch, T. Kühnl, F. Kummert, Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 2014.
- 4. J. Sattar, J. Mo, SafeDrive: A Robust Lane Tracking System for Autonomous and Assisted Driving Under Limited Visibility. January 31, 2017 (https://arxiv.org/abs/1701.08449)
- 5. https://navoshta.com/detecting-road-features/ by Alex Staravoitau
- 6. OpenCV.org

Robotics

Bij ons leer je de wereld kennen