Robotics

Erwin M. Bakker| LIACS Media Lab

28-2 2019

26-4

3-5

10-5

Universiteit Leiden

Bij ons leer je de wereld kennen

Organization and Overview Period: February 15th - May 10th 2019 Friday 09.00 - 10.45 Time: LIACS, Room 401 (Workshops Room 303) Place: Lecturer: Dr Erwin M. Bakker (erwin@liacs.nl) Assistant: Andrius Bernatavicius NB E-mail your name and student number to erwin@liacs.nl Schedule: Introduction and Overview 15-2 22-2 Control Space, Locomotion and Kinematics Inverse Kinematics and Sensors 1-3 8-3 Yetiborg Introduction and SLAM Workshop I Project Proposals (presentation by students) 15-3 22-3 Yetiborg Qualification and ROS Workshop II **Robotics Image Processing** 29-3 Yetiborg Race and/or Nao Workshop III 5-4 Robotics Image Processing and Understanding 12-4 19-4 No Class

Grading (6 ECTS): Presentations and Robotics Project (60% of grade). Class discussions, attendance, workshops and assignments (40% of grade). It is necessary to be at every class and to complete every workshop.

Universiteit Leiden. Bij ons leer je de wereld kennen

Robotics Reinforcement Learning.

Project Demos (by students)

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

Robotics Reinforcement Learning Workshop IV

Overview

- Configuration Space
- Rigid Body Motion
- Forward Kinematics
- Inverse Kinematics
- Sensors
- Link: <u>http://modernrobotics.org</u>

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017

Universiteit Leiden. Bij ons leer je de wereld kennen

How to move to a goal?

Problem: How to move to a goal?

• Grasp, Walk, Stand, Dance, Follow, etc.

Solution:

- 1. Program step by step
- Computer Numerical Control (CNC), Automation.
- 2. Inverse kinematics:
 - take end-points and move them to designated points.
- 3. Tracing movements
 - by specialist, human, etc.
- 4. Learn the right movements
- **Reinforcement Learning**, give a reward when the movement resembles the designated movement.

Configuration Space

Robot Question: Where am I?

Answer:

The robot's configuration: a specification of the positions of all points of a robot.

Here we assume:

Robot links and bodies are rigid and of known shape => only a few variables needed to describe it's configuration.

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017

Configuration Space

[1] Definition 2.1.

The **configuration** of a robot is a complete specification of the position of every point of the robot.

The minimum number *n* of real-valued coordinates needed to represent the configuration is the number of **degrees of freedom** (**dof**) of the robot.

The *n*-dimensional space containing all possible configurations of the robot is called the **Configuration Space** (**C-space**).

The configuration of a robot is represented by a point in its C-space.

Open-chain robot: Manipulator (in V-REP). [1]

Closed-chain robot: Stewart-Gough platform. [1]

Universal (U)

Spherical (S)

 $\mathbf{2}$

3

• A rigid body in 3D Space has 6 DOF

- A **joint** can be seen to put constraints on the rigid bodies it connects Helio
- It also allows freedom to move relative to the body it is attached to.

N/A

N/A

4

3

Planar Mechanism DOF = 4

N = 5 links

J = 4 joints

 $f_i = 1$, for all i $c_i = 2$, for all i

Degrees of Freedom of a Robot

Proposition (Grübler's formula)

Consider a mechanism consisting of

- N links, where ground is also regarded as a link.
- J number of joints,
- m number of degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for spatial mechanisms),
- \mathbf{f}_i the number of freedoms provided by joint i, and
- c_i the number of constraints provided by joint i, where $f_i + c_i = m$ for all i.

Then Grübler's formula for the number of degrees of freedom of the robot is

$$dof = m(N-1) - \sum_{i=1}^{J} c_i = m(N-1-J) + \sum_{i=1}^{J} f_i$$

This formula holds only if all joint constraints are independent. If they are not independent then the formula provides a lower bound on the number of degrees of freedom.

Universiteit Leiden. Bij ons leer je de wereld kennen

there are N = 17 links and J = 21 joints (nine revolute and 12 spherical). By Grübler's formula,

dof = 6(17 - 1 - 21) + 9(1) + 12(3) = 15.

- Links: 1 + 3 + 3 + 6 + 3 + 1 = 17
- Joints: 21: 9x R(1 dof) and 12 x S(3 dof)
- m= 6

Universiteit Leiden. Bij ons leer je de wereld kennen

C-Spaces

- The C-space of a rigid body in the plane can be written as $\mathbb{R}^2 \times S^1$, since the configuration can be represented as the concatenation of the coordinates (x, y) representing \mathbb{R}^2 and an angle θ representing S^1 .
- The C-space of a PR robot arm can be written $\mathbb{R}^1 \times S^1$ (We will occasionally ignore joint limits, i.e., bounds on the travel of the joints, when expressing the topology of the C-space; with joint limits, the C-space is the Cartesian product of two closed intervals of the line.)
- The C-space of a 2R robot arm can be written $S^1 \times S^1 = T^2$, where T^n is the *n*-dimensional surface of a torus in an (n + 1)-dimensional space. (See Table 2.2.) Note that $S^1 \times S^1 \times \cdots \times S^1$ (*n* copies of S^1) is equal to T^n , not S^n ; for example, a sphere S^2 is not topologically equivalent to a torus T^2 .
- The C-space of a planar rigid body (e.g., the chassis of a mobile robot) with a 2R robot arm can be written as $\mathbb{R}^2 \times S^1 \times T^2 = \mathbb{R}^2 \times T^3$
- As we saw in Section 2.1 when we counted the degrees of freedom of a rigid body in three dimensions, the configuration of a rigid body can be described by a point in R³, plus a point on a two-dimensional sphere S², plus a point on a one-dimensional circle S¹, giving a total C-space of R³ × S² × S¹.

Task Space and Work Space

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting mechanism

The **workspace** is a specification of the configurations that the end-effector of the robot can reach.

Universiteit Leiden. Bij ons leer je de wereld kennen

The SCARA robot is an RRRP open chain that is widely used for tabletop pick-and-place tasks. The end-effector configuration is completely described by (x, y, z, φ)

 \Rightarrow task space $R^3 x S^1$ and

 \Rightarrow **workspace** as the reachable points in (x, y, z), since all orientations φ can be achieved at all reachable points.

Rigid Body Motion

Rigid-body position and orientation (x, y, z, ϕ , θ , ψ)

- Can also be described by 4x4 matrix with 10 constraints.
- In general 4x4 matrices can be used for
 - Location
 - Translation + rotation of a vector or frame
 - Transformation of coordinates between frames
- Velocity of a rigid body: $(\partial x/\partial t, \partial y/\partial t, \partial z/\partial t, \partial \phi/\partial t, \partial \theta/\partial t, \partial \psi/\partial t)$

Exponential coordinates:

Every rigid-body configuration can be achieved by:

- Starting in the fixed home frame and integrating a constant twist for a specified time.
- Direction of a screw axis and scalar to indicate how far the screw axis must be followed

Universiteit Leiden. Bij ons leer je de wereld kennen

Rigid Body Motions in the Plane

Rigid Body Motions in the Plane (C) described by (R,r)

Figure 4.2: Illustration of the PoE formula for an *n*-link spatial open chain.

Inverse Kinematics Which angles θ_1 , and θ_1 will lead to location (x,y)?

(a) A workspace, and lefty and righty (b) Geometric so configurations.

Figure 6.1: Inverse kinematics of a 2R planar open chain.

In general: IK-Solvers

Law of cosines gives: $L_1^2 + L_2^2 - 2L_1L_2 \cos \beta = x^2 + y^2$

, hence

 $\beta = \cos^{-1}\left(\frac{L_1^2 + L_2^2 - x^2 - y^2}{2L_1L_2}\right)$

 $\alpha = \cos^{-1} \left(\frac{x^2 + y^2 + L_1^2 - L_2^2}{2L_1 \sqrt{x^2 + y^2}} \right)$

Answer: $\theta_1 = \gamma - \alpha, \quad \theta_2 = \pi - \beta$

,and similarly

 $\gamma = atan2(y,x)$

Universiteit Leiden. Bij ons leer je de wereld kennen

Robotics Preparations

1) Form YetiBorg Racing Teams of 3 to 4 people Appoint one person who will be responsible for the robot.

Email your teams to <u>erwin@liacs.nl</u> with subject 'Robotics YetiBorg Racing Team'. **Due:** Thursday 7-3 at 14.00 PM.

2) Project Proposal Title and Abstract

Give the title and abstract of the project proposal you will present on March 15^{th} . Also mention the number of people that will cooperate on the project (1-4).

Email your proposal to <u>erwin@liacs.nl</u> with subject 'Robotics Project Proposal'. **Due:** Thursday 7-3 at 14.00 PM.

Universiteit Leiden. Bij ons leer je de wereld kennen

References

- 1. K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017. (DOI: 10.1017/9781316661239)
- 2. https://pybullet.org/wordpress/

Robotics

Bij ons leer je de wereld kennen