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Robotics

Erwin M. Bakker| LIACS Media Lab 28-2 2019

Period:  February 15th - May 10th 2019

Time: Friday 09.00 — 10.45

Place: LIACS, Room 401 (Workshops Room 303)
Lecturer: Dr Erwin M. Bakker ( erwin@liacs.nl )
Assistant: Andrius Bernatavicius

NB E-mail your name and student number to erwin@liacs.nl

Schedule:
15-2 Introduction and Overview
22-2 Control Space, Locomotion and Kinematics
1-3 Inverse Kinematics and Sensors
8-3 Yetiborg Introduction and SLAM Workshop I
15-3 Project Proposals (presentation by students)
22-3 Yetiborg Qualification and ROS Workshop 11
29-3 Robotics Image Processing
5-4 Yetiborg Race and/or Nao Workshop III
12-4 Robotics Image Processing and Understanding
19-4 No Class
26-4 Robotics Reinforcement Learning. Grading (6 ECTS): Presentations and Robotics Project (60%
35 Robotics Reinforcement Learning Workshop IV of grade). Class discussions, attendance, workshops and
10-5 Project Demos (by students) . .
assignments (40% of grade). It is necessary to be at every
Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/ class and to complete every workshop.
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Overview

+ Configuration Space
* Rigid Body Motion
 Forward Kinematics
+ Inverse Kinematics

* Sensors

« Link: http://modernrobotics.org

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics,
Planning and Control, Cambridge University Press, 2017
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How to move to a goal?

Problem: How to move to a goal?

« Grasp, Walk, Stand, Dance, Follow, etc.
Solution:
1. Program step by step

- Computer Numerical Control (CNC), Automation.
2. Inverse kinematics:

- take end-points and move them to designated points.

3. Tracing movements
- by specialist, human, etc.
4. Learn the right movements

- Reinforcement Learning, give a reward when the movement
resembles the designated movement.

Universiteit Leiden. Bij ons leer je de wereld kennen


http://modernrobotics.org/

3/6/2019

Configuration Space

Robot Question: Where am I?

Answer:

The robot’s configuration: a specification of the
positions of all points of a robot.

Here we assume:

Robot links and bodies are rigid and of known shape =>
only a few variables needed to describe it’s configuration. . Lymne, r.c. park Modern Robotics: Mechanics,

Planning and Control, Cambridge University Press, 2017
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Configuration Space

* Degrees of Freedom of a Rigid Body: the smallest number of real-valued coordinates needed to represent its
configuration
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Configuration Space

Assume we have a coin with 3 points A, B, C on it.

In the plane A,B,C have 6 degrees of freedom:
(easya) s (xpYp) s (oY)

A coin is rigid => 3 extra constraints on distances: d g, d,¢, dge

are fixed, wherever the location of the coin would be.

1. The coin and hence A can be placed everywhere => (x,,y,) free to choose.
2. B canonly be placed under the constraint that its distance to A would be equal to d5. =>
freedom to turn the coin around A with angle @,; => (X4, V4, ©a5 ) are free to choose.
3. Cshould be placed at distance d,, dy from A and B, respectively => only 1 possibility, hence no degree of freedom added.

Degrees of Freedom (DOF) of a Coin
= sum of freedoms of the points — number of independent constraints
= number of variables — number of independent equations =6 -3 =3
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Configuration Space

[1] Definition 2.1.

The configuration of a robot is a complete specification
of the position of every point of the robot.

The minimum number n of real-valued coordinates
needed to represent the configuration is the number of
degrees of freedom (dof) of the robot.

The n-dimensional space containing all possible
configurations of the robot is called the Configuration
Space (C-space).

The configuration of a robot is represented by a point in
its C-space.

Closed-chain robot: Stewart-Gough platform. [1]
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Degrees of Freedom of a Robot

* Arigid body in 3D Space

has 6 DOF @ <
% Revolute I Cylindrical
: (R) (C)
— H
% Prismatic <2
(P) Universal
(U)
PN
* A joint can be seen to put Helical .
constraints on the rigid (H) Spherical
bodies it connects (S)
« It also allows freedom to

move relative to the body it
is attached to.
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Degrees of Freedom | e wyp- 1
Of a ROb Ot $ Prismatic <D
(P) Lunersal
 Arigid body in 3D Space has 6 DOF Q@:
)
H??Ic)al E@ Sphennal
Constraints ¢ | Constraints ¢
between two | between two
Joint type | dof f planar spatial
rigid bodies rigid bodies
.. . Revolute (R) 1 2 5
* A joint can be seen to put constraints on the Prismatic (P) 1 9 5
rigid bodies it connects : i '
Helical (H) 1 N/A 5
+ It also allows freedom to move relative to the Cylindrical (C) 9 N/A 4
body it is attached to. Universal (U) 9 N/A 1
Spherical (S) 3 N/A 3
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Planar Mechanism DOF = 4

Degrees of Freedom of a Robot

Proposition (Griibler's formula)
Consider a mechanism consisting of
* N links, where ground is also regarded as a link.

N = 5 links
J = 4 joints

f=1,foralli
¢;=2, for all i

 J number of joints,

« m number of degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for spatial
mechanisms),

« f; the number of freedoms provided by joint i, and
* ¢; the number of constraints provided by joint i, where f; + ¢; = m for all i.
Then Griibler's formula for the number of degrees of freedom of the robot is

J ]
dof =m(N-=1)— » c;=m(N—=1-))+ ) f;
2 2

i=1

This formula holds only if all joint constraints are independent. If they are not independent then the formula provides a lower
bound on the number of degrees of freedom.
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Cylindrical

(C)

>
Revolute l
' (R)
& Prismatic <>
(P) Universal
(U)

Helical

(H) Splw‘ri(-:nl

(S)

Figure 2.8: The Delta robot.

Example 2.7 (Delta robot). The Delta robot of Figure 2.8 consists of two
platforms — the lower one mobile, the upper one stationary — connected by
three legs. Each leg contains a parallelogram closed chain and consists of three
revolute joints, four spherical joints, and five links. Adding the two platforms,

there are N = 17 links and .J = 21 joints (nine revolute and 12 spherical). By e Links:1+3+3+6+3+1=17
Griibler’s formula, « Joints: 21: 9x R(1 dof) and 12 x S(3 dof)
* m=6

dof = 6(17 — 1 —21) + 9(1) + 12(3) = 15,
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Assignments

* 3x SRS

=>dof=6(10-1-9)+3x7=21

e M=6,N=1+3x3=10,J=3x3,dofperleg3 +1+3
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o~

N

spherical joint
T~

P, —

revolute joint

Topologies
Note: S'x St = T2 (not S?)

Coordinates

Explicit Coordinates

¢ Euclidean x,y)

e Polar (r,0)

* Combined x,y) x (1, )

Implicit Coordinates
o {(xy,2) | x2+y>+2z2=1}

system topology sample representation
. g (€0
L
point on a plane E? R2
latitude
90°
A A
longitude
—180° 90 180°
spherical pendulum 52 [—180°,180°) x [-90°,90°]

s
2

‘:‘\'/ g @ \ 4§
' 0

Y 0 2r 6
2R robot arm T?=5"x 5" [0,2m) x [0,2m)
(2
2m 77
Y
_<—®——_ A—— 0 N
x
rotating sliding knob E! x St R! x [0,27)
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C-Space (Configuration Space)

How to describe a rigid body’s position and orientation in C-Space?

Fixed reference frame {s}

Reference fame attached to body {b}

Described by 4x4 matrix with 10 constraints (unit-length, orthogonal)

Matrix can be used to:

1. Translate or rotate a vector or a frame

2. Change the representation of a vector or a frame

- for example from relative to {s} to relative to {b}
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C-Spaces
o The C-space of a rigid body in the plane can be written -(LHA
since the configuration can be represented as the concatenation of the
coordinates (2. y) representing R2 and an angle @ representing S1.

e The C-space of a PR robot arm can be writton (We will occa-

sionally ignore joint limits, i.e., bounds on the travel of the joints, when 4
expressing the topology of the C-space; with joint limits, the C-space is
the Cartesian product of two closed intervals of the line.)

Revolute
(R)

— .
Prismatic

(P)

e The C-space of a 2R robot arm can be Writtm where T™ is
the n-dimensional surface of a torus in an (n + 1)-dimensional space. (See
Table 2.2.) Note that St St St (n copies of Sl) is equal to T,
not S™; for example, a sphere S? is not topologically equivalent to a torus
T2

Helical
(H)

& 1k

Cylindrical
(C)

Universal

)]

Spherical
s)

e The C-space of a planar rigid body (e.g., the chassis of = ile robot)
with a 2R robot arm can be written as B? x S x T2 :

o As we saw in Section 2.1 when we counted the degrees of freedom of a
rigid body in three dimensions, the configuration of a rigid body can be
described by a point in R?, plus a point on a two-dimensional sphere S,

- an a one-dimensional circle St giving a total C-space of
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Task Space and Work Space

.
AN N
:; | e
N N
) ®
/ B \

N [j A
g;;a ' The SCARA robot is an RRRP open chain that is
() @ widely used for tabletop pick-and-place tasks.
The end-effector configuration is completely

o B Bl o b e g e described by (v, v, 7, ¢)

mechanism = task space R3x S’ and
The workspace is a specification of the configurations =~ = workspace as the reachable points in (x, y, z), since al
that the end-effector of the robot can reach. orientations ¢ can be achieved at all reachable points.
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Rigid Body Motion

Rigid-body position and orientation (x,y, z, ¢, 0, v)

ositive
l?otation C—D
* Can also be described by 4x4 matrix with 10 constraints. |
« In general 4x4 matrices can be used for
- Location

- Translation + rotation of a vector or frame

- Transformation of coordinates between frames

« Velocity of a rigid body: (0x/dt, dy/dt, dz/dt, d¢/dt, 36/dt, dy/dt)

Exponential coordinates:
Every rigid-body configuration can be achieved by:

« Starting in the fixed home frame and integrating a constant twist for a specified
time.

 Direction of a screw axis and scalar to indicate how far the screw axis must be
followed
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Rigid Body Motions in the Plane

Figure 3.3: The body frame {b} is expressed in the fixed-frame coordinates {s} by the
vector p and the directions of the unit axes %y, and ¥,,. In this example, p = (2,1) and

(cos@,sin®) = (0.5.1/+/2) and ¥, = (—sinf, cos @) = (—1/»./5.0.5].

cos fl %, +sinf v,
—sinf X + cosf .

Previously:

P=DXs + pyj’r;-

Xy, = cosflx, +sinfy,, Ao
¥V, = —sinfx +cosfy,. (b} ‘\9
Vb Gy |
~ * __ i‘n
e LS00
o W e}
-
e Y.
-
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Rigid Body Motions in the Plane

{b} relative to {s}
_ | P=

b= [ Dy }

P = [ih }‘A'h] = |:

{c} relative to {s}

et

{c} relative to {b}

Gz
=[] el
Figure 3.4: The frame {b} in {s} is given by (P, p), and the frame {c} in {b} is given qy
by (@Q.g). From these we can derive the frame {c} in {s}, described by (R.r)

numerical values of the vectors p, g, and r and the coordinate-axis directions of the
three frames are evident from the grid of unit squares.

. The

cos )
sinf

|

—sin @
cosf
cosgp  —sing
sing  cosg@
cos 1

sin

—siny
cos

Note and verify: R = PQ, and r = Pq+p

|

10



3/6/2019

Rigid Body Motions in the Plane

{c} described by (R,r)
| T | cos¢ —sing
r_{?‘y]. R_{siné cos }
P ‘r{c I ‘r{c } Move rigid body such that {d} coincides with {d’}.
2 | pe e o | cos@ —sind
/Pi‘+p r= [ Dy } P=[ ] = { sinf  cosé }
V] A A
\ \ -‘f - ; b‘ - 7 5 . PR
\é If (b.d'} )g\ {d'} Then {c’} described by (R’,r"):
PN [T { = {c} : \\{c} R = PR,
Al p [ A .
;/r/ Y _ ¥~ r=Pr+p,
{s. 4} {sd} =
(a) (b) Note: SCREW MOTION

The above rotation followed by a
translation can also be expressed
as a rotation of the rigid-body
about a fixed point s by an angle 8

(P, p) can be used to

1. Represent a configuration of a rigid body in {s}

2. Change the reference frame for vector representation.
3. Displace a vector or a frame.
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Rigid Body Motions in the Plane

Note: SCREW MOTION - r= [ i ] . R= [ cos¢ —Emp }
. {c'} Ty sing cosg

The above rotation followed by a

translation can also be expressed as a

rotation of the rigid-body about a fixed

point s by an angle 3 A b [ P ] P =l 1] = { cosf) —sind ]

{c} described by (R,r)

A

Move rigid body such that {d} coincides with {d’}.

< L Dy sinfd  cosd
(B 50 s,) , Where (s,,'5,) = (0, 2) R
. . .
- Then {c’} described by (R’,1"):
In the {s}-frame rotate 1 rad/sec with $ 1rad/se R — PR
speed (v,,v,) = (2, 0) is denoted as: (517 ~i "_ . ’
S = (0, Vy V) = (1,2,0) (Vi Vy) = (2)0) r' = Pr+p,
Following the screw-axis for an angle
0 = /2 gives the displacement we want:
SO = (n/2, =, 0) N
ote:
These are called the exponential coordinates - distance = vt
for the planar rigid-body displacement. - distance along quarter circle with radius 2 equals =.
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Forward Kinematics

The forward kinematics of 3R Planar Open Chain can be , [ 2 p } Tz Tz P
=1y 0=

T21 Toa Taz P2

written as a product of four homogeneous transformation ra T ot py | {4) &
matrices: T,, = T,,T,,T,,T,,, where a o0 0 1 - 1
cosf; —sinfy 0 0] cosfly, —sinfy 0 L, \(2‘.'3.;)
T — sinf, cosfy 0 0 Tro — sinfl, cosfy 0 0
o= 0 0 10 2= 0 0 10
0 0 0 1| 0 0 0 1
[cosm —sinfly 0 L, | r 00 Lﬂ
_ | sin#z  cos#z 0O 0O 1010 0
=1 " 0o 1 o0 |° Tu=1901 o (45)
0 0 0 1 000 1 J

Home position M:

0 Li+Ly+Ls -
0 0 /

1

0

0
1
0
0
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PoE parameters also known as
Euler-Rodrigues parameters.

There are many other representations:

- for example Denavit-Hartenberg
(1955) representation is very
popular, but can be cumbersome

In velocity kinematics Jacobians are
used.

e :Srl—l]yrl—le[srl]gnjf

e:‘SII—Q:QH -2 E[Srt—l]é‘lrt— 1 e[‘sy!]ﬂ.ﬂ JI

Figure 4.2: Tlustration of the PoE formula for an n-link spatial open chain.
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Inverse Kinematics which angles 0,, and 0, will lead to location (x,y)?

Law of cosines gives:
L? + Lg — 2L LycosfB =z +4°

, hence
8= cos™! —L% * L% —a* - yQ
2Ly Lo

,and similarly

2 2 LZ_LQ
o = cos™! (I ty t 2)

2L /22 + 2

Workspace

/2

(a) A workspace, and lefty and righty (b) Geometric solution.
configurations.

y= atan2(y,x)

Answer:

. . . . 0 =~ — o, Oy =m—
Figure 6.1: Inverse kinematics of a 2R planar open chain. e p=m—f

In general: IK-Solvers
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Real Time
Physics Modelling

https://pybullet.org/wordpress/

Fig. 1: The simulated and the real Minitaurs learned to gallop
using deep reinforcement learning.

pybullet KUKA
grasp training

Using Tensorflow
OpenAl gym

Baselines
DeepQNetworks (DQNS)
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Robotics Preparations

1) Form YetiBorg Racing Teams of 3 to 4 people

Appoint one person who will be responsible for the robot.

Email your teams to erwin@liacs.nl with subject ‘Robotics YetiBorg Racing Team’.
Due: Thursday 7-3 at 14.00 PM.

2) Project Proposal Title and Abstract
Give the title and abstract of the project proposal you will present on March 15%.
Also mention the number of people that will cooperate on the project (1-4).

Email your proposal to erwin@liacs.nl with subject ‘Robotics Project Proposal’.
Due: Thursday 7-3 at 14.00 PM.
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Robotics
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