Robotics

Erwin M. Bakker| LIACS Media Lab

21-2 2019

Universiteit Leiden

Bij ons leer je de wereld kennen

Organization and Overview

 Period:
 February 15th - May 10th 2019

 Time:
 Friday 09.00 - 10.45

 Place:
 LIACS, Room 401 (Workshops Room 303)

 Lecture:
 Dr Erwin M. Bakker (erwin@liacs.nl)

 Assistant:
 Andrius Bernatavicius

NB E-mail your name and student number to erwin@liacs.nl

Schedule:

15-2	Introduction and Overview
22-2	Locomotion and Inverse Kinematics
1-3	Sensors and Algorithms
8-3	SLAM Workshop I and Yetiborg Introduction
15-3	Project Proposals (presentation by students)
22-3	ROS Workshop II and Yetiborg Qualification
29-3	Robotics Image Processing
5-4	Yetiborg Race and/or Nao Workshop III
12-4	Robotics Image Processing and Understanding
19-4	No Class
26-4	Robotics Reinforcement Learning.
3-5	Robotics Reinforcement Learning Workshop IV
10-5	Project Demos (by students)

Website: http://liacs.leidenuniv.nl/~bakkerem2/robotics/

Grading (6 ECTS): Presentations and Robotics Project (60% of grade). Class discussions, attendance, workshops and assignments (40% of grade). It is necessary to be at every class and to complete every workshop.

Overview

- Robotic Actuators
- Configuration Space
- Rigid Body Motion
- Forward Kinematics
- Inverse Kinematics
- Link: <u>http://modernrobotics.org</u>

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017

Universiteit Leiden. Bij ons leer je de wereld kennen

How to move to a goal?

Problem: How to move to a goal?

• Grasp, Walk, Stand, Dance, Follow, etc.

Solution:

- Program step by step.
- Inverse kinematics: take end-points and move them to designated points.
- Trace movements by specialist, human, etc.
- Learn the right movements: Reinforcement Learning, give a reward when the movement resembles the designated movement.

https://pybullet.org/wordpress/

Universiteit Leiden. Bij ons leer je de wereld kennen

Configuration Space

Robot Question: Where am I?

Answer:

The robot's configuration: a specification of the positions of all points of a robot.

Here we assume:

Robot links and bodies are rigid and of known shape => only a few variables needed to describe it's configuration.

K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning and Control, Cambridge University Press, 2017

