Reinforcement Learning
for
Robotics

Erwin M. Bakker
LIACS Media Lab

Reinforcement Learning

Francgois Chollet, Deep Learning with Python, 2" Edition. Manning, 2021.

R. Atienza, Advanced Deep Learning with Keras: Apply deep learning techniques, autoencoders, GANs,
variational autoencoders, deep reinforcement learning, policy gradients, and more, 2018.

R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (Adaptive Computation and Machine
Learning series) 2nd Edition, 2018.

W. Zhao, J.P. Queralta, T. Westerlund, Sim-to-Real Transfer in Deep Reinforcement Learning for
Robotics: a Survey, 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020.

Agent: Robot

Reinforcement Learning

Environment

»
>

R d
Agent: e.g. a Robot swar

Environment: is in a certain state.

Actions of the Agent:
—> Environment transitions to a new state
— Agent receives a reward

Policy: decides for each given state which action should be taken.

Goal: Learn a policy that maximizes the accumulated future rewards

Agent: Robot

Environment

.

- -

Markov Decision Process s._—
Action__—

—

.

Environment Reward
At time step t the environment is in state s; € S, '
where S is the state space, s, is the start state, s; is the current end state.

Actions
The agent takes actions from the action space A.
It follows a probabilistic policy m(a;|s;)
i.e., the probability that action a; is taken given the environment is in state s;.

Reinforcement Learning (RL) methods specify how
an agent changes its policy 7, as a result of its experience.

Environment: responds using the state transition T'(s;,1|s:, a;).
Reward: The agent receives a reward R;,; = R(s;, a;)

Agent-Environment Interaction

The Markov Decision Process and Agent give rise to
a trajectory: S, A, R, S, AL R, S, A RS, S,

Agent: Robot

Environment

Markov Decision Process (MDP)

i

Result: - Environment state transition T(s;4|s;, a;).

Environment at time t in state s; € S.

Reward

Action: - a; following m(a;|s;)

- Agent’s reward R, = R(s;, a;)
Note:
* Functions T and R may or may not be known to the agent.

* Future rewards can be discounted by ", where y € [0,1], and k a
future time step.

* Process can have episodes => a horizon H is used, with T the number
of time steps to complete one episode from s, to s, ..., etc.)

Agent: Robot

Environment

Reinforcement Learning (RL)

Environment
e Can be fully or Partially Observable (=> PO-MDP)

Reward

Note:
* The decision process sometimes takes past observations into account.
* Obeying the Markov-property: all information should be maintained in the current state.

Our robot agent:

* State can be a camera estimate of the 3D position of the soda can with respect to the
gripper.
* Reward
* +1, if the robot gets closer to the soda can.
e -1, if the robot gets farther away from the soda can.
* +100 when it successfully picks up the soda can.

Markov Decision Process (MDP) Framework

Time

e can be abstract, stages

Actions

* low-level: voltages applied to a motor in a robot arm, ...
* high level: grab lunch, grab can, recharge, ...

 abstract: internal actions

Environment and States

* low-level: sensor readings, ...

* high level: symbolic descriptions of objects, ...
 abstract: past sensations, subjective, etc.

Markov Decision Process (MDP) Framework

Boundary between Environment and Agent:

* motors, links, and sensors are part of
environment

* Represents the limit of the agent’s absolute
control, not of it’s knowledge

Note: An Agent may know everything about
how it’s environment works, but still it would
be a challenging reinforcement learning task.

Example |: Pick and Place Robot

Task: control the motion of a robot arm in a repetitive pick and place task.
Goal: fast and smooth movements

Agent:
* Direct low level control of motors
* Low-latency information of position and velocities of mechanical links

Actions

* Voltage applied to each motor at each joint

* Readings of joint angles and velocities

Reward

* +1 for each object that is picked and placed

* Small negative reward as function of the jerkiness of the motion (per moment).

A ent|

» A9 |
. M state | | reward ——
xample ecycling Robo Al ;
[| R.. (
<] Environment]4—
Transition Transition prob. . |
Currentstate Action Next state Transition reward L, Pyait 1—8. -3 o B, T'search
S a s’ p(s'|s,a) | r(s,a,s’) Y S N N
high search high | « Tsearch '.’ wa it e S search @ Action I\!Ode
high search low - Peanrch .‘ //
low search high 1—p5 -3 X / /
h 1 A . N — ! oy 7
low searc ow , 'search g N 1.0 recharge / -
high wait high | 1 Twait State Node | hlgh '< o | low |
. . > 2 /"\ \ .‘\
high wa:.Lt lc?w 0 Twait 7 - b =
low wait high | 0 Twait 4
low wait low 1 Twait |, / g \.‘
low recharge high 1 0 \ ’ search S @wai)
low recharge low 0 0 N _ . B A
Y, T'gearch l -, Tgearch 1, Tyait

High level agent decides to search, wait or recharge:
* Environment State space: two charge levels: high, low
* Robot Action set: state low -> {search, wait, recharge};

Environment responds with state s’ and reward r(s,a,s’)

state high -> {search, wait}

11

Goals and Rewards

* Agent receives after each time step t a reward R,
e Goal is to maximize the total amount of received rewards.

The maximization of the expected value of the cumulative sum
of a received scalar signal (called reward).

More formally (but still a simplification):
Sequence of rewards after time step t: R,,,, Ri,,, Ri,3, -
T final time step, sum of rewards G, = R,,; + R,,, + R.;3+... + R;

12

Reinforcement Learning (RL)

Goal:
* Maximize the expected discounted return:

Gt = Repq T YRy + VZRT+3 T = 2 Vth+k+1) y € 10,1]
k=0

Note:

* v € |0,1] the discount rate.
*y = 0, if only the immediate reward matters
* y =1, if future rewards weigh the same as the immediate reward

13

Reinforcement Learning (RL)

Goal:
* Maximize the expected discounted return:

G = Riy1 +YReyo + V?Rpyz + o0 = Z VR ka1 y € [0,1]
k=0

Note:
G = Reyq + YRiyip + V2Rpys + -

=Riy1 +Y(Reyo + YRii3 + Y Ry +)
= Reyq1 T VG4

14

Example Ill: Pole-Balancing

Objective: Apply forces to the cart such that pole does not fall over.
Failure: If pole falls, or cart runs off the track.

Task of pole-balancing seen as repeated attempts, episodes, during which it is balanced:
Reward: +1 for every time step without failure
= expected return -> oo if successful balancing for ever.

Pole-balancing seen as a continuous task:
Reward: -1 on each failure, O otherwise.

F>_|discounted return related to —y* (y € [0,1]), where K is the number of time steps before
ailure.

Policies and Estimations: Value Functions

Try to estimate value-functions (of states, or state-action pairs) that estimate
for an agent:

1. how good itis to be in a state or
2. how good it is to perform a given action in a given state

(1) The value function of a state s under a policy 7 IS defined as:
U, (8) = EL[Gi|S; =] =E YoV Riik+1lS: =], foralls € S

(2) The expected return starting from s, taking action a and further on following
policy 7 IS defined as:

qr(s,a) = E;|G;|S; = 5,4, = a] = En[z Vth+k+1|St = 5,4, = aj
k=0

16

Reinforcement Learning (RL)

Goal:
* Learn an optimal policy 7, where

T
n* = argmax,Gy, where G; = 2 VYRRt ki1 y € 10,1],

k=0
and Ry, = R(s¢,a¢)

Methods:

e Brute Force, Tabular Methods, Monte Carlo Methods, DNN for RL,
Adversarial RL, Sim-to Real Transfer DRL, etc.

17

[1] L. Pinto, J. Davidson, R. Sukthankar, A. Gupta,
Robust Adversarial Reinforcement Learning, March 2017.

Deep neural networks successes in the field of Reinforcement Learning:
* Fast computations

* Fast Simulations

* Improved networks

But, most RL-based approaches fail to generalize, because:
1. gap between simulation and real world
2. policy learning in real world is hampered by data scarcity

18

RL Challenges for Real-world Policy Learmng

Boston Dynamics | TED

The training of the agent’s policy
in the real-world:

* too expensive

e dangerous

* time-intensive

—> scarcity of data.

= training often restricted to a limited set of scenarios, causing overfitting.

= If the test scenario is different (e.g., different friction coefficient, different mass),
the learned policy fails to generalize.

But a learned policy should be robust and generalize well for different scenarios.

19

RLin the Real World: use more robots

Fig. 1: Two robots learning a door opening task. We present
a method that allows multiple robots to cooperatively learn
a single policy with deep reinforcement learning.

From [2] Gu et al., Nov. 2016.

Reinforcement Learning in simulation:

Facing the data scarcity in the real-world by
* Learning a policy in a simulator
* Transfer learned policy to the real world

But:

environment and physics of the simulator are not the same as the real world.

=> Reality Gap

This reality gap often results in an unsuccessful transfer, if the learned policy
isn’t robust to modeling errors (Christiano et al., 2016; Rusu et al., 2016).

21

Robust Adversarial Reinforcement Learning (RARL)

Training of an agent in the presence of a destabilizing adversary

e Adversary can employ disturbances to the system
* Adversary is trained at the same time as the agent

* Adversary is reinforced: it learns an optimal destabilization policy.

Here policy learning can be formulated as

a zero-sum, minimax objective function.

Minimax in zero-sum games: minimizing the opponent's maximum payoff.
Here a zero-sum game is identical to:

- minimizing one's own maximum loss, and to

- maximizing one's own minimum gain

Zero-sum game: gain and loss cancel each other out.

MuJoCo
Continuous control tasks, running in a fast physics simulator.

Experimental
Environments

* InvertedPendulum
Ant-v2 HalfCheetah-v2 Hopper-v2

° H a IfC h e eta h Aake a 3D "S.,L;_kk?ggea robot Make a 2DrCL:Leeta‘n robot Make a 2D robot hop

* Swimmer

* Hopper

* Walker2d
Humanoid-v2 HumanoidStandup-v2 InvertedDoublePendulum-
Make a 3D two-legged robot Make a 3D two-legged robot v2
walk standup Balance a pole on a pole on
a cart

https://gym.openai.com/

InvertedPendulum-v2 Reacher-v2 Swimmer-v2 23
Balance a pole on a cart Make a 2D robot reach to a Make a 2D robot swim

Unconstrained Scenarios: Challenges

In unconstrained scenarios:

* the space of possible disturbances could be larger than the space of
possible actions

=> sampled trajectories for learning etc. become even sparser

24

Challenges of unconstrained scenarios

Use adversaries for modeling disturbances:
* we do not want to and can not sample all possible disturbances
e we jointly train a second agent (the adversary)

* goal of adversary is to impede the original agent (the protagonist)
* by applying destabilizing forces.
* rewarded only for the failure of the protagonist

=> the adversary learns to sample hard examples, disturbances that make
original agent fail

=> the protagonist learns a policy that is robust to any disturbances created by
the adversary.

25

Challenges of unconstrained scenarios

Use adversaries that incorporate
domain knowledge:

* Naive: give adversary the same action space as the protagonist

* Like a driving student and driving instructor fighting for control of a dual-
controlled car.

Proposal paper:
* exploit domain knowledge
* focus on the protagonist’s weak points;
* give the adversary “super-powers”
=> it can affect the robot or environment in ways the protagonist cannot
e.g. sudden changes in frictional coefficient, mass, etc.

26

|l

Adversary with Domain Knowledge

InvertedPendulum HalfCheetah Swimmer

Figure 1. We evaluate RARL on a variety of OpenAl gym problems. The adversary learns to apply destabilizing forces on specific points
(denoted by red arrows) on the system, encouraging the protagonist to learn a robust control policy. These policies also transfer better to
new test environments, with different environmental conditions and wheHF the adversary may or may not be present.

Figure from [1].

27

Standard Reinforcement Learning (RL)

RL for continuous space Markov Decision Processes
(S, A, P 1y, sy, where

S the set of continuous states

A the set of continuous actions

P: Sx A xS — R the transition probability
r: A — R the reward function

v the discount factor

S, the initial state distribution

Standard Reinforcement Learning (RL)

. : Batch policy algorithms [Williams
RL for continuous space Markov 199 Kakade 2002, Shulman 2015]:
Decision Processes

(S) A) P} r} V; SO)) Where o o .
Learning a stochastic policy:

S the set of continuous states Ty: S X A = R which maximizes

. . T—1 ..t
A the set of continuous actions t=0 Y (S, ae)
P:Sx A xS — R the transition the cumulative discounted reward

probability
r: Sx A — R the reward function

. * O the parameters of the policy .
v the discount factor

. o Policy m: probability taking
s, the initial state distribution action a, given state s, at time t

29

2 Player vy discounted zero-sum Markov Game
(Litman 1994, Perolat 2015)

* 2 Player continuous space Markov Decision Processes
(S,A, A, Pr7,s,), where

S the set of continuous states

A, the set of continuous actions of Player 1

A, the set of continuous actions of Player 2

P:Sx A, x A, xS — Rthe transition probability

r: Sx A; x A, — R the reward function of both players
v the discount factor

s, the initial state distribution

If Player 1 use strategy |1 and Player 2 use strategy 9, then the reward function r 4 is given by:
— 1 .2
Fo=Eqi ucls) az~o¢sH[r(s, a’, a?)]

Player 1 tries maximizing while Player 2 minimizes the exp. cummulative y discounted reward R!

(=> Zero Sum 2 player game) R"™ = minmax R'(u,v) = maxmin R'(p.,)
1 L L 1 30

Robust Adversarial RL Algorithm

The initial parameters for both players’ policies are sampled from a random
distribution.

Two phases

1. Learn the protagonist’s policy while holding the adversary’s policy fixed.

2. Learn the adversary’s policy while protagonist’s policy is held fixed.
Repeat until convergence.

In each phase a roll-function is used sampling the N, trajectories in environment &'
& contains the transition function 7 and reward functions // and r#

Algorithm 1 RARL (proposed algorithm)
Input: Environment &; Stochastic policies y¢ and v (= 9 in our notation)
Initialize: Learnable parameters 64 for ;. and 0} for v
for =1.2,..N;., do

0« 0i_

for j)=12..N, do
{(st,at’, ai", ri', r#")} « roll(€, ftors 0¥ 5 Niraj)
f%" « policyOptimizer({ (s}, a;*, r")}, p, 6%)

end for

0y 07,
for j=1.2...N, do
{(Hi a.tli. a?i’. -f'gi. ff?’)} < roll(&, Fet oy P\’Ttraj)
§Y < policyOptimizer({(s}.a?", 1)} v, 6Y)
end for
end for

Return: 6, 6%

iter iter

32

Experimental Setup

* Environments built using OpenAl gym’s (Brockman et al., 2016).
* Control of environments with the MuloCo physics simulator (Todorov et al., 2012) .

RARL is built on top of rllab (Duan et al., 2016)
Baseline: Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)

For all the tasks and for both the protagonist and adversary,
a policy network with two hidden layers with 64 neurons per layer is used.

Robust Adversarial RL and the baseline are trained with
e 100 iterations on InvertedPendulum
* 500 iterations on the other environments

Hyper-parameters of Trust Region Police Optimization (TRPO) are selected by grid search.

33

InvertedPendulum HalfCheetah
E =

InvertedPendulum
» State space 4D: position, velocity

* Protagonist: 1D forces; Adversary: 2D
forces on center of pendulum

HalfCheetah

e State space 17D: joint angles and joint
velocities, ...

* Adversary: 6D actions with 2D forces
Swimmer

 State space 8D: joint angles and joint
velocities, ...

* Adversary: 3D forces to center of
swimmer

Swimmer

Wae r2

——

Hopper

» State space 11D: joint angles and joint
velocities, ...

* Adversary: 2D force on foot
Walker2d

» State space 17D: joint angles and joint
velocities, ...

e Adversary: 4D actions with 2D forces on both
feet

34

€)) |
adversarial
disturbance

(c)

cart velocity

S

Figure 8. Visualization of forces applied by the adversary on In- Figure 9. Vlsufﬂlzatmn of fm‘ces applnlad by [h.e ady .er.sary on Hi}p
vertedPendulum. In (a) and (b) the cart is stationary, while in (c) PCI. On the left, the Hopper’s foot is in the air while on the righ
and (d) the cart is moving with a vertical pendulum. the foot is interacting with the ground.

4000
3500

3000
© 2500
% 2000
® 1500

1000

5007

HalfCheetah

Swimmer

400
350

300
=

D 250

Z 200
o

150

100

50

100

200 300 400 500

100 200 300 400 500
Iterations

Walker2d

lterations
Hopper
PP 6000
5000
< 4000
©
Z 3000
o
2000
1000
0
100 200 300 400 500 0

lterations

Baseline (TRPO)

100 200 300 400 500
Iterations

RARL

Results

RARL achieves better mean than Baseline.

Figure 2. Cumulative reward curves for RARL trained policies
versus the baseline (TRPO) when tested without any disturbance.
For all the tasks, RARL achieves a better mean than the base-
line. For tasks like Hopper, we also see a significant reduction of
variance across runs.

Table 1. Comparison of the best policy learned by RARL and the baseline (meandone standard deviation)

InvertedPendulum HalfCheetah Swimmer Hopper Walker2d
Baseline 1000 = 0.0 5093 £44 358 £2.4 3614 +£2.16 5418 £ 87
RARL 1000 = 0.0 5444 +£97 354 +£1.5 359074 5854+159

Results
Robustness to
Changing Mass

Inverted Pendulum:
- mass of pendulum changed.

For others:
- mass of torso changed.

1200

InvertedPendulum

1000

o0
=
=

Reward
3
=

400

200

I||

4000
3500

3000
o 2500
[11]
= 2000
4]
@ 1500
1000
500

50 100 %ED 200 250 300
Mass of pendulum

‘Hopper

0

25 30 35 40

45 50
Mass of torso

Reward

6000

5000

4000

3000

2000

1000

0

0

Baseline (TRPO)

HalfCheetah

4

5 6 7 8 L
Mass of torso

- Walker2d

1C

1

2 3 4 5 & 7

Mass of torso

RARL

8

37

Results Robustness to Changing Friction

HalfCheetah Hopper Walker2d
4000 6000
3500 5000
| 3000
= T 2500 £ 4000
2 3000 g <
& & 2000 & 3000
2000 1500 2000
1000 1000
500 1000
0
02 03 04 0.5 0.6 07 08 %.4 0.6 0.8 1.0 1.2 14 186 L-}!:!.5 06 0.7 08 091011 12 1.314
Friction coefficient Friction coefficient Friction coefficient
Baseline (TRPO) RARL

Figure 6. The graphs show robustness of RARL policies to changing friction between training and testing. Note that we exclude the

results of InvertedPendulum and the Swimmer because friction is not relevant to those tasks.

38

Conclusions Experiment Results

1. improves training stability
2. is robust to differences in training/test conditions
3. outperform the baseline even in the absence of the adversary

Discussion

* Results for completely simulated environments: how does it translate
to the real world?

» Adversary can be very easily too powerful. How do you incorporate/
formulate the adversary’s powers in your RARL model?

* Can you think of a good hybrid setup: part simulator, part the real
thing. Have the adversary coming from/to the real world into the

simulation...

From [4] Pinto et al., 2016.

T. Blum et al. RL STaR Platform: Reinforcement Learning for Simulation
based Training of Robots, i-SAIRAS2020, Oct. 2020.

Terms
S E state observations o . _
A = astion CoppeliaSim (used in alternative
R =reward Real World Robot latf ith
w = weights of NN Build Model P attorms wit Pyrep)
b = biases of NN % A-
[S===============1 === sEEEEEEEEE
I w(t) > w(t+n) | I I
|: & \1® e ! || m
I g 2=
I [t
OpenAl’s Baselines; I C‘“’:j T v ”: — =
. I e]
Stable Baselines, I I A ' ' Main I

Tenserflow RL Agents ::Remfu'cement Learning Library Block I: H R(), St
I S{U

I @DC} TASK TRAINER |

https://github.com/Space-Robotics-Laboratory/rilstar ; Others: https://github.com/chauby/CoppeliaSimRL ;
https://github.com/stepjam/PyRep; most used https://sym.openai.com/

41

https://github.com/Space-Robotics-Laboratory/rlstar
https://github.com/chauby/CoppeliaSimRL
https://github.com/stepjam/PyRep
https://gym.openai.com/

W. Zhao, et al., Sim-to-Real Transfer in Deep Reinforcement
Learning for Robotics: a Survey, IEEE SSCI, 2020.

Zero-shot Transfer

* build a realistic simulator; use extensive simulator time => direct transfer to real-world
System Identification

* Use mathematical models and calibrate them to the real environment

Domain Randomization

 Visual randomization, and/or dynamics randomization of simulator

Domain Adaptation

e Use data from source domain to further train the model.

Learning with Disturbances

* Noisy rewards; environmental perturbations (when learning in parallel); etc.
Simulation Environments

e Gazebo (with ROS), Unity3D, PyBullet, MuJuCo (last 2 good integration with DL and RL)

42

See the original

paper by Zhao et al. [8]
for a more careful look

at this table.

TABLE It Classification of the maost relevant publications in Sim2Real Transfer.

_ Sim-to-real transfer Multi-agent Simulator Knowledge Learning Real o
Description) .))) Application
and learning details learning { Engine Transfer Algarithm RobowPlatform
DespRacer: an educational Random colors and parallel do- +{sim only) Gazebo DeepRacer Autonomous
T : P PR s
Balaji et al. sutcmaomous macing platfoom, main randomizasion Diste, folloat Robobaker * FPO AW 1:18 Car racing
Continual RL with policy distillaion Contrual learming with policy ¥ Multi-task Small mobile Robotic
Traore et al. [12] and slm-to-real transfer. distillation. x PyBullet niciiation PFO2 platform navigation
Sim-to-real cransfer for RL withawt System idemtificarion and & high-] KUKA LBR iiwa Peg-in-Hole
Kaspar et al (1] Diynamics Randomizaton quality rabot madel. X PyBullet X SAC +WSGE0 gripper mitnipulation
Sim-to-real RL for deformable chject Siochastic grasping and domnin , TDOF Kinova Dexterous
Matas et al. [6] manipulation, cadarization. o (sim) PyBullet X DDPGED Mico Arm ranipelation
Sim-ta-real RL for thermal effacts of Custam physics model and dy-) kHz-excited Plasma jet
Witman et al. [32] an mimosphesic pressare plasma jet. namics randomization L Custom x A3C APPT in He contral
Modeling Generalized Forces with EL. Modeling and lesrning state de- Rethink Robotics Monprehensile
Jeong et al. for Sim2Real Transfer perclent genezalized farces, X MuloCo] MPO Sawyer manipulation
Meta Reinforcement Learming for Domain random, and modsl- Meti- Kuka LBR Manipulation
Arndt et al. [11] Sim2Resl Domain Adaptetion agroatic meta-learning. x MuJoCo training FPO 44 arm {hockey puck)
i Flexible roboiic grasping with Direct ransfer. Elliptic mask o ; ABB Yulhli with Rohaotic
Breyer et al. [34] Sim2Real RL RGB-D images. X PyBullet X TRPO parallel-jaw gripper Grasping
i, Sim-to-real tropsfer with robustifisd Varintion of appearance and’ or , MuJaCo A3C (sim) Mitsubishi Marble More
I}
Van Baar et al. palicies for robat tasks. physics pasametess. v (5im) +0gre 3D v +Off-policy Melfa BV-65L Manipulation
Sim2Reaal RL for rebotic soccer com- Domain sdaptation and costam i DDPG , Robatic
Bassani et al. [36] oiions, s later for teanaiee. x VSS5-RL v /DON V558 Robot Mavigation
Sim2Real for six-legeed rabots with Cursiculum learning with inverse Six-legged Mavigation and
Qin et al. [37] DRL and curriculum leaming, kinematics, X V-Rep s FPO rohot ohsacle avoid.
Sim-to-real in reinforcement learnd Domain randomization {lEght + , . Sainsmart Low-cost
Vacaro et al. [38] 77 pemone O alor + o). ¥ /(sim) Unity3D X IMPALA e, oboL art
Sim-to-Real Transfer with Incresmen- SAC raining using ircremesnial DoDPG Wifibot Mapless
Chaffre et al. @ tal Environment Complexity environment complexity R Gazebo * S AC Lahk V4 mavi gation
Rl with Cartesian Commands for Peg Dynamics {CMA-ES) and envi- Kuka Peg-in-hale
K.-E.ipﬂ.‘[‘ et al, m in Haole Tasks. rapment randomizabon. x PyBullet X 5AC LEBE iiwa tasks
Hund al. ﬂ Efficiert RL for Muole-Step Visual Direct ransfer with custam sims p SPOT SP'DT'Q LUniversal]_-ﬂl'li—l.l:.‘n"_l
i et Tasks via Reward Shaping. ulaiion framewari. Framework * +FER Robet URS mult-step tasks
Sim-to-Real Transfer for Gripper Pose CyeleGAMs for domain adaption . Panda Robaotic
Pedersen et al, IE Estimation with GAN and transfer, K Unity * FPO robiot Grigpers
. Simeto-Real Transfer for Optical Tac- Analysis of diffsrent amounts af . Sawyer robot Tactile
DI.I'IE et al, E e Sem:r_g randomization. 'F P_'.rEulll:t 'x CNN +'|_"g_y;'[‘jp SenE0r EI:-'I'.IEiI!l,g
Data-efficient Bavesian Domain Ran- Propeaed bayesisn randormiza- Customd PP/ RF Quanser swing-up’
Muratore et al. 9] gomization for sim-to-real tion (BAYR). x BoTaorch * Classifier Qube balancing
Towards closing the sim-to-real gap in - Domain randomization (eastom \ Kukn Robaol arm
Zhao et al, ﬁ] oollaborative DEL with pererbances perturbations) u’[!]m] P:'rhuuﬂ ~ FFO iﬁim.m[u} reacher
. Multi-agent manipulation via leoom- Hisrarchichal sim-ta-real, modeal- DKty pobo Mu]::'-a.ge:nt
N i "
Nachum et al. [44] froe, zevo-shot tramsder. v MuJoCo x Custom (2% manipulation
Dexterous mandpulation with DEL Imdtation learning via demonsira- ADROIT Multi-fingered
Rajeswaran et al. and demonstratars, tors with VR X MuloCo X DAPG 24-DoF Hand robat hands

Very nice primer for RL to have a look at:

* https://spinningup.openai.com/en/latest/spinningup/rl _intro.html

* MulJoCo is a proprietary software that requires a license,
* There is a free trial and above that it is free for students.

44

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

References

1. L. Pinto, J. Davidson, R. Sukthankar, A. Gupta, Robust Adversarial Reinforcement Learning,
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:2817-2826, 2017.

2. S.Gu, E. Holly, T. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation with
Asynchronous Off-Policy Updates, arXiv:1610.00633v2 [cs.RO], October 2016.

3. C.Finn,S. Levine, Deep Visual Forsight for Planning Robot Motion, arXiv:1610.00696, ICRA 2017,
October 2016.

4. L. Pinto, J. Davidson, A. Gupta, Supervision via Competition: Robot Adversaries for Learning Tasks,
arXiv:1610.01685, ICRA 2017, October 2016.

5. K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised Pixel-Level Domain
Adaptation with Generative Adversarial Networks, arXiv:1612.05424, CVPR 2017, December 2016.

6. A.Banino et al., Vector-based navigation using grid-like representations in artificial agents,
https://doi.org/10.1038/s41586-018-0102-6, Research Letter, Nature, 2018.

7. R.Borst, Robust self-balancing robot mimicking, Bachelor Thesis, August 2017

8. W. Zhao, J.P. Queralta, T. Westerlund, Sim-to-Real Transfer in Deep Reinforcement Learning for
Robotics: a Survey, 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020.

45

https://doi.org/10.1038/s41586-018-0102-6
https://arxiv.org/pdf/2009.13303.pdf
https://arxiv.org/pdf/2009.13303.pdf

Algorithm Description Model Policy | Action Space State Space Operator
Monte Carlo Every visit to Monte Carlo Model-Free | Off-policy | Discrete Discrete Sample-means
Q-learning State—action—reward—state Model-Free | Off-policy | Discrete Discrete Q-value
SARSA State—action—reward—state—action Model-Free | On-policy | Discrete Discrete Q-value
Q-learning - Lambda | State—action—reward—state with eligibility traces Model-Free | Off-policy | Discrete Discrete Q-value
SARSA - Lambda State—action—reward—state—action with eligibility traces | Model-Free | On-policy | Discrete Discrete Q-value
DQN Deep Q Network Model-Free | Ofi-policy | Discrete Continuous | Q-value
DDPG Deep Deterministic Policy Gradient Model-Free | Off-policy | Continuous Continuous | Q-value
A3C Asynchronous Advantage Actor-Critic Algorithm Model-Free | On-policy | Continuous Continuous | Advantage
MNAF Q-Learning with Normalized Advantage Functions Model-Free | Off-policy | Continuous Continuous | Advantage
TRPO Trust Region Policy Optimization Model-Free | On-policy | Continuous Continuous | Advantage
PPO Proximal Policy Optimization Model-Free | On-policy | Continuous Continuous | Advantage
TD3 Twin Delayed Deep Deterministic Policy Gradient Model-Free | Off-policy | Continuous Continuous | Q-value
SAC Soft Actor-Critic Model-Free | Offi-policy | Continuous Continuous | Advantage

46

Environment

Reward

Agent: Robot

47

	Slide 1: Reinforcement Learning for Robotics
	Slide 2: Reinforcement Learning
	Slide 3: Reinforcement Learning
	Slide 4: Markov Decision Process
	Slide 5: Agent-Environment Interaction
	Slide 6: Markov Decision Process (MDP)
	Slide 7: Reinforcement Learning (RL)
	Slide 8: Markov Decision Process (MDP) Framework
	Slide 9: Markov Decision Process (MDP) Framework
	Slide 10: Example I: Pick and Place Robot
	Slide 11: Example II: Recycling Robot
	Slide 12: Goals and Rewards
	Slide 13: Reinforcement Learning (RL)
	Slide 14: Reinforcement Learning (RL)
	Slide 15: Example III: Pole-Balancing
	Slide 16: Policies and Estimations: Value Functions
	Slide 17: Reinforcement Learning (RL)
	Slide 18: [1] L. Pinto, J. Davidson, R. Sukthankar, A. Gupta, Robust Adversarial Reinforcement Learning, March 2017.
	Slide 19: RL Challenges for Real-world Policy Learning
	Slide 20: RL in the Real World: use more robots
	Slide 21: Reinforcement Learning in simulation:
	Slide 22: Robust Adversarial Reinforcement Learning (RARL)
	Slide 23: Experimental Environments
	Slide 24: Unconstrained Scenarios: Challenges
	Slide 25: Challenges of unconstrained scenarios
	Slide 26: Challenges of unconstrained scenarios
	Slide 27: Adversary with Domain Knowledge
	Slide 28: Standard Reinforcement Learning (RL)
	Slide 29: Standard Reinforcement Learning (RL)
	Slide 30: 2 Player  discounted zero-sum Markov Game (Litman 1994, Perolat 2015)
	Slide 31: Robust Adversarial RL Algorithm
	Slide 32
	Slide 33: Experimental Setup
	Slide 34: Experiments
	Slide 35
	Slide 36: Results
	Slide 37: Results Robustness to Changing Mass
	Slide 38: Results Robustness to Changing Friction
	Slide 39: Conclusions Experiment Results
	Slide 40: Discussion
	Slide 41: T. Blum et al. RL STaR Platform: Reinforcement Learning for Simulation based Training of Robots, i-SAIRAS2020, Oct. 2020.
	Slide 42: W. Zhao, et al., Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey, IEEE SSCI, 2020.
	Slide 43
	Slide 44: Very nice primer for RL to have a look at:
	Slide 45: References
	Slide 46
	Slide 47

