
3/22/2021

1

Reinforcement Learning
for

Robotics
Erwin M. Bakker

LIACS Media Lab

1

Reinforcement Learning

E. Charniak, Introduction to Deep Learning. The MIT Press, 2018.

R. Atienza, Advanced Deep Learning with Keras: Apply deep learning
techniques, autoencoders, GANs, variational autoencoders, deep
reinforcement learning, policy gradients, and more, 2018.

R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning series) 2nd Edition, 2018

2

3/22/2021

2

Reinforcement Learning Agent: Robot

State

Environment

Action

Reward
Agent: e.g. a Robot

Environment: is in a certain state.

Actions of the Agent :
 Environment transitions to a new state
 Agent receives a reward

Policy: decides for each given state which action should be taken.

Goal: Learn a policy that maximizes the accumulated future rewards
3

Markov Decision Process

Environment
At time step t the environment is in state 𝑠𝑡 ∈ 𝑆,
where S is the state space, 𝑠0 is the start state, 𝑠𝑡 is the current end state.

Actions
The agent takes actions from the action space A.
It follows a probabilistic policy 𝜋 𝑎𝑡 𝑠𝑡
i.e., the probability that action 𝑎𝑡 is taken given the environment is in state 𝑠𝑡.

Reinforcement Learning (RL) methods specify how
an agent changes its policy 𝜋𝑡 as a result of its experience.

Environment: responds using the state transition 𝑇 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 .
Reward: The agent receives a reward 𝑅𝑡+1 = 𝑅 𝑠𝑡 , 𝑎𝑡

4

3/22/2021

3

Agent-Environment Interaction

The Markov Decision Process and Agent give rise to
a trajectory: S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, …

5

Markov Decision Process (MDP)

Environment at time t in state 𝑠𝑡 ∈ 𝑆.

Action: - 𝑎𝑡 following 𝜋 𝑎𝑡 𝑠𝑡
Result: - Environment state transition 𝑇 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 .

- Agent’s reward 𝑅𝑡+1 = 𝑅 𝑠𝑡 , 𝑎𝑡
Note:

• T and R may or may not be known to the agent.

• Future rewards can be discounted by 𝛾𝑘, where 𝛾 ∈ 0,1 , and k a
future time step.

• Process can have episodes: then a horizon H is used, with T the
number of time steps to complete one episode from 𝑠0 to 𝑠𝑡. 6

3/22/2021

4

Reinforcement Learning (RL)

Environment

• Can be fully or Partially Observable (=> POMDP)

Note:

• The decision process sometimes takes past observations into account.

• Obeying the Markov-property: all information should be maintained in the current state.

Our robot agent:

• State can be a camera estimate of the 3D position of the soda can with respect to the
gripper.

• Reward
• +1, if the robot gets closer to the soda can.
• -1, if the robot gets farther away from the soda can.
• +100 when it successfully picks up the soda can.

7

Markov Decision Process (MDP) Framework

Time

• can be abstract, stages

Actions

• low-level: voltages applied to a motor in a robot arm, …

• high level: grab lunch, grab can, recharge, …

• abstract internal actions

Environment and States

• low-level: sensor readings, …

• high level: symbolic descriptions of objects, …

• past sensations, subjective, etc.

8

3/22/2021

5

Markov Decision Process (MDP) Framework

Boundary between Environment and Agent:

• motors, links, and sensors part of
environment

• Represents the limit of the agent’s absolute
control, not of it’s knowledge

Note: An Agent may know everything about
how it’s environment works, but still it would
be a challenging reinforcement learning task.

9

Example: Pick and Place Robot

Task: control the motion of a robot arm in a repetitive pick and place task.

Goal: fast and smooth movements

Agent:

• Direct low level control of motors

• Low-latency information of position and velocities of mechanical links

Actions

• Voltage applied to each motor at each joint

• Readings of joint angles and velocities

Reward

• +1 for each object that is picked and placed

• Small negative reward as function of the jerkiness of the motion (per moment).
10

3/22/2021

6

Example: Recycling Robot

High level agent decides to search, wait or recharge:

• Two charge levels: high, low

• Action set: state low -> {search, wait, recharge}; state high -> {search, wait}

Transition prob.
Transition reward

Transition

State Node

Action Node

Current state Next stateAction

11

Goals and Rewards

• Agent receives after each time step t a reward Rt+1

• Goal is to maximize the total amount of received rewards.

The maximization of the expected value of the cumulative sum

of a received scalar signal (called reward).

More formally (but still a simplification):

Sequence of rewards after time step t: Rt+1, Rt+2, Rt+3, …

T final time step, sum of rewards Gt = Rt+1 + Rt+2 + Rt+3 +… + RT

12

3/22/2021

7

Reinforcement Learning (RL)

Goal:

• Maximize the expected discounted return:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾
2𝑅𝑇+3 +⋯ =

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 , 𝛾 ∈ 0,1

Note:

• 𝛾 ∈ 0,1 the discount rate.

• 𝛾 = 0, if the immediate reward matters

• 𝛾 = 1, if future rewards weigh the same as the immediate reward

13

Reinforcement Learning (RL)

Goal:

• Maximize the expected discounted return:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾
2𝑅𝑇+3 +⋯ =

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 , 𝛾 ∈ 0,1

Note:
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾

2𝑅𝑇+3 +⋯

= 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + 𝛾
2𝑅𝑇+4 +⋯)

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1

14

3/22/2021

8

Example: Pole-Balancing

Objective: Apply forces to the cart such that pole does not fall over.

Failure: If pole falls, or cart runs off the track.

Task of pole-balancing seen as repeated attempts, episodes, during which it is balanced:

Reward: +1 for every time step without failure

 expected return -> ∞ if successful balancing for ever.

Pole-balancing seen as a continuous task:

Reward: -1 on each failure, 0 otherwise.

=> discounted return related to −𝛾𝐾 (𝛾 ∈ 0,1), where K is the number of time steps before failure.

15

Policies and Estimations: Value Functions

Try to estimate value-functions (of states, or state-action pairs) that estimate
for an agent:

1. how good it is to be in a state or

2. how good it is to perform a given action in a given state

(1) The value function of a state s under a policy π is defined as:

𝑣𝜋 𝑠 = 𝜠𝝅 𝑮𝒕 𝑺𝒕 = 𝒔 = Ε𝜋[𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠 , for all 𝑠 ∈ 𝑆

(2) The expected return starting from s, taking action a and further on following
policy π is defined as:

𝑞𝜋 𝑠, 𝑎 = 𝜠𝝅 𝑮𝒕 𝑺𝒕 = 𝒔, 𝑨𝒕 = 𝒂 = Ε𝜋[

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

16

3/22/2021

9

Reinforcement Learning (RL)

Goal:

• Learn an optimal policy 𝜋∗, where

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐺𝑡 , where 𝐺𝑡 =

𝑘=0

𝑇

𝛾𝑘𝑅𝑡+𝑘+1 , 𝛾 ∈ 0,1 ,

and 𝑅𝑡+1 = 𝑅 𝑠𝑡 , 𝑎𝑡

Methods:

• Brute Force, Tabular Methods, Monte Carlo Methods, DNN for RL,
Adversarial RL.

17

[1] L. Pinto, J. Davidson, R. Sukthankar, A. Gupta,
Robust Adversarial Reinforcement Learning, March 2017.

Deep neural networks success in the field of Reinforcement Learning:

• Fast computations

• Fast Simulations

• Improved networks

But, most RL-based approaches fail to generalize, because:

1. gap between simulation and real world

2. policy learning in real world is hampered by data scarcity

18

3/22/2021

10

RL Challenges for Real-world Policy Learning

The training of the agent’s policy

in the real-world:

• too expensive
• dangerous

• time-intensive

 scarcity of data.
 training often restricted to a limited set of scenarios, causing overfitting.

 If the test scenario is different (e.g., different friction coefficient, different mass),

the learned policy fails to generalize.

But a learned policy should be robust and generalize well for different scenarios.
19

RL in the Real World: use more robots

From [2] Gu et al. , Nov. 2016.20

3/22/2021

11

Reinforcement Learning in simulation:

Facing the data scarcity in the real-world by
• Learning a policy in a simulator
• Transfer learned policy to the real world

But:
environment and physics of the simulator are not the same as the real world.

=> Reality Gap

This reality gap often results in an unsuccessful transfer, if the learned policy
isn’t robust to modeling errors (Christiano et al., 2016; Rusu et al., 2016).

21

Robust Adversarial Reinforcement Learning (RARL)

Training of an agent in the presence of a destabilizing adversary

• Adversary can employ disturbances to the system

• Adversary is trained at the same time as the agent

• Adversary is reinforced: it learns an optimal destabilization policy.

Here policy learning can be formulated as

a zero-sum, minimax objective function.

Minimax in zero-sum games: minimizing the opponent's maximum payoff.
Here a zero-sum game is identical to:
- minimizing one's own maximum loss, and to
- maximizing one's own minimum gain
Zero-sum game: gain and loss cancel each other out. 22

3/22/2021

12

Experimental
Environments
• InvertedPendulum

• HalfCheetah

• Swimmer

• Hopper

• Walker2d

https://gym.openai.com/

23

Unconstrained Scenarios: Challenges

In unconstrained scenarios:

• the space of possible disturbances could be larger than the space of
possible actions

=> sampled trajectories for learning etc. even sparser

24

3/22/2021

13

Challenges of unconstrained scenarios

Use adversaries for modeling disturbances:

• we do not want to and can not sample all possible disturbances

• we jointly train a second agent (the adversary)

• goal of adversary is to impede the original agent (the protagonist)
• by applying destabilizing forces.

• rewarded only for the failure of the protagonist

=> the adversary learns to sample hard examples, disturbances that make
original agent fail

=> the protagonist learns a policy that is robust to any disturbances created by
the adversary.

25

Challenges of unconstrained scenarios

Use adversaries that incorporate
domain knowledge:

• Naïve: give adversary the same action space as the protagonist
• Like a driving student and driving instructor fighting for control of a dual-control car.

Proposal paper:
• exploit domain knowledge
• focus on the protagonist’s weak points;
• give the adversary “super-powers”

=> it can affect the robot or environment in ways the protagonist cannot
e.g. sudden changes in frictional coefficient, mass, etc.

26

3/22/2021

14

Adversary with Domain Knowledge

Figure from [1].

27

Standard Reinforcement Learning (RL)

RL for continuous space Markov Decision Processes

(S, A, P, r, , s0), where
S the set of continuous states
A the set of continuous actions
P: S x A x S →ℝ the transition probability
r: A → ℝ the reward function
 the discount factor
s0 the initial state distribution

28

3/22/2021

15

Standard Reinforcement Learning (RL)

• RL for continuous space Markov
Decision Processes

(S, A, P, r, , s0), where

S the set of continuous states

A the set of continuous actions

P: S x A x S →ℝ the transition
probability

r: S x A → ℝ the reward function

 the discount factor

s0 the initial state distribution

Batch policy algorithms [Williams
1992, Kakade 2002, Shulman 2015]:

Learning a stochastic policy:

πθ: S x A →ℝ which maximizes

 𝑡=0
𝑇−1𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)

the cumulative discounted reward

• Θ the parameters of the policy π.

• Policy π takes action at given
state st at time t

29

2 Player discounted zero-sum Markov Game
(Litman 1994, Perolat 2015)

• 2 Player continuous space Markov Decision Processes
(S, A1, A2, P, r, , s0), where
S the set of continuous states
A1 the set of continuous actions of Player 1
A2 the set of continuous actions of Player 2
P: S x A1 x A2 x S →ℝ the transition probability
r: S x A1 x A2→ℝ the reward function of both players
 the discount factor
s0 the initial state distribution

If Player 1 use strategy μ and Player 2 use strategy ϑ , then the reward function rμ,ϑ is given by:

rμ,ϑ=𝐸𝑎1~𝜇 . 𝑠 , 𝑎2~𝜗 . 𝑠 [𝑟 𝑠, 𝑎
1, 𝑎2]

Player 1 tries maximizing while Player 2 minimizes the exp.cummulative γ discounted reward R1

(=> Zero Sum 2 player game)

30

3/22/2021

16

RALR Algorithm

The initial parameters for both players’ policies are sampled from a random
distribution.

Two phases

1. Learn the protagonist’s policy while holding the adversary’s policy fixed.

2. The protagonist’s policy is held constant and the adversary’s policy is learned.

Repeat until convergence.

In each phase a roll-function is used sampling the Ntraj trajectories in environment ℇ .

ℇ contains the transition function P and reward functions r1 and r2

31 32

(= ϑ in our notation)

3/22/2021

17

Experimental Setup

• Environments built using OpenAI gym’s (Brockman et al., 2016).

• Control of environments with the MuJoCo physics simulator (Todorov et al., 2012) .

RARL is built on top of rllab (Duan et al., 2016)

Baseline: Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)

For all the tasks and for both the protagonist and adversary,

a policy network with two hidden layers with 64 neurons per layer is used.

RARL and the baseline are trained with

• 100 iterations on InvertedPendulum

• 500 iterations on the other environments

Hyperparameters of TRPO are selected by grid search.
33

Experiments

Hopper

• State space 11D: joint angles and joint
velocities, …

• Adversary: 2D force on foot

Walker2d

• State space 17D: joint angles and joint
velocities, …

• Adversary: 4D actions with 2D forces on both
feet

InvertedPendulum

• State space 4D: position, velocity

• Protagonist: 1D forces; Adversary: 2D
forces on center of pendulum

HalfCheetah

• State space 17D: joint angles and joint
velocities, …

• Adversary: 6D actions with 2D forces

Swimmer

• State space 8D: joint angles and joint
velocities, …

• Adversary: 3D forces to center of
swimmer

34

3/22/2021

18

Actions of Adversary

35

Results

36

3/22/2021

19

Results
Robustness to
Changing Mass

37

Results Robustness to Changing Friction

38

3/22/2021

20

Conclusions Experiment Results

1. improves training stability

2. is robust to differences in training/test conditions

3. outperform the baseline even in the absence of the adversary

39

Discussion

• Results for completely simulated environments: how does it translate
to the real world?

• Adversary can be very easily too powerful. How do you incorporate/
formulate the adversary’s powers in your RARL model?

• Can you think of a good hybrid setup: part simulator, part the real
thing. Have the adversary coming from/to the real world into the
simulation…

• …

From [4] Pinto et al., 2016.

40

3/22/2021

21

T. Blum et al. RL STaR Platform: Reinforcement Learning for Simulation
based Training of Robots, i-SAIRAS2020, Oct. 2020.

41

OpenAI’s Baselines;
Stable Baselines,
Tenserflow RL Agents

CoppeliaSim (used in alternative
platforms with Pyrep)

Very nice primer for RL to have a look at:

• https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

• MuJoCo is a proprietary software that requires a license,

• There is a free trial and above that it is free for students.

42

3/22/2021

22

References

1. L. Pinto, J. Davidson, R. Sukthankar, A. Gupta, Robust Adversarial Reinforcement Learning,
arXiv:1703.02702, March 2017.

2. S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation
with Asynchronous Off-Policy Updates, arXiv:1610.00633v2 [cs.RO], October 2016.

3. C. Finn, S. Levine, Deep Visual Forsight for Planning Robot Motion, arXiv:1610.00696, ICRA
2017, October 2016.

4. L. Pinto, J. Davidson, A. Gupta, Supervision via Competition: Robot Adversaries for Learning
Tasks, arXiv:1610.01685, ICRA 2017, October 2016.

5. K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, D. Krishnan, Unsupervised Pixel–Level Domain
Adaptation with Generative Adversarial Networks, arXiv:1612.05424, CVPR 2017, December
2016.

6. A. Banino et al., Vector-based navigation using grid-like representations in artificial agents,
https://doi.org/10.1038/s41586-018-0102-6, Research Letter, Nature, 2018.

7. R. Borst, Robust self-balancing robot mimicking, Bachelor Thesis, August 2017

43 44

https://doi.org/10.1038/s41586-018-0102-6

