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Robotic Vision

E.M. Bakker

Honda Asimo (From: zdnet.com)

From [10], S. Vaddi et al., 2019.
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Overview

* OpenCV
e Some Neural Networks and AlexNet

Computer Vision and Pattern Recognition (CVPR)
* Object Tracking

* Human Robot Interaction

* Pose Estimation, Face Recognition, ...

* Some problems with Neural Networks

* Data fusion ...

OpenCV

Identity

* Low level image processing.

* Convolutional Kernels: filters, edge
detectors, etc.
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Filtered image
Image from [1].

* Blob tracking Sharpen
* Face and people detector

Box blur
* Neural networks Giraizad

[1] https://www.sciencedirect.com/topics/computer-science/convolution-filter
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OpenCV: Convolutional Kernels === e
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Some Neural Networks

Output Patterns Output Patterns

presentation
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DNN: AlexNet, VGG16, ResNet, etc.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64.896-43,264—
4096—4096—1000. Krizhevsky, Alex; Sutskever, llya; Hinton, Geoffrey E. "ImageNet classification with deep
convolutional neural networks" Communications of the ACM. 60 (6): 84-90. 2()12




03/04/2023

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

3 ﬂ '™

Jason Yosinski Jeff Clune Anh Nguyen Thomas Fuchs Hod Lipson

UNIVERSITY
ot WYOMING

ornell University

Jet Propulsion Laboratory
California Institute of Technology

ImageNet

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale
Hierarchical Image Database. /EEE Computer Vision and Pattern Recognition (CVPR),
2009. pdf | BibTex

* #fimages: 14,197,122

* # non-empty WordNet synsets: 21,841

* # images with bounding box: 1,034,908
* # synsets with SIFT features: 1000

* # images with SIFT features: 1.2 million

synset = set of one or more synonyms

https://cs.stanford.edu/people/karpathy/cnnembed,



https://www.image-net.org/static_files/papers/imagenet_cvpr09.pdf
https://www.image-net.org/static_files/papers/imagenet_cvpr09.bib
https://cs.stanford.edu/people/karpathy/cnnembed/
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Image Classification on ImageNet  (hitps://www.image-net.org/ )
Accessed April 2023

Leaderboard Dataset
View | Top 1 Accuracy ~v| by | Date v | for | All models
1o ViT-G/14  CoCa (finetuned)
NASNET_A(S) FixResNeXt-101 32x48d
g Aexhiet https://cs.stanford.edu/people/karpathy/cnnembed,
§ 50
DNN Param  Top-1 Accuracy
0 7 - 1 Basic-L 2440M  91.1%
) ’ 2 Coca 2100M  91%
Other models  -»- state-of-the-art models 3 Model soups 2440M 90,98%
Filter:
776 ResNet-50  25M  75.3% (2016)
801 VGG16 138M 74.4% (2014)
857 AlexNet 60M  63.3% (2012)
https://paperswithcode.com/paper/imagenet-classification-with-deep

Object Tracking
* Conference on Computer Vision and Pattern Recognition (CVPR)

Real-Time Tracking
* A. He et al. A Twofold Siamese Network for Real-Time Object Tracking

* B. Yang et al. PIXOR: Real-Time 3D Object Detection From Point
Clouds

* MEMOT: Multi Object Tracking with Memory CVPR2022
* Etc.



https://paperswithcode.com/paper/imagenet-classification-with-deep
https://www.image-net.org/
https://cs.stanford.edu/people/karpathy/cnnembed/
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COCO:

Common Objects in Context
https://cocodataset.org

FaAawta

COCO is a large-scale object detection
segmentation, and captioning dataset
COCO has several features

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances

80 object categories

91 stuff categories

5 captions per image

250,000 people with keypoints

LR

T.-Y. Lin et al. Microsoft COCO: Common Objects in Context., Computer Vision and Pattern Recognition, 2015.

FiftyOne  bddiook-validation | +addstage

Sampletags  Labeltags  Labels  Otherfields

© LABELTA
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[ metadatasize_bytes 10,000 v
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https://cocodataset.org/
https://voxel51.com/
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Object Detection

* Viola, Jones, Robust Real-time Object Detection,
1JCV 2001.

* Histogram of Oriented Gradients (HOG) Detector,

ECCV 2006
* Deformable Parts Model (Felzenswalb et al. 2010)

R S T S

Model

(a) Root filter (b) Part filters in (c) A spatial model
higher resolution for part locations

Deformable Parts Model (DPB), using Markov Random Fields

https://learnopency.com/histogram-of-oriented-

Object Detection

* COCO Data Set
* https://cocodataset.org/#explore
* https://cocodataset.org/#detection-leaderboard

* MMDetection
* https://github.com/open-mmlab/mmdetection
* https://platform.openmmlab.com/web-demo/demo/detection

* YOLOvV1-v3
* https://pjreddie.com/darknet/yolo/
* Joseph Redmon, Ali Farhadi, YOLOv3: An Incremental Improvement, Tech
Report, 2018 (See: https://pireddie.com/publications/)
* Yolo v5
* https://pytorch.org/hub/ultralytics yolov5/



https://cocodataset.org/#explore
https://cocodataset.org/#detection-leaderboard
https://github.com/open-mmlab/mmdetection
https://platform.openmmlab.com/web-demo/demo/detection
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/publications/
https://pytorch.org/hub/ultralytics_yolov5/
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Object Detection: Yolo vl —v3, ..., Yolo v5

Performance on the COCO Dataset

Model Train Test mAP FLOPS FPS Cfg Weights
412 = ink

YOLOv3-416
YOLOv3-608

50 100 150 200

inference time (ms)

https://pireddie.com/darknet/yolo/

better

YOLO: You Only Look Once

https://pytorch.org/hub/ultralytics yolov5/
Yolo v5x6 mAP 54.4 22.4 ms on V100 GPU, 141.8 Mparams, 222.9 FLOPS

C.W. Corsel, YOLO-based Obstacle Avoidance
for Drones. BSc Thesis, 2020. Q%‘p —
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Figure 3.1: Size expansion concept

(a) SIFT

Figure 6.6: Object detection on multiple obstacles



https://pjreddie.com/darknet/yolo/
https://pytorch.org/hub/ultralytics_yolov5/
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C.W. Corsel et al. Exploiting Temporal Context for Tiny Object
Detection, WAVC 2023.

TwitCam

VIRAT

Datasets: TwinCam, VIRAT and selected area of interests from the WPAFB Dataset.

C.W. Corsel et al. Exploiting Temporal

Context for Tiny Object Detection,

WAVC 2023,

1 ft—s
v M}
: fi
Time % Model

.

Three video frames are combined into a 3-channel
image. A deep learning object detector detects
objects by exploiting the temporal context

v
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Ouderijn t-yolov5x results

M. Delzenne, Autonomous navigation
in pedestrian spaces. MSc Thesis 2023.

Rover Base Station

GNSS GNSS

Anerna WiFl % SRS % WIF Antenna
o) h o)

ZED FOP uss )/‘I:I:J USB L zep.pee

— csl Camemt -

Real Time Kinematic Global Navigation Satellite System (RTK-GNSS)
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M. Delzenne, Autonomous navigation
in pedestrian spaces. MSc Thesis 2023.

Efficient Net

Steering /
Position

Conv 3x3
Fully Connect
Layer

MBConv1, 3x3

MBConve, 3x3

MBConve, 3x3
MBConve, 5x5
MBConve, 3x3

MBConv6, 5x5
MBConve, 5x5
MBConve, 5x5
MBConve, 5x5
MBConve, 5x5
MBConve, 5x5

MBConvé, 5x5
MBConvé, 5x5
MBConvs, 3x3
MBConve, 3x3
MBConvé, 3x3

Image L] L
data

W. Stokman, Obstacle detection and avoidance using
image processing on embedded systems. BSc Thesis, 2020.

Conditional Random Field

Figure 15: The Jetson Nano test setup /

Flgure 3: Stixel representatlon of a traffic situation [2] CNN CRF
Tlﬂ'l Optimize with
TF-TRT

Figure 2: Workflow of optimization using tensorflow in combination with TensorRT [ o0 e eeoe ObS tac le po Si tiOn

Stixel input probability Final prediction

Figure 6: Sample output in a real world application

12
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A. Tonioni et al. Real-time self-adaptive deep stereo. CVPR2019
https.//github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo

0t frame 150" frame 300" frame

Figure 1. Disparity maps predicted by MADNer on a KITTI sequence [7]. Left images (a), no adaptation (b), online adaptation of the whole

network (c), online adaptation by MAD (d). Green pixel values indicate larger disparities (i.e., closer objects).

A. He et al. A Twofold Siamese Network
for Real-Time Object Tracking, CVPR2018.

* Green is ground truth.

* Purple is tracked by
SiamFC.

* Blue is tracked by the
novel twofold Siamese
network 2FSiamFC.

* 2FSiamFC is more
robust to shooting
angle change and
scale change.

#0 00K

13
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A. He et al. A Twofold Siamese Network
for Real-Time Object Tracking, CVPR2018.

Object Tracking is a similarity learning problem
* Compare target image patch with candidate patches in a search region
* Track object to the location whit highest similarity score

* Similarity learning with deep CNNs use so called Siamese architectures
(SiamFC).

* CNNs can process a larger search image where all sub-windows are
evaluated as similarity candidates. (Efficient.)

Testing time only

ho(z5, X)

e
=
-j"‘
© oe—
e h(z5, X)
| .
hofz, X

Search region

¢ A-Net is an appearance network, and S-Net is a semantic Network. (Branches trained separately.)
* The dotted lines is a SiamFC (Fully Convolutional Siamese Network Bertinetto et al. 2016.)

* The channel attention module determines the weight for each feature channel based on both target and
context information.

( See also: J. Schonenberg, Differential Siamese Network for the Avoidance of Moving Obstacles. BSc, 2020. )

14
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Human Robot Interaction

..) R Y

-"\ "

* Face Recognition

* Pose Recognition

* Hand Tracking

* Person Tracking

* Emotion Recognition
* Action Recognition

Face Recognition

* Yancheng Bai, et al., Finding Tiny Faces in the Wild With Generative
Adversarial Network CVPR, 2018.

* Xuanyi Dong, et al., Aggregated Network for Facial Landmark Detection,
CVPR, 2018.

* Yaojie Liu, et al., Learning Deep Models for Face Anti-Spoofing: Binary or
Auxiliary Supervision, CVPR, 2018.

* CVPR2018 58 papers on Face Recognition

* CVPR2019 and CVPR2020 similar numbers

* CVPR2021 ~50 papers related to Face Recognition
* CVPR2022 ~110 papers related to Face Recognition

https://openaccess.thecvf.com/CVPR2021

15
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Yancheng Bai, et al., Finding Tiny Faces in the Wild
With Generative Adversarial Network, CVPR2018.

- — 2 -
» = - - ~

Figurel. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of
re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned
by the super-resolution (x4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in.

Generative Adversarial Network.

Faces '/ O Generator Network
{4 Up-sample sub-network Refinement sub-network i

i

Non-faces

(E) Discriminator Network
The Kth branch

Em ‘- [ - = = {T‘ i
AL e s

| B

Original

Ours

16



03/04/2023

See also:

C.N. Duong at al. Vec2Face: Unveil Human Faces from their Blackbox
Features in Face Recognition, CVPR 2020

Bijective Metric Learning
B Bijection ﬂ:m:‘-;:m A P

Real Face

' ” / \/
%‘ _,L/<‘;L
Squared Wasserstein
coupling distance
-

Adversarial Loss
k| Real/ +
> "f /_‘) ~mly Fake Reconstruction Loss

Distillation Loss
Face b

o OSynfacecass! | e e
DReal face class 1
*  @Syn face class 2

——i_ s Feature Injectlon 1

./ p ORealfaceclass 2 Node '

o 1

1

b =, \ Wi 1

. | g 77 Student |
Real Face gjackbox 1 Face Matcher |
1

Face Matcher

Roal FAce

Some Qualitative Results
Green ground truth, red selected by the network.
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Some Qualitative Results
Green ground truth, red selected by the network.

Hand Pose Recogntion

F. Mueller, et al., GANerated Hands for Real-Time 3D Hand Tracking
From Monocular RGB, CVPR2018.

G. Garcia-Hernando, et al., First-Person Hand Action Benchmark With
RGB-D Videos and 3D Hand Pose Annotations, CVPR2018.

18
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F. Mueller, et al., GANerated Hands for Real-Time 3D
Hand Tracking From Monocular RGB, CVPR2018.

Input: RGB Image
Output: Hand Pose Skeleton.

F. Mueller, et al., GANerated Hands for Real-Time 3D
Hand Tracking From Monocular RGB, CVPR2018.

Real-time 3D hand
tracking from monocular
RGB-only input.

e Works on unconstrained
videos from YouTube

* |s robust to occlusions.

* Real-time 3D hand
tracking using an off-the-
shelf RGB webcam in
unconstrained setups.

19
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F. Mueller, et al., GANerated Hands
for Real-Time 3D Hand Tracking
From Monocular RGB, CVPR2018.

offline

GeoConGAN

Monocular RGB Image

3D Joint Locations

Synthetic GANerated G

. 90

Figure 5: Two examples of synthetic images with back-
ground/object masks in green/pink.

ANerated : GANerated
4 BG Synthetic GANerated TBRGAEG

* GeoConGAN produces ‘real’ images from
sKnthetlc images. These ‘real’ images are
then used to train RegNet.

* The trained R%gNet is used to recognize
global 3d hand poses in real time from
RGB video streams.

Global 3D Hand Pose

 Skeleton Fitting

real-time

Figure 8: We compare our results with Zimmermann and Brox [©] on three different datasets. Our method is more robust in
cluttered scenes and it even correctly retrieves the hand articulation when fingers are hidden behind objects.

20
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Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR2018.

Pouring Juice

* A novel firstperson action
recognition dataset with
RGB-D videos and 3D hand
pose annotations.

* Magnetic sensors and
inverse kinematics to

capture the hand pose.

* Also captured 6D object
pose for some of the actions

Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR, 2018.

A novel first person action
recognition dataset with RGB-
D videos and 3D hand pose
annotations.

* Put sugar.

* Pour milk.
* Charge cell-phone.
* Shake hand

21
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Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR, 2018.

Visual data: Intel RealSense SR300 RGB-D camera on the
shoulder of the subject (RGB 30 fps at 1920x1080 and
Depth 640x480.)

Pose annotation:

hand pose

* captured using six magnetic sensors (6DOF) attached
to the user’s hand, five fingertips and one wrist,
following [84].

e the handPose is inferred using inverse kinematics
over a defined 21-joint hand model

object pose

* 1 6DOF magnetic sensor attached to the closest point
to the center of mass.

Recording process:
* 6 people, all right handed performed the actions.
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Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR2018.

Baseline: RNN LSTM 100 neurons.
1:3 25% training 75% testing
1:1 50% - 50%

3:1 75% - 25%

Cross-person
Leave one of the 6 persons out of the

training and test on the person left out.

Tensorflow and Adam optimizer.

Baseline Action recognition results

1:3 1:1 3:1 | Cross-person

|
Acc. (%) | 5875 7873 8482 | 6206

Hand pose
recognition
Method Year Color Depth Pose Acc. (%)
Two stream-color [ 15] 2016 v X X 61.56
Two stream-flow [ | 5] 2016 N X X 69.91
Two stream-all [15] 2016 v X X 75.30
HOG-depth [40)] 2013 X v X 50.83
HOG'-’-depl]Hste [40] 2013 X s v 06.78
HON4D [+3] 2013 X v X 70.61
Novel View [47] 2016 X v X 69.21
1-layer LSTM 2016 X X v 78.73
2-layer LSTM 2016 X X v 80.14
Moving Pose [=5] 2013 X X v 56.34
Lie Group [0-] 2014 X X v 82.69
HBRNN[17] 2015 X X v 77.40
Gram Matrix [0] 2016 X X v §5.30
TF[17] 2017 X X v 80.69
JOULE-color [ 19] 2015 v X X 66.78
JOULE-depth [19] 2015 X ' X 60.17
JOULE-pose [ 17] 2015 X X v 74.60
JOULE-all [ 19] 2015 v v v 78.78

Table 4: Hand action recognition performance by different
evaluated approaches on our proposed dataset.

22
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K. Maas, Full-Body Action Recognition from Monocular RGB-Video:

A multi-stage approach using OpenPose and RNNs, BSc Thesis, 2020.

(b) Part Confidence Maps

I\ il

(c) Part Affinity Fields

(d) Bipartite Matching (e) Parsing Results

(a) Start state (b) Raise Arm

Y. Labbe et al. Single-view robot pose and joint
angle estimation via render & compare, CVPR2021

Joint angles

2 oy

Joint angle
measurements RQboPose

RGB i mwzc

&
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Renderer

Input: RGB image

* |teratively updating using a renderer and refiner until the rendered

robot matches the input image.

Renderer

| Output: Robot state S¥
6D pose + joint angles

Input RGB image Predicted state Input RGB image

g
. re

Predicted state

Input RGB image

Predicted state

24
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Some Problems with Deep Neural Networks

K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

Robust Physical Perturbations (RP2):
* generate physical perturbations for physical-world objects such that a DNN-based classifier produces a

designated misclassification.
* This under a range of dynamic physical conditions, including different viewpoint angles and distances.

O O
Model Physical Dynamics by Sampling 'S 8 (O Output SSSFTD
from Distribution O O 4 5
| ful r)
| ’ ' Target

Stationary + Drive-By Testing

Varying Distances/Angles

25
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K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018

Two types of attacks showing that
RP2 produces robust perturbations

for real road signs.
* poster attacks are successful in
100% of stationary and drive-by
tests against LISA-CNN ,

 sticker attacks are successful in
80% of stationary testing
conditions

SPEED

= I
45
-4

Target

K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

This is a micro-wave. This is not a micro-wave.

26
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Yuxin Xiong, Adversarial Detection and
Defense in Deep learning, 2021

Adversarial attacks on DNNs in e.g. autonomous driving and facial recognition.
* Adversarial examples constructed by shapeshifter

* robust to distortions at different distances and angles, etc.

UNMASK][15] a framework to detect and defend against attacks:
- extract features by semantic segmentation technique.
- compare extracted features to detect if input image is benign

- counter against attacks by refining to the correct class.

Modified UNMASK model for Resnet101:
* add 4 feature denoising blocks: robust to various attacks

* improves UNMASK against several types of attacks

Adversarial Examples

+.007 x

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

lan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. in ICLR, 2015.

27
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Shapeshifter

STOP @ STOP

(a) Person (low) (b) Sports ball (low) (c) Untargeted (low)

(d) Person (high) (e) Sports ball (high) (f) Untargeted (high)

Figure 4: Adversarial examples generated by Shapeshifter with ”"low” and ”high” confi-
dence(perturbation strength). Shapeshifter can perform both targeted attacks and non-target

attacks.

55 UNMASK Unmasking Attacks using Robust Feature Alignment

Framework D O Attack Detection @ Rectification
Model K
Saddle

an Handlebar
Frame 2) .
>
Pedal L_S; e
e ™ -]

Similarity Comparison

Object Detector
Extracts Features

"Bird" ‘\\/ \
(Attacked) N
Bird Feature Mismatch Bicycle
Vulnerable Model (Misclassified) Attack Detected A (Correctly Classified)

Model M

Figure 6: An overview of UNMASK framework. 3
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LCeci nest nas une fufie.

A. Prakash et al., Multi-Modal Fusion Transformer
for End-to-End Autonomous Driving, CVPR2021

Situation

Attention Maps: yellow query token, red vehicle in lidar.
=> Green top-5 attended tokens.
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TransFuser
RGB
Tmage 64 x 64 x 64 32x32x128 16x 16 x 256 8x8x51 ResNet34
IEY PN PN e AN Bl
: (NP * < xL
= a% Pool ! ‘ Pool J = [ Pool ‘ Poal | Pt
_ R - AN\
e "” \
Transform Transforn Transformer Transformer @
. . -~ |
Conv Ed Con T Conv Conv Avgpear |
: N Sva Seal S
Pool i E Pool ﬂ Pool @ Pool léa | Puten
4 x 64 x 64 32x32x128 16x 16x256 8x8x512 ResNet18

The TransFuser uses attention to capture the global 3D scene context and focuses on
dynamic agents and traffic lights, resulting in state-of-the-art performance on CARLA.

Method TownO5 Short Town05 Long
DS 1 RC 7T DS 1 RC 1
CILRS [16] 7.47+£251 1340+£1.09|3.68+2.16 7.194+295
LBC [¥] 30.97 £4.17 55.01 £5.14 | 7.05 £2.13 32.09 £+ 7.40
AIM 49.00 + 6.83 81.07 + 15.59]26.50 + 4.82 60.66 + 7.66

Late Fusion
Geometric Fusion
TransFuser (Ours)

51.56 £5.24 83.66 £ 11.04
5432 £4.85 86.91 £ 10.85
54.52 + 429 78.41 £ 3.75

31.30 £ 5.53 68.05 =5.39
25.30 £ 4.08 69.17 = 11.07
33.15 +4.04 56.36 £ 7.14

Expert

84.67 £ 6.21 98.59 £ 2.17

38.60 = 4.00 77.47 = 1.86

Mean and stdev on Route Completion (RC) and Driving Score (DS) in 2 Town Settings
with high densities of dynamic agents and scenario’s over a total of 9 runs.
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