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Overview

* OpenCV
* Some Neural Networks and AlexNet

Computer Vision and Pattern Recognition (CVPR)
* Object Tracking

* Human Robot Interaction

* Some problems with Neural Networks

OpenCV

Identity

* Low level image processing.

* Convolutional Kernels: filters, edge
detectors, etc.
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Filtered image
Image from [1].

* Blob tracking Sharpen
* Face and people detector

Box blur
* Neural networks Giraizad

[1] https://www.sciencedirect.com/topics/computer-science/convolution-filter
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Some Neural Networks

Output Patterns Output Patterns
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DNN: AlexNet, VGG16, ResNet, etc.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64.896-43,264—

4096—4096-1000. Krizhevsky, Alex; Sutskever, llya; Hinton, Geoffrey E. "ImageNet classification with deep
convolutional neural networks" Communications of the ACM. 60 (6): 84—90.
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Deep Visualization Toolbox

yosinski.com/deepvis
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Object Tracking

* Conference on Computer Vision and Pattern Recognition (CVPR)

Real-Time Tracking
* A. He et al. A Twofold Siamese Network for Real-Time Object Tracking

* B. Yang et al. PIXOR: Real-Time 3D Object Detection From Point
Clouds

* Etc.
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A. He et al. A Twofold Siamese Network
for Real-Time Object Tracking, CVPR2018.

* Green is ground truth.

* Purple is tracked by
SiamFC.

* Blue is tracked by the
novel twofold Siamese
network 2FSiamFC.

* 2FSiamFCis more
robust to shooting
angle change and
scale change.

A. He et al. A Twofold Siamese Network
for Real-Time Object Tracking, CVPR2018.

Object Tracking is a similarity learning problem

* Compare the target image patch with the candidate patches in a search
region.

* Track the object to the location where the highest similarity score is
obtained.

* Similarity learning with deep CNNs is done using so called Siamese
architectures (SiamFC).

* CNNs can process a larger search image where all sub-windows are
evaluated as similarity candidates. (Efficient.)
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Testing time only

Search region

* A-Net is an appearance network, and S-Net is a semantic Network. (Branches trained separately.)
* The dotted lines is a SiamFC (Fully Convolutional Siamese Network Bertinetto et al. 2016.)

e The channel attention module determines the weight for each feature channel based on bothtarget and
context information.

( See also: J. Schonenberg, Differential Siamese Network for the Avoidance of Moving Obstacles. BSc, 2020. )

C.W. Corsel, YOLO-based Obstacle Avoidance -
for Drones. BSc Thesis, 2020. q‘%@
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Figure 3.1: Size expansion concept

(a) SIFT (b) YOLO

Figure 6.6: Object detection on multiple obstacles
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W. Stokman, Obstacle detection and avoidance using
image processing on embedded systems. BSc Thesis, 2020.
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Figure 3: Stixel representation of a traffic situation [

Figure 15: The Jetson Nano test setup
CNN CRF
Optimize with
TF-TRT

Figure 2: Workflow of optimization using tensorflow in combination with TensorRT [17] X K ) XK )

obstacle position
Stixel input probability Final prediction

Figure 6: Sample output in a real world application

A. Tonioni et al. Real-time self-adaptive deep stereo. CVPR2019
https://qgithub.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo

0 frame 150" frame 300" frame
Figure 1. Disparity maps predicted by MADNer on a KITTI sequence [7]. Left images (a), no adaptation (b), online adaptation of the whole
network (c), online adaptation by MAD (d). Green pixel values indicate larger disparities (i.e., closer objects).
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Z. Xiong et al. Variational Context-Deformable ConvNets
for Indoor Scene Parsing, CVPR2020.

Figure 1. Illustration of context-deformable convolution. The
scale-guidance maps are learned with the guidance of multi-modal
features.

Figure 8. Visualization of the last scale-guidance map on C-
ityscapes. It is obvious that the learned scale-guidence map is
reasonable.

B. Yang et al. PIXOR: Real-Time 3D Object Detection From Point Clouds (CVPR2018)

3D LIDAR point cloud . Input representation PIXOR detector 3D BEV detections

2

[ | hu

PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixel-

wise neural network predictions.

* real-time 3D object detection from point clouds in the context of autonomous driving.

* 3D data by representing the scene from the Bird’s Eye View (BEV)

e Evaluation 10fps state-of-the-art: using the KITTI BEV object detection benchmark, and a large-scale 3D
vehicle detection benchmark.
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Human Robot Interaction
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* Face Recognition

* Pose Recognition

* Hand Tracking

* Person Tracking

* Emotion Recognition
* Action Recognition

Face Recognition

* Yancheng Bai, et al., Finding Tiny Faces in the Wild With Generative
Adversarial Network, CVPR, 2018.

» Xuanyi Dong, et al., Aggregated Network for Facial Landmark
Detection, CVPR, 2018.

* Yaojie Liu, et al., Learning Deep Models for Face Anti-Spoofing: Binary
or Auxiliary Supervision, CVPR, 2018.

* CVPR2018 58 papers on Face Recognition
* CVPR2019 and CVPR2020 similar numbers
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Yancheng Bai, et al., Finding Tiny Faces in the Wild
With Generative Adversarial Network, CVPR2018.
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Figurel. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of
re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned
by the super-resolution (x4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in.

Generative Adversarial Network.
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See also:
C.N. Duong at al. Vec2Face: Unveil Human Faces from their Blackbox
Features in Face Recognition, CVPR 2020
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Some Qualitative Results
Green ground truth, red selected by the network.
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Some Qualitative Results
Green ground truth, red selected by the network.

Hand Pose Recogntion

F. Mueller, et al., GANerated Hands for Real-Time 3D Hand Tracking
From Monocular RGB, CVPR2018.

G. Garcia-Hernando, et al., First-Person Hand Action Benchmark With
RGB-D Videos and 3D Hand Pose Annotations, CVPR2018.

12



3/15/2021

F. Mueller, et al., GANerated Hands for Real-Time 3D
Hand Tracking From Monocular RGB, CVPR2018.

Input: RGB Image
Output: Hand Pose Skeleton.

F. Mueller, et al., GANerated Hands for Real-Time 3D
Hand Tracking From Monocular RGB, CVPR2018.

Real-time 3D hand
tracking from monocular
RGB-only input.

e Works on unconstrained
videos from YouTube

* |s robust to occlusions.

* Real-time 3D hand
tracking using an off-the-
shelf RGB webcam in
unconstrained setups.

13
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F. Mueller, et al., GANerated Hands
for Real-Time 3D Hand Tracking
From Monocular RGB, CVPR2018.

offline

GeoConGAN

Monocular RGB Image

3D Joint Locations

Synthetic GANerated G

. 90

Figure 5: Two examples of synthetic images with back-
ground/object masks in green/pink.

ANerated : GANerated
4 BG Synthetic GANerated TBRGAEG

* GeoConGAN produces ‘real’ images from
sKnthetic images. These ‘real’ images are
then used to train RegNet.

* The trained R%gNet is used to recognize
global 3d hand poses in real time from
RGB video streams.

Global 3D Hand Pose

 Skeleton Fitting

real-time

Figure 8: We compare our results with Zimmermann and Brox [©] on three different datasets. Our method is more robust in
cluttered scenes and it even correctly retrieves the hand articulation when fingers are hidden behind objects.

14
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Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR2018.

Pouring Juice

* A novel firstperson action
recognition dataset with
RGB-D videos and 3D hand
pose annotations.

* Magnetic sensors and
inverse kinematics to

capture the hand pose.

* Also captured 6D object
pose for some of the actions

Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotatlons CVPR, 2018

A novel first person action
recognition dataset with RGB-
D videos and 3D hand pose
annotations.

* Put sugar.

* Pour milk.
* Charge cell-phone.
* Shake hand.

15
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Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR, 2018.

Visual data: Intel RealSense SR300 RGB-D camera on the
shoulder of the subject (RGB 30 fps at 1920x1080 and
Depth 640x480.)

Pose annotation:
hand pose

* captured using six magnetic sensors (6DOF) attached
to the user’s hand, five fingertips and one wrist,
following [84].

e the handPose is inferred using inverse kinematics
over a defined 21-joint hand model

object pose

* 1 6DOF magnetic sensor attached to the closest point
to the center of mass.

Recording process:
* 6 people, all right handed performed the actions.
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Garcia-Hernando, et al., First-Person Hand Action Benchmark
With RGB-D Videos and 3D Hand Pose Annotations, CVPR2018.

Baseline: RNN LSTM 100 neurons.
1:3 25% training 75% testing
1:1 50% - 50%

31 75% - 25%

Cross-person
Leave one of the 6 persons out of the

training and test on the person left out.

Tensorflow and Adam optimizer.

Baseline Action recognition results

Protocol 1:3 1:1 3:1 | Cross-person

Acc. (%) | 5875 7873 8482 | 6206

Hand pose
recognition
Method Year Color Depth Pose Acc. (%)
Two stream-color [ 15] 2016 v X X 61.56
Two stream-flow [ | 5] 2016 N X 69.91
Two stream-all [15] 2016 v X X 75.30
HOG-depth [40)] 2013 X v X 50.83
HOG'-’-depl]Hste [40] 2013 X s v 06.78
HON4D [+3] 2013 X v X 70.61
Novel View [47] 2016 X v X 69.21
1-layer LSTM 2016 X X v 78.73
2-layer LSTM 2016 X X v 80.14
Moving Pose [=5] 2013 X X v 56.34
Lie Group [0-] 2014 X X v 82.69
HBRNN[17] 2015 X X v 77.40
Gram Matrix [0] 2016 X X v §5.30
TF[17] 2017 X X v 80.69
JOULE-color [ 19] 2015 v X X 66.78
JOULE-depth [19] 2015 X ' X 60.17
JOULE-pose [ 17] 2015 X X v 74.60
JOULE-all [ 19] 2015 v v v 78.78

Table 4: Hand action recognition performance by different
evaluated approaches on our proposed dataset.

16
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K. Maas, Full-Body Action Recognition from Monocular RGB-Video:
A multi-stage approach using OpenPose and RNNs, BSc Thesis, 2020.
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Some Problems with Deep Neural Networks

K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

17
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K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

Robust Physical Perturbations (RP2):

* generate physical perturbations for physical-world objects such that a DNN-based classifier produces a
designated misclassification.

* This under a range of dynamic physical conditions, including different viewpoint angles and distances.

O 00O
Model Physical Dynamics by Sampling O 8 () Output SL':E"ETD
from Distribution O ) 4 5
' folx)
R |
RP, Mask : '
Perturbed Stop Sign Under
Input Varying Distances/Angles

K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

Two types of attacks showing that RP2

produces robust perturbations for real

road signs.

* poster attacks are successful in 100%
of stationary and drive-by tests
against LISA-CNN

» sticker attacks are successful in 80%
of stationary testing conditions

LIMIT

45

Target

SPEED .
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K. Eykholt, et al. Dawn Song Robust Physical-World Attacks on Deep
Learning Visual Classification, CVPR2018.

This is a micro-wave. This is not a micro-wave.

Ceci nest nas une fufie.

19
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