
Doggoborg project report - Robotics 2021

Elise van Wijngaarden 
Antonio Mone 
Julia Wa̧sala 

Mick Remmerswaal 
Wytze Breukel 

May 28, 2021

Figure 1: Doggoborg front Figure 2: Doggoborg back

Abstract

For this project we created a dog like robot consisting of a YetiBorg and a YetsonNano. This robot
had the ability to respond to it’s own name, and make eye contact using it’s servo mounted webcam.

1 Introduction and Overview

1.1 Novelty

The goal of the DoggoBorg was to create some sort of companion/pet for people who can’t have a pet or
don’t want to deal with the maintenance and hassle of having one. Of course this is extra relevant in these
times of social isolation. We decided to create this companion in the shape of dog due to the fact that dogs
are know to be very sociable and cute. Although robot dogs are not unheard of but most of them are either
focused on practical applications like Boston dynamics spot, or are more toy like. We decided to focus on
the interaction between robot and owner, and gave it the ability to hear it’s name and to make eye contact
to simulate a living being.

1.2 Related work

The most famous robotic dog at the moment is Spot1 by Boston dynamics, which can be used for physical
applications like inspecting building. If we look at a more social applications we see that robotic dogs are

1https://www.bostondynamics.com/spot

1



used in for example nursing homes [1]. An interesting comparison can be made with the NAO2 Robot although
this is humanoid in shape it also has the same goal of making a social connection with the user via face and
audio recognition.

2 Design

Figure 3: Printed component design

The final robot consists of a number of components:

• Yetiborg v2 [3]

• ZeroBorg [6]

• UltraBorg [4]

• Jetson Nano [2]

• Webcam with Microphone

• Webcam mount with 2 servo motors

• US sensor [5]

These webcam and jetson nano were mounted on
the robot using a self-designed 3D printed compo-
nent. The design can be seen in Figure 3. The green
platform is the platform placed directly on the yeti-
borg, the red one is placed on top of the green plat-
form. The requirements for this component were:

• the legs fit over the screws sticking out of the
wheelplate of the yetiborg;

• the component would not interfere with any
existing hardware on the yetiborg such as the
camera and US sensor;

• the lower platform would have space for the jetson nano, oriented in a way that the cables to and from
the jetson nano would be at the back of the yetiborg;

• the platform on top would hold the webcam mount;

• the construction needed to be stable enough such that the yetiborg could ride around safely.

3 Implementation

3.1 Audio recognition

Audio recognition was done by implementing one of the many possible speech recognition libraries available.
The choice was between Google Cloud Speech library and the CMUSphinx library. We speculated that the
robot may need to perform offline, therefore we chose the CMUSphinx library.

After experimentation with the library we found that the original dictionary was not able to comfortably
recognize the word ‘Dog’. We therefore created our own library consisting of four words: ‘Hey’, ‘Hi’, ‘Dog’
and ‘Doggo’. With the four words as our corpus we used the CMU provided language model tool3 to create
a language model for our corpus.

2https://www.softbankrobotics.com/emea/en/nao
3http://www.speech.cs.cmu.edu/tools/lmtool-new.html

2



Implementing the language model and the created dictionary was as simple as providing the path to
those files. The library offers many other ways to implement speech recognition, such as keyword search.
After experimentation with those, we did not find an increase in the times the word ‘Dog’ was recognized
and used the language model in the final product. Since the webcam came with a builtin microphone, no
external source was needed for the capture of the audio.

3.2 Face recognition

The moment that Doggoborg hears its own name ‘Dog’, it tries to find its owner. A webcam was mounted
on the robot to be able to ‘see’. The robot turns in a circle to try and find the owner. Every time that the
robot moves, a picture is taken with the webcam which is then evaluated. The goal is to find the owner, a
human face.

To find a human face in the picture, the openCV library was used which includes the cascade classifier
haarcascade frontalface default.xml4 which we used to find a face. When a face is detected, this
classifier returns the x and y position of the face, together with the width and the height of the face in the
picture. With these four values, it can be determined in what way the robot has to move in order to center
the human face in the middle of the picture. An example of this would be the following: when a face is
found in the upper right of the picture, the robot has to move a little to the right and the webcam has to
be tilted upwards in order to ‘look’ straight at the face. These two movements are controlled by two servos
(one in the horizontal and one in the vertical direction) on which the webcam is placed.

Once the robot has found a face and has centered in the middle of the picture that the webcam takes,
the robot is moving towards the owner until it is close enough. The robot is close enough to the owner when
the face has an area of 27500 pixels. While approaching the owner, the robot tries to keep the face centered
by adjusting if the face moves out of the middle of its view.

3.3 Locomotion and communication

The Jetson Nano communicated with the yetiborg using a web server hosted on the raspberry pi, because the
two were not physically connected. An API made it possible for the Jetson Nano to send commands to the
yetiborg’s motors using HTTP requests. The webserver code was largely based on the pre-existing example
code: yeti2Web.py5. The advantage of this approach was that it made it possible to do some testing before
mounting the Jetson Nano on the yetiborg. The disadvantage was that in the example code, not all of the
source code was available. Because of this, we did not know what was happening exactly when a HTTP
request was being processed.

The web server was augmented with two features, that were disabled later for reasons that will be
explained shortly. The first feature was obstacle avoidance: the robot would spin 180 degrees when it
encountered an obstacle at a distance of 30 centimeters. The second feature was so called idle behaviour:
when the robot was not given any commands, it would turn left and right randomly to mimick something
like animal behaviour. Both these features were disabled in the end, because we feared they might cause
interference with the Jetson Nano scripts, which were the primary goals of the project. We could not find
the source of the interference, because a layer of the code was missing in the example code: the webserver
handler function that was called, was not the same as the one implemented in the example.

4 Results

The finished Doggoborg is shown in Figures 1 and 2. In these images the front and the back are respectively
shown. To see the Doggoborg in action, a video is included in the submission. In the video, Doggoborg is
called and it turns towards the owner and looks at its face.

4https://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Object_Detection_Face_Detection_Haar_

Cascade_Classifiers.php
5https://www.piborg.org/blog/yetiborg-v2-examples-web-ui

3



5 Conclusions and Discussion

Overall the DoggoBorg worked as expected but not as reliable as we hoped, we think this was cause by the
large amount of processes that needed to work together (face recognition, movement of the servos, audio
recognition, locomotion etc), each of these has a small chance to fail which combined causes the Doggoborg to
fail more often than we would have liked. However when all components did function, it worked completely
as expected.

Audio detection worked less than admirable, the way we had to pronounce the word ’Dog’ seemed to
change day by day. This made testing a little bit hard. The integration worked as intended when the
Doggoborg did recognize its name. Result may improve when using the Google Cloud Speech API, since the
Doggoborg did not have to perform offline this is an interesting alternative.

The face recognition worked almost perfectly in a controlled setup with a static camera, but gave less
accurate results in practise. We believe this was caused by a few different factors: Firstly, the lighting condi-
tions are very variable in our testing environment, for example in the room where we were testing, there were
two bright windows which caused quite contrasting lighting conditions. We tried to mitigate this by lowering
the curtains and turning on the lights to create an more evenly lit environment. Also, the movement from
the yetiborg caused some pictures to be blurry. We therefore decreased the turning speed. Lastly, the room
we were testing in (a living room) had a lot of objects which could confuse the face recognition (ironically
it even reacted to a toy dog), it even recognised itself as a face in a shiny surface. We therefore decided to
remove all distracting items and cover all reflective surfaces which resulted in improved results.

The webserver offered a disadvantage: not the entire source code was available in the example code
that was used, which meant that the flow of information was not immediately clear. For example, it was
not obvious to us how requests would be prioritized: what would happen if the jetson nano sent a motion
command to the yetiborg, while it was turning because it encountered an obstacle? For future projects, a
close look needs to be taken at the yetiborg web server, or a custom one needs to be implemented. This
would allow for tighter control over priorities of commands to the yetiborg motors.

Some of the physical problems we encountered were with the printed component: in the design process,
a mistake was made with aligning the legs of the platform, so they had to be removed and reattached at
the correct place in order to fit on the wheelplate. Another minor issue was caused by the fact that reverse
motion of the yetiborg is less powerful than forward motion. Because of the weight of the complete setup,
sometimes the power applied to one set of motors in forward motion, was not enough to make the other set
of wheels turn backward (for example when the yetiborg had to spin). This meant that when the robot was
spinning, the wheels that should have turned backward, often did not turn at all. This did not prove to be
an obstacle to achieving the goal of the project, but still is a factor to be improved upon.

4



References

[1] Marian R. Banks, Lisa M. Willoughby, and William A. Banks. “Animal-Assisted Therapy and Loneliness
in Nursing Homes: Use of Robotic versus Living Dogs”. In: Journal of the American Medical Directors
Association 9.3 (2008), pp. 173–177. issn: 1525-8610. doi: https://doi.org/10.1016/j.jamda.2007.
11.007. url: https://www.sciencedirect.com/science/article/pii/S1525861007005166.

[2] Jetson Nano Developer Kit. Apr. 2021. url: https://developer.nvidia.com/embedded/jetson-
nano-developer-kit.

[3] PiBorg. YetiBorg v2 - Getting Started. url: https://www.piborg.org/blog/yetiborg-v2-getting-
started.

[4] UltraBorg - PWM Servo Control w/ Ultrasonic Sensor Support. url: https://www.piborg.org/

sensors-1136/ultraborg.

[5] Ultrasonic Distance Sensor (HC-SR04). url: https://www.piborg.org/sensors-1136/hc-sr04.

[6] ZeroBorg Complete - Quad Motor Controller. url: https://www.piborg.org/motor- control-

1135/zeroborg.

5


