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Overview

 Cryptography: Classical Algorithms, 

 Cryptography: Public Key Algorithms

 Cryptography: Protocols

 Cryptography Workshop

 Biomedical Security and Applications

 Student Presentations

Grading: 

Class participation, assignments (3 out of 4)

(workshop + presentation + technical survey)/3

Cryptography: Sharing Secrets

Alice Bob

Eve

C = EK (‘HELLO BOB’)

Secret key K

DK (C) = ‘HELLO BOB’

Secret key K

Crypto-text C

Crypto-Analyst Eve

• Crypto-text only

• Known Plaintext

• Chosen Plaintext

K?

How?
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Public Key Crypto Systems

Idea by Diffie and Hellman [1976]

 Encryption method made public.

 Decryption method kept secret.

Closely related to the idea of cryptographic one-way functions:

f(x)x
easy

intractable

But there exists a trapdoor that makes it easy to calculate x given f(x).

Note: No known cryptographic one-way functions. Only likely to be intractable!

Public Key Crypto Systems

Alice Bob

C = EBob (‘HELLO BOB’)

Get Public Key EBob

From Bob or 

from Public Key Register 

DBob (C) = ‘HELLO BOB’

Secret Key DBob

Public Key  EBob

Publish Public Key EBob on Public 

Key Register or send to Alice

Crypto-text C

Public Key 

Register

EBob

EAlice

EEve

EYou

…

EMe



4/15/2021

4

Digital Signatures

Alice Bob

M = ‘Message from Alice’

S = DAlice (‘Message from Alice’)

Secret Key DAlice

Public Key EAlice

on Public Key Register, or send to Bob

Verify:

EAlice (S) = ‘Message from Alice’ = M

Get Public Key  EAlice

Message M, Signature S

Public Key 

Register

EBob

EAlice

EEve

EYou

…

EMe

Public Key Crypto System: RSA
Rivest, R.; Shamir, A.; Adleman, L. "A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems" . Communications of the ACM. 21 (2): 120–126. (Feb. 1978).

 Key Generation

Select p, q, both primes.

Calculate n = p * q

Calculate φ(n) = (p-1)(q-1)

Select e such that  gcd(φ(n) ,e) =1 and 1 <  e <  φ(n)

Calculate d such that  d = e-1 mod φ(n) 

Public key is  (e, n)

Secret key is (d, n)

 Encryption of plaintext M < n

C = Me mod n

 Decryption of ciphertext/crypto-text C

M = Cd mod n

http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Are there enough ‘big’ Primes?

Definition: (n) is equal to the number of primes p that satisfy 2  p  n. 

Theorem: (The Prime Number Theorem)

Conjectured by Legendre, Gauss, Dirichlet, Chebyshev, and Riemann; 

proven by Hadamard and de la Vallee Poussin in 1896.

(n)~ n/ln(n)

Thus there are about 

10100/ln(10100)-1099/ln(1099) = 0.039x1099 100-digit primes

There are 4.5x1099 100-digit odd numbers.

That is, about 1 of every 115 100-digit odd numbers is prime.

10

How do we know a number is a Prime?

[Miller’75, Rabin’80]

Procedure Witness(a,n) n is to be tested for primality, a is some 

integer less than n.

if (not an-1  1 mod n)  or (x: x2  1 mod n and x  1)

then return TRUE { n is no prime }

else return FALSE { n may be prime }

If n is no prime the probability that Witness returns FALSE is <0.5. 

Thus, if Witness returns FALSE s times the probability that n is prime 

is at least 1 - 2-s.
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Number Theory: Complexity of PRIMES

Finding Primes 

PRIMES: Let n be an integer. Is n prime?

PRIMES is in P, AKS-Algorithm, August 2002

 Finding a prime: expected success after ~1/115 

 Each try fastexp and some tests are executed 

 => O(log n) time.

Finding Safe Primes

 It is unknown whether there exist infinitely many safe primes.

Agrawal–Kayal–Saxena primality test and cyclotomic AKS test

Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin (2004). "PRIMES is in P" (PDF). Annals of 

Mathematics. 160 (2): 781–793. JSTOR 3597229. doi:10.4007/annals.2004.160.781.

The authors received the 2006 Gödel Prize and the 2006 Fulkerson Prize for this work.

Public Key Crypto System: RSA
Rivest, R.; Shamir, A.; Adleman, L. "A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems" . Communications of the ACM. 21 (2): 120–126. (Feb. 1978).

 Key Generation

Select p, q, both primes.

Calculate n = p * q

Calculate φ(n) = (p-1)(q-1)

Select e such that  gcd(φ(n) ,e) =1 and 1 <  e <  φ(n)

Calculate d such that  d = e-1 mod φ(n) 

Public key is  (e, n)

Secret key is (d, n)

 Encryption of plaintext M < n

C = Me mod n

 Decryption of ciphertext/crypto-text C

M = Cd mod n

http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Number Theory: Euler Totient Function

Definition: The Euler’s totient function (n) of n is equal to the 
number of positive integers <n that are relative prime 
to n.

Examples:

8: {1,3,5,7} are relative prime to 8 and <8, thus (8) = 4

11: {1,2,3,4,5,6,7,8,9,10} are all relative prime to 11 and <11, 
thus (11) = 10

Lemma: If p is prime, then (p) = p - 1.

Lemma: If n = pq, with p and q prime, then (n) = (p-1)(q-1).

Proof: {p,2p,…,(q-1)p}, {q,2q,…,(p-1)q}, and 0 are not relatively 
prime to n. Thus (n) = pq - (q-1) - (p-1) - 1 = (p-1)(q-1).

14

Number Theory: Euler’s Totient Function

Fermat’s Theorem (1640): For every prime p and any integer a, 
the following holds:

ap-1 1 mod p

Euler’s Theorem (~1740): For any positive integer n, and any integer a
relative prime to n, the following holds:

a(n)  1 mod n

Corollary: Let p,q be prime, and n = pq, and m an integer such that 
gcd(m,n)=1, then 

m(p-1)(q-1)  1 mod n

Examples:

26 = 64 = 63 + 1  1 mod 7

4(5-1)(7-1) = 424 = (48)3mod 35  163mod 35   4096 mod 35  1 mod 35
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Public Key Crypto System: RSA
Rivest, R.; Shamir, A.; Adleman, L. "A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems" . Communications of the ACM. 21 (2): 120–126. (Feb. 1978).

 Key Generation

Select p, q, both primes.

Calculate n = p * q

Calculate φ(n) = (p-1)(q-1)

Select e such that  gcd(φ(n) ,e) =1 and 1 <  e <  φ(n)

Calculate d such that  d = e-1 mod φ(n) 

Public key is  (e, n)

Secret key is (d, n)

 Encryption of plaintext M < n

C = Me mod n

 Decryption of ciphertext/crypto-text C

M = Cd mod n

16

Number Theory

Definition1 (GCD):

The positive integer c is said to be the greatest common 
divisor of a and b if: 

1) c|a and c|b

2) if d|a and d|b, then d|c

Notation: c = gcd(a,b)

Definition2 (GCD):

gcd(a,b) = max[k, such that k|a and k|b]

Example:  192 = 22 x 31 x 42

18  = 21 x 32

gcd(18,192) = 21 x 31 x 40 = 6

http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Number Theory

Definition1 (Relative Prime):

The integers a and b are said to be relatively prime if gcd(a,b) = 1.

Example:  

192 and 18 are not relatively prime:

192 = 22 x 31 x 42

18  = 21 x 32

gcd(18,192) = 21 x 31 x 40 = 6

74 and 75 are relatively prime:

74 = 2 x 37

75 = 3 x 52

gcd(74,75) = 1

18

Number Theory: Euclid’s Algorithm (~300 BC)

Finding the Greatest Common Divisor

Theorem: For any integer a0, and any integer b>0: gcd(a,b) = gcd(b,a mod b)

Proof: Let d = gcd(a,b) => d|a and d|b

=> a = kb + a mod b for some integer k

=> (a mod b) = a - kb 

=> d|(a mod b) (as d|a and d|kb). 

Thus d is a common divisor of b and (a mod b).

Conversely, if d = gcd(b, a mod b), then d|kb

=> d|(kb + a mod b) 

=> d|a. 

Thus d is also a common divisor of a and b.

qed

Example (Calculation of GCD):

 gcd(12,18) = gcd(18,12) = gcd(12, 18 mod 12) = gcd(12,6) = gcd(6, 12 mod 12) = gcd(6,0) = 6

 gcd(10,11) = gcd(11,10) = gcd(10, 11 mod 10) = gcd(10,1) = 1
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Number Theory: Euclid’s Extended Algorithm

Finding the Multiplicative Inverse

If gcd(d,n) = 1, then (d-1 mod n) exists. 

i.e., dd-1 = 1 mod n.

Complexity: The multiplicative inverse can be found in O(log2n) time. 

Public Key Crypto System: RSA
Rivest, R.; Shamir, A.; Adleman, L. "A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems" . Communications of the ACM. 21 (2): 120–126. (Feb. 1978).

 Key Generation

Select p, q, both primes.

Calculate n = p * q

Calculate φ(n) = (p-1)(q-1)

Select e such that  gcd(φ(n) ,e) =1 and 1 <  e <  φ(n)

Calculate d such that  d = e-1 mod φ(n) 

Public key is  (e, n)

Secret key is (d, n)

 Encryption of plaintext M < n

C = Me mod n

 Decryption of ciphertext/crypto-text C

M = Cd mod n

http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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21 Fast Exponentiation

Calculate ab mod n = 7560 mod 561

a = 7, b = 560 = 1000110000, n = 561

I bi c d ->7560

9 1 1 7 71

8 0 2 49 72

7 0 4 157 74

6 0 8 526 78

5 1 17 160 716+1

4 1 35 241 732+2+1

3 0 70 298 764+4+2

2 0 140 166 7128+8+4

1 0 280 67 7256+16+8

0 0 560 1 7512+32+16

resultExponentbit

Public Key Crypto System: RSA
Rivest, R.; Shamir, A.; Adleman, L. "A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems" . Communications of the ACM. 21 (2): 120–126. (Feb. 1978).

 Key Generation

Select p, q, both primes.

Calculate n = p * q

Calculate φ(n) = (p-1)(q-1)

Select e such that  gcd(φ(n) ,e) =1 and 1 <  e <  φ(n)

Calculate d such that  d = e-1 mod φ(n) 

Public key is  (e, n)

Secret key is (d, n)

 Encryption of plaintext M < n

C = Me mod n

 Decryption of ciphertext/crypto-text C

M = Cd mod n

http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Number Theory: FACTORIZE

 Factorising n (b-bits) 

Peter Shor(1994): O(b3) and O(b) space on a quantum computer. 

Kleinjung et al. (2010) used general number field sieve GNFS- approach, 

O(𝑒
3 64

9
𝑏(log 𝑏)2

time, for the factorization of a 768-bit RSA modulus n.

 Calculating Euler’s Phi Function of n

It is unknown if this can be done without factorising n.

Public Key Crypto System: RSA Example

 Key Generation

p= 5, q = 11

=> n = p x q = 5x11 = 55  and φ(n) = (p-1)(q-1) = 4x10 = 40

e = 7,  is such that gcd(φ(n) ,e) = gcd(40,7) = 1  and clearly 1< 7 < φ(n)

then d = 23 = e-1 mod φ(n) as (7x23 mod 24) = 161 mod 40 ≡ 1 

Public key is  (7, 55)

Secret key is (23, 55)

 Encryption of plaintext M = 2 < n = 55

C = (Me mod n) = (27 mod 55) = (128 mod 55) = 18 mod 55 ≡ 18

 Decryption of ciphertext/crypto-text C

now Cd mod n = (1823 mod 55) = (223x346 mod 55) = (4x18x18x18x36 mod 55) = 

(32 x 312 mod 55) = (32x263 mod 55) = (2x18x133 mod 55) = (79092 mod 55) = 

(1438x55 +2 mod 55) = 2 mod 55 ≡ 2 = M
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RSA Chosen Ciphertext Attack

 Note for RSA: Ee(M1)xEe(M2) = Ee(M1xM2)

 Assume (e,n) is the public keys and (d,n) the private key.

 Assume C ≡ Me mod n is intercepted.

Chosen Ciphertext attack:

 Compute X ≡ (C x 2e) mod n 

 Submit X as a chosen ciphertext and receive back Y ≡ Xd mod n 

 X ≡ (C x 2e) mod n = (C mod n) x (2e mod n) = (Me mod n) x (2e mod n) = (2M)e mod n

 Thus Y ≡ Xd mod n = (2M)ed mod n = 2M mod n

Unsafe Modes of RSA

 Unsafe primes, etc.

 D. Boneh et al. Why Textbook ElGamal and RSA Encryption Are Insecure, T. 

Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 30–43, 2000:

 without proper preprocessing of the plaintexts, both ElGamal and RSA encryption 
are fundamentally insecure.

 when these systems encrypt a (short) secret key of a symmetric cipher it is often 
possible to recover the secret key from the ciphertext. 

Conclusion: Preprocessing messages prior to encryption is an essential 

part of both systems. 

Optimal Asymmetric Encryption Padding (OAEP)

Introduced by Bellare and Rogaway in 1994.
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Safe Mode of 

RSA

Optimal Asymmetric Encryption Padding (OAEP)

Introduced by Bellare and Rogaway in 1994.

Note:

We can randomly pad the plaintext prior to 

encryption,

Then for this adapted version of RSA: 

ξe(M1)x ξ e(M2) ≠ ξ e(M1xM2), but this is not 

enough.

OAEP is a solution:

• P is a set of optional parameters.

• MGF is jus another hash function.

• EM is finally encoded using RSA.

Message

28

Definition: Let Zn
*={1,2,…,(n-1)}, and g in Zn

*. Then any integer x such that:

gx = y mod n 

is called a discrete logarithm of y to base g. 

Example:

Z7
* 1   2    3   4    5   6

31 32 33 34 35 36

g=3     3   2   6   4    5    1

Z7
* 1   2   3   4    5   6

log3 6   2    1   4   5    3

N.B. g = 3 is a generator of Z7
*

Definition: If for g in Zp
* {g1,…,g(p-1)} = Zp

* holds, then g is a generator of Zp
*.

Diffie-Hellman Key-Exchange based on difficulty of Discrete Log
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Diffie-Hellman Key-Exchange based on difficulty of Discrete Log

Calculating the Discrete Logarithm

 Assumed to be difficult.

 If the prime factors of (p-1) are small there exist 
efficient algorithms, otherwise roughly the same 
complexity as factorising.

Diffie-Hellman Key Exchange Algorithm
 Global and Public

Prime q, and α < q a primitive root of q, 

i.e., α generates the multiplicative group of integers mod q

 Alice Key Generation

Select private 𝑿𝑨 < 𝒒

Calculate public 𝒀𝑨 = α𝑿𝑨𝒎𝒐𝒅 𝒒

 Bob Key Generation

Select private 𝑿𝑩 < 𝒒

Calculate public 𝒀𝑩 = α𝑿𝑩𝒎𝒐𝒅 𝒒

 Generation of the Exchanged Secret Key by Alice

𝑲 = 𝒀𝑩
𝑿𝑨𝒎𝒐𝒅 𝒒

 Generation of the Exchanged Secret Key by Bob

𝑲 = 𝒀𝑨
𝑿𝑩𝒎𝒐𝒅 𝒒
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Diffie-Hellman Key-Exchange Example
 α generates the multiplicative group of integers mod q

For example: 

If α = 2, q = 7, then α is no generator of ℤ7
∗ ={1, 2, 3, 4, 5, 6} as

{20 mod 7, 21 mod 7, 22 mod 7, 23 mod 7, 24 mod 7, 25 mod 7} = {1, 2, 4, 1, 2, 4,1} ≠ ℤ7
∗

If α = 3, q = 7, then 

{30 mod 7, 31 mod 7, 32 mod 7, 33 mod 7, 34 mod 7, 35 mod} = {1, 3, 2, 6, 4, 5} = ℤ7
∗

Note:  Assuming the generalized Riemann hypothesis, the least primitive root 
αp = O(log6 p) (Shoup,1990, 1992).

 Alice Key Generation:

Select private 𝑋𝐴 < 𝑞

Calculate public 𝑌𝐴 = α𝑋𝐴𝑚𝑜𝑑 𝑞

 From 𝑌𝐴 it should be difficult to calculate 𝑋𝐴.

 Calculating 𝑋𝐴 can be done taking the discrete log of 𝑌𝐴 to the base α modulo q

Diffie-Hellman Key Exchange

Complexity of Discrete Log

 Calculating 𝑋𝐴 by taking the discrete log of 𝑌𝐴 to the base α modulo q is assumed to be 
intractable.

 Shor, Peter (1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete 
Logarithms on a Quantum Computer". SIAM Journal on Computing. 26 (5): 1484–1509.

 Adrian, David et al. (October 2015). "Imperfect Forward Secrecy: How Diffie-Hellman Fails 
in Practice“:

 Logjam a flaw in TLS that lets man-in-the middle downgrade connections to ‘export-grade’-
DH

 Precomputations of a week for a 512-bit group => calculate discrete log for that group in ~ 1 
minute.

 They found that 82% of vulnerable servers use a single 512-bit group, allowing us to 
compromise connections to 7% of Alexa Top Million HTTPS sites.

 WeakDH.org: use a 2048-bit Diffie-Hellman group
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Diffie-Hellman 
Man-in-the-Middle Attack

Elliptic Curve Cryptography

Two main flavors:

 Prime curves over Zp

 Binary curves over GF(2m): Efficient implementations.

 Seems to use smaller keys for similar security level.

 Details are beyond scope of this course.

 In IEEE P1363 Standard for Public-Key Cryptography.

See A. Fernandes, ‘Elliptic Curve Cryptography’, Dr Dobb’s Journal December 1999
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Digital Signatures

Alice Bob

Message M and signature S Checks using S if M is indeed from Alice

(M,S)

Using a public key crypto system.

Digital Signatures

Alice Bob

Message M and signature S = DAlice (M) Checks with public EAlice

if EAlice(S) = EAlice(DAlice(M)) = M

(M,S)

Using a public key crypto system.
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Public Key Crypto System ElGamal

 Public Key

p a prime

g < p

𝑦 = 𝑔𝑥𝑚𝑜𝑑 𝑝

 Private Key

x < p

 Encryption of message M

random k, with gcd(k, p-1)=1

𝐶 = 𝑎, 𝑏 , 𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑔𝑘𝑚𝑜𝑑 𝑝 a𝑛𝑑 𝑏 = 𝑦𝑘𝑀 𝑚𝑜𝑑 𝑝

 Decryption

𝑀 = 𝑏/𝑎𝑥mod p = 𝑏. 𝑎−𝑥mod p

ElGamal Signatures

 Public Key

p a prime

g < p

𝑦 = 𝑔𝑥𝑚𝑜𝑑 𝑝

 Private Key

x < p

 Signing of message M

random k, with gcd(k,p-1)=1

Signature S = 𝑎, 𝑏 , 𝑤ℎ𝑒𝑟𝑒

𝑎 = 𝑔𝑘𝑚𝑜𝑑 𝑝 a𝑛𝑑 𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑀 = (𝑥𝑎 + 𝑘𝑏) 𝑚𝑜𝑑 𝑝-1

 Verification

Accept as valid if 𝑦𝑎𝑎𝑏 𝑚𝑜𝑑 𝑝 = 𝑔𝑀𝑚𝑜𝑑 𝑝
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39 Cryptographic Hash Functions

An hash function H has the following properties:

 H can be applied to data of any size.

 H produces fixed length output.

 H(x) is easy to compute for any given x.

 One-way

for any given hash-code h, it is computationally infeasible to find x such

that H(x) = h.

 Weak collision resistance

for any given x, it is computationally infeasible to find y (not equal to x) 

such that H(y) = H(x).

 Strong collision resistance

it is computationally infeasible to find any pair (x,y) such that H(x) = H(y).  

40 Cryptographic Hash Functions
An hash function H has the following properties:

 H can be applied to data of any size.

 H produces fixed length output.

 H(x) is easy to compute for any given x.

 One-way

for any given hash-code h, it is computationally infeasible to find x such that H(x) = h.

 Weak collision resistance

for any given x, it is computationally infeasible to find y (not equal to x) such that H(y) = H(x).

 Strong collision resistance

it is computationally infeasible to find any pair (x,y) such that H(x) = H(y).  

Could you use DES to implement a Cryptographic Hash Function?
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Secure Hash Algorithm (SHA)
 Developed by NSA in 1993. Based on MD4. 

 In 20002 a revised version by NIST. In 2005 SHA-1 started to be phased out by NIST. By 

2010 SHA-256, SHA-384, and SHA-512.

 Around 2005 an attack were 2 different message could be found using 269 operations 

yielding the same SHA-1 hash! (280 operations were expected to be necessary)

Secure Hash Algorithm 

(SHA)
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Assignment 3

 Find 1 (one !) research paper on (Biomedical) Security that you find 

very! Interesting and want to present during a 15 minutes talk.

 Send me the pdf of the paper before April 28th 2021, 23.59.

44

Number Theory: Modular Arithmetic

Given any positive integer n and any integer a we can write:

a = qn + r, where 0  r < n, q =  a/n

r is called the residue (mod n)

Definition: If a is an integer and n is a positive integer we define 

a mod n to be the remainder when a is divided by n.

Thus, a = a/n x n + (a mod n)

Definition: Two integers a and b are said to be congruent modulo n if 

(a mod n) = (b mod n)

Notation: a  b mod n
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Number Theory: Modular Arithmetic

Examples: 73  4 mod 23  as

73 = 3 x 23 + 4, hence 

(73 mod 23) = 4, and clearly 4 = (4 mod 23), thus 

(73 mod 23) = (4 mod 23) => 73  (4 mod 23) 

21  -9 mod 10 as

1 = (21 mod 10) and

1 = (-9 mod 10)

Properties (Check):

 a  b mod n if n|(a-b)

 (a mod n) = (b mod n) implies a  b mod n

 a  b mod n implies b  a mod n

 a  b mod n and b  c mod n implies a  c mod n

46

Number Theory: Modular Arithmetic

The mod n operator maps all integers into the set of integers 
ℤn = 0,1,…,(n-1), the set of all residues modulo n.

The following properties hold for modular arithmetic within ℤn:

 (w +x) mod n = (x + w) mod n

 ((w+x)+y) mod n = (w+(x+y)) mod n

 (0+w) mod n = w mod n

 w ℤn z ℤn such that w + z  0 mod n

 (w  x) mod n = (x  w) mod n

 ((wx)y) mod n = (w(xy)) mod n

 (1  w) mod n = w mod n

 (w(x+y)) mod n = ((wx)+(wy)) mod n
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Number Theory: Modular Arithmetic

Z8:    0    1   2     3   4    5    6    7  

6:    0   6  12  18  24  30  36  42

mod 8:    0   6    4    2    0    6    4    2

Z8:    0    1   2     3   4    5    6    7  

5:    0   5  10  15  20  25  30  35

mod 8:    0   5    2    7    4    1    6    3

Note: gcd(6,8) = 2,  and gcd(5,8) = 1

Notation: Zp
*= 1,2,…,(p-1)

Theorem: Let p prime, then for each w  Zp
* there exists 

a number z such that w  z  1 mod p, 

z is equal to the multiplicative inverse w-1 of w in Zp
*
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Number Theory: Discrete Logarithm

Definition: Let Zn
*={1,2,…,(n-1)}, and g in Zn

*. Then any integer x such that:

gx = y mod n 

is called a discrete logarithm of y to base g. 

Example:

Z7
* 1   2    3   4    5   6

31 32 33 34 35 36

g=3     3   2   6   4    5    1

Z7
* 1   2   3   4    5   6

log3 6   2    1   4   5    3

N.B. g = 3 is a generator of Z7
*

Definition: If for g in Zp
* {g1,…,g(p-1)} = Zp

* holds, then g is a generator of Zp
*.


