Biomedical Security

Erwin M. Bakker

Schneier on Security_{30-3 202} Blog Newsletter Books Essays News Talks

System Update: New Android Malware

Researchers have discovered a new Android app called "System Update" that is a sophisticated Remote-Access Trojan (RAT). From a news article:

The broad range of data that this sneaky little bastard is capable of stealing is pretty horrifying. It includes: instant messenger messages and database files; call logs and phone contacts; Whatsapp messages and databases; pictures and videos; all of your text messages; and information on pretty much everything else that is on your phone (it will inventory the rest of the apps on your phone, for instance).

The app can also monitor your GPS location (so it knows exactly where you are), hijack your phone's camera to take pictures, review your browser's search history and bookmarks, and turn on the phone mic to record audio.

The app's spying capabilities are triggered whenever the device receives new information. Researchers write that the RAT is constantly on the lookout for "any activity of interest, such as a phone call, to immediately record the conversation, collect the updated call log, and then upload the contents to the C&C server as an encrypted ZIP file." After thieving your data, the app will subsequently erase evidence of its own activity, hiding what it has been doing.

This is a sophisticated piece of malware. It feels like the product of a national intelligence agency or ---and I think more likely - one of the cybe eapons arms manufacturers that sells this kind of capability to governments around the world. https://www.schneier.com/

W / Your Router's Security Stinks: Here's How to Fix It

by PAUL WAGENSEIL May 29, 2018, 5:52 AM 11

https://www.tomsguide.com

"Brute force and dictionary attacks up 400 percent in 2017"

Feb 28, 2018 by Rene Millman

Listen to Your Key: Towards Acoustics-based Physical Key Inference

Figure 1: Figure depicts SpiKey attack scenario. Attacker records the sound of victim's key insertion to infer the shape, or "secret", of the key.

S. Ramesh et al. ^{© 2020 Association for Computing Machinery} ACM ISBN 978-1-4503-7116-2/20/03...\$15.00 https://doi.org/10.1145/3376897.3377853

Nieuws

Kwetsbaarheden in OpenSSL 26-03-2021 | 17:22

Op het internet is een Proof of Concept verschenen waarmee OpenSSL kan worden misbruikt. Het NCSC heeft daarom de inschaling van ...

Misbruik Microsoft Exchange kwetsbaarheid: blijf scannen en bereid je voor

12-03-2021 | 17:07

Het NCSC adviseert om te blijven scannen en monitoren op misbruik van Microsoft Exchange Servers en maatregelen te nemen om ...

Kwetsbaarheden in Microsoft Exchange Server in Nederland actief misbruikt

04-03-2021 | 19:28

Dinsdag 2 maart jl. hebben wij gecommuniceerd over kwetsbaarheden in on-premises installaties van Microsoft Exchange Server. Op ...

https://www.ncsc.nl/actueel

Call for presentations ONE Conference 2021

25-03-2021 | 15:40

Op 28 en 29 september organiseert het NCSC in samenwerking met het Ministerie van EZK de gemeente Den Haag de 8e editie van de ...

40% van Nederlandse Microsoft Exchange Servers nog kwetsbaar

08-03-2021|14:14

Het NCSC benadrukt nogmaals dat het van groot belang is om Microsoft Exchange Servers zo snel mogelijk te patchen. Vorige week ...

Wereldwijd botnet Emotet ontmanteld

12-02-2021 | 17:42

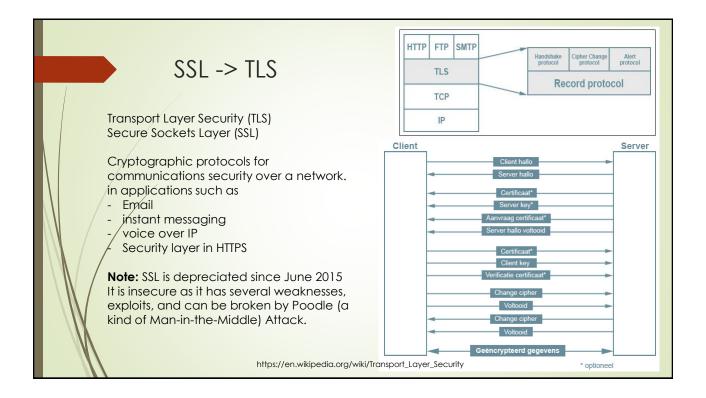
Donderdag 4 februari heeft de Nationale Politie een dataset gedeeld met het NCSC die accounts bevat die door het Emotet botnet ...

Gevolgen van Microsoft Exchange kwetsbaarheden groot voor Nederlandse organisaties en bedrijven

16-03-2021 | 17:13

De gevolgen van de kwetsbaarheden in Microsoft Exchange Server zijn groot voor Nederlandse organisaties en bedrijven. Het NCSC ...

UPDATE 6 maart: Aanvullend advies misbruikte kwetsbaarheden Microsoft Exchange Server

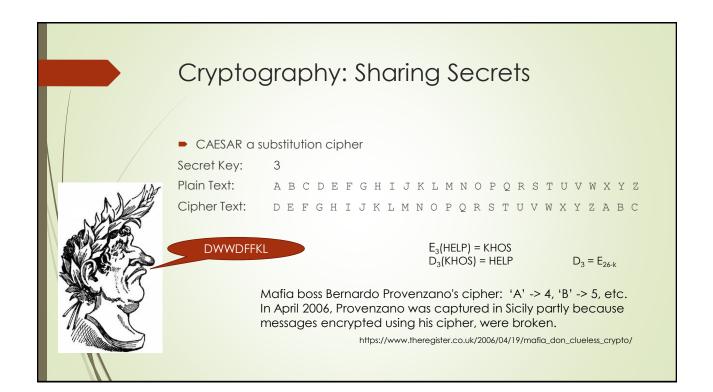

05-03-2021 | 21:31

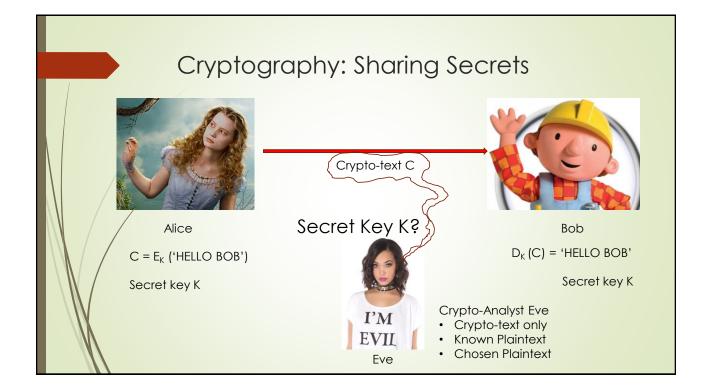
Op 6 maart zijn aanvullende tijdelijke mitigerende maatregelen toegevoegd aan dit nieuwsbericht, zie 'Wat kan ik doen', punt 3. ...

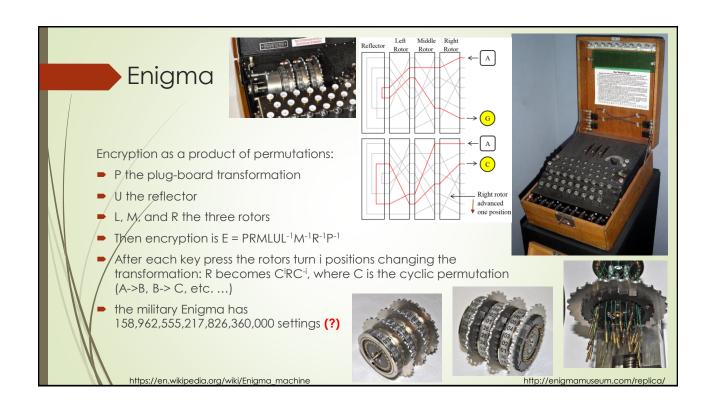
Meer mogelijkheden om informatie te delen voor NCSC

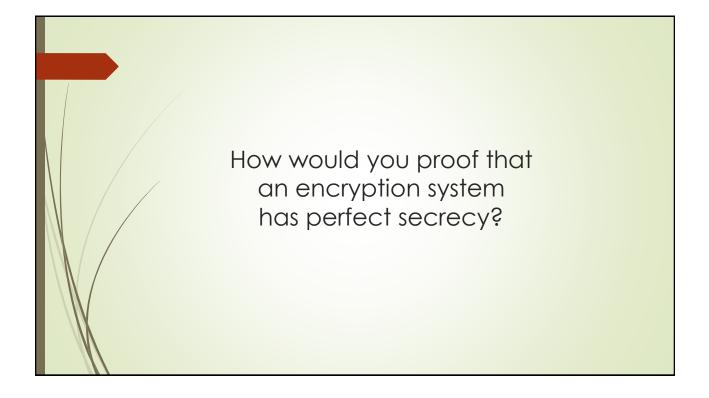
03-02-2021 | 18:11

De afgelopen maanden is de minister van JenV in samenspraak met andere betrokken ministers nagegaan of er aanvullingen nodig zijn ...

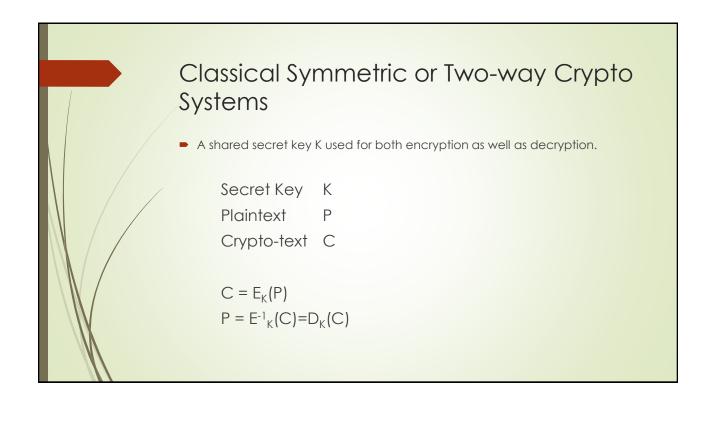

				Cip	her security ag	ainst publicly know	n feasible attacks				
	Cipher										
	Туре	Algorithm	Nominal strength (bits)	SSL 2.0	SSL 3.0 [n 1][n 2][n 3][n 4]	TLS 1.0 [n 1][n 3]	TLS 1.1 [n 1]	TLS 1.2 [n 1]	TLS 1.3	Status	
	Block cipher with mode of operation	AES GCM ^{[54][n 5]}	256, 128	N/A	N/A	N/A	N/A	Secure	Secure		
		AES CCM ^{[55][n 5]}		N/A	N/A	N/A	N/A	Secure	Secure		
		AES CBC ^[n 6]	200, 120	N/A	Insecure	Depends on mitigations	Depends on mitigations	Depends on mitigations	N/A		
		Camellia GCM ^{[56][n 5]}		N/A	N/A	N/A	N/A	Secure	N/A	Defined for TLS 1.2 in RFCs	
		Camellia CBC ^{[57][n 6]}	256, 128	N/A	Insecure	Depends on mitigations	Depends on mitigations	Depends on mitigations	N/A		
		ARIA GCM[58][n 5]		N/A	N/A	N/A	N/A	Secure	N/A		
		ARIA CBC ^{[58][n 6]}	256, 128	N/A	N/A	Depends on mitigations	Depends on mitigations	Depends on mitigations	N/A		
		SEED CBC ^{[59][n 6]}	128	N/A	Insecure	Depends on mitigations	Depends on mitigations	Depends on mitigations	N/A		
		3DES EDE CBC ^{[n 6][n 7]}	112 ^[n 8]	Insecure	Insecure	Insecure	Insecure	Insecure	N/A		
		GOST 28147-89 CNT ^{[53][n 7]}	256	N/A	N/A	Insecure	Insecure	Insecure	N/A	Defined in RFC 4357 ₽	
		IDEA CBC ^{[n 6][n 7][n 9]}	128	Insecure	Insecure	Insecure	Insecure	N/A	N/A	Removed from TLS 1.2	
		DES CBC[n 6][n 7][n 9]	56	Insecure	Insecure	Insecure	Insecure	N/A	N/A	Removed from TLS 1.2	
λ		DESCECTATION	40 ^[n 10]	Insecure	Insecure	Insecure	N/A	N/A	N/A	Forbidden in TLS 1.1 and late	
		RC2 CBC ^{[n 6][n 7]}	40 ^[n 10]	Insecure	Insecure	Insecure	N/A	N/A	N/A	Forbidden in TES 1.1 and late	
	Stream cipher	ChaCha20- Poly1305 ^{[64][n 5]}	256	N/A	N/A	N/A	N/A	Secure	Secure	Defined for TLS 1.2 in RFCs	
		RC4 ^[n 11]	128	Insecure	Insecure	Insecure	Insecure	Insecure	N/A	Prohibited in all versions of TLS	
			40 ^[n 10]	Insecure	Insecure	Insecure	N/A	N/A	N/A	RFC 7465@	
	None	Null ^[n 12]	_	Insecure	Insecure	Insecure	Insecure	Insecure	N/A	Defined for TLS 1.2 in RFCs	

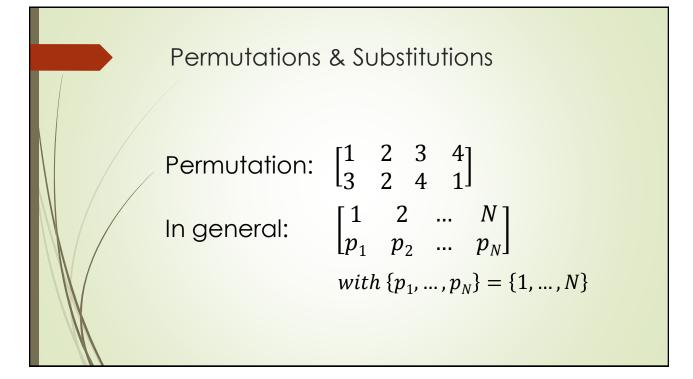

Overview


- Cryptography: Classical Algorithms,
- Cryptography: Public Key Algorithms
- Cryptography: Protocols
- Cryptography Workshop
- Biomedical Security and Applications
- Student Presentations

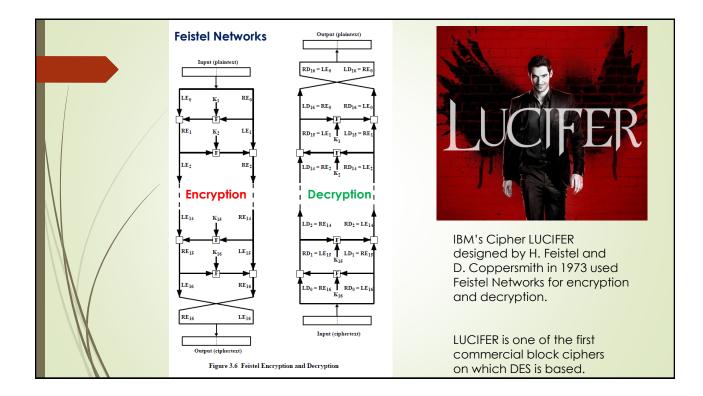

Grading:

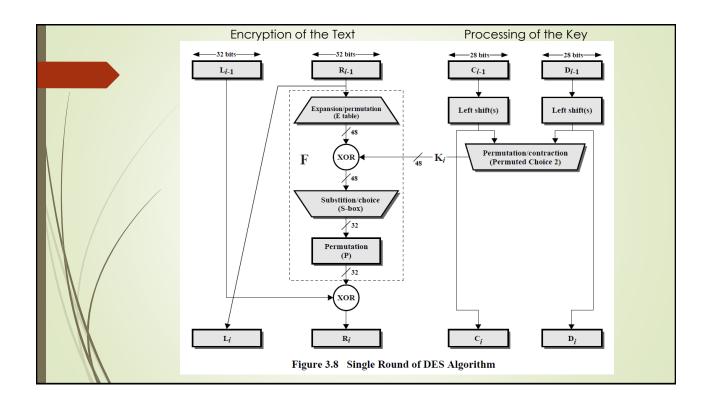
Class participation, assignments (3 out of 4) (workshop + presentation + technical survey)/3

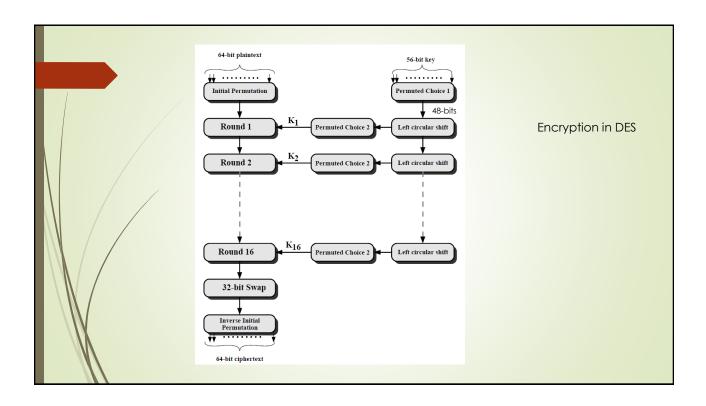




Classical Symmetric Crypto System: Data Encryption Standard (DES)


- March 17, 1975 published by the National Bureau of Standards (NBS)
- NSA reduced key-size from the original 128-bit to 56-bit
- At the time NSA studied it and said it was secure to use as a standard SKCS.
- Next government standard was classified: Skipjack
- Block cipher encrypting data in 64-bit blocks
- Key length 56-bits
- 16 rounds: in each round a substitution is followed by a permutation




Permutations & Substitutions

Substitution $S_5(011011) = 1001$

	S ₅		Middle 4 bits of input															
			0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
		01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
		10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
		11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

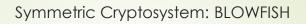
Classical Symmetric Crypto System: International Data Encryption Algorithm (IDEA)

IDEA is a Block Cipher designed by X. Lai and J. Massey in 1990. Revised in 1991 to withstand differential cryptanalysis.

Block Length

64-bit Data Blocks Is considered safe against statistical attacks. Cipher Feedback Mode enhances cryptographic strength.

128-bit Key


Safe against brute-force attacks.

Good Confusion

By using three operations: XOR, Addition mod 2¹⁶, Multiplication mod 2¹⁶+1 (compare with DES: XOR, small S-Boxes)

Good Diffusion

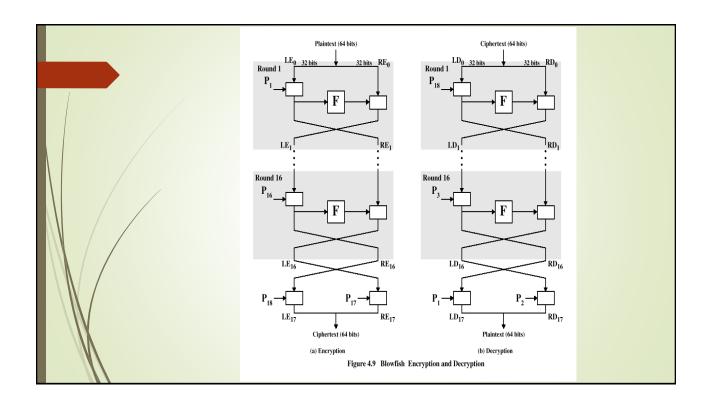
Every plaintext bit and every key-bit influences every ciphertext bit.

Blowfish is a symmetric block cipher designed by Bruce Schneier in 1993.

Block Length

64-bit data blocks encrypted in 64-bit ciphertext Blocks.

Key Length


32-448 bits (1 to 14 32-bit key-blocks).

Variable Security

Key generates 18 (32-bit) subkeys, and 4 (8x32 bit) S-boxes. The algorithm itself is used for this.

Fast, simple, and compact

On a 32-bit processor: 18 clock cycles per encrypted byte. Uses less than 5K of memory (was at the time too big for smart-cards).

RC5 is a block-cipher by R. Rivest in 1994.

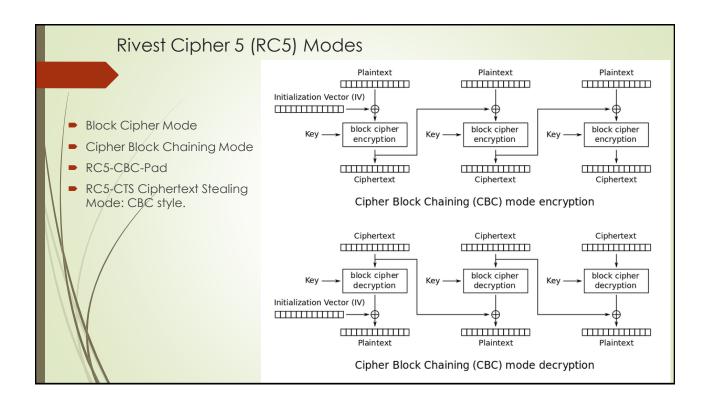
Efficient Hard and Software Implementations

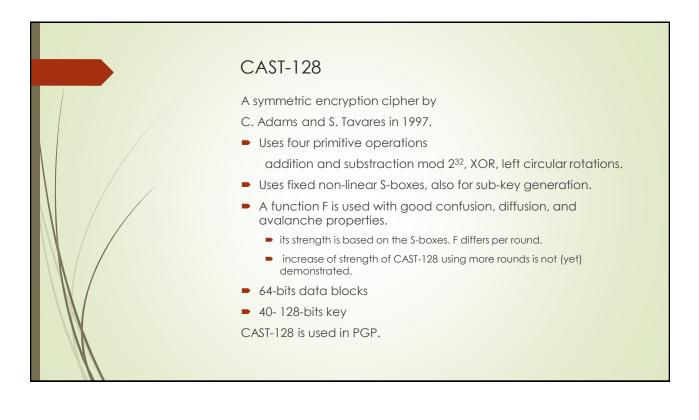
Simple structure, simple operations, low memory requirements, fast and simple implementations.

Variable Word Length:

w = 16, 32, or 64 Length of the plaintext blocks is 2w

Variable Key-Length


b = 0,...,255 bytes


Variable Security

Depending on the parameters, number of rounds: r = 0,...,255

Data-Dependent Rotations

Circular Bit Shifts. RC5-w/r/b = RC5-32/12/16 considered to have "Nominal" Security. Incorporated in the products BSAFE, JSAFE, and S/MAIL of RSA Data Security, Inc.

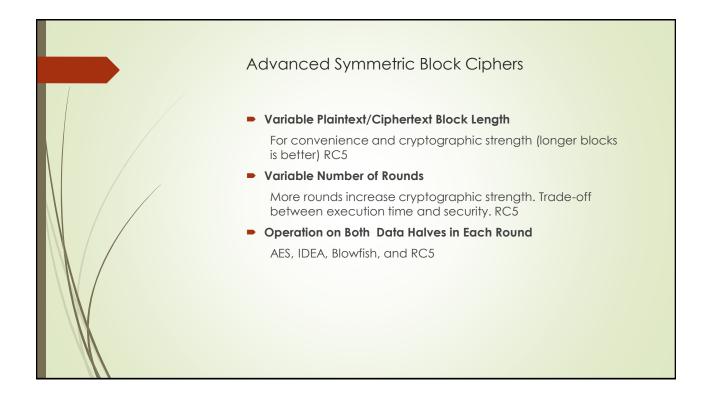
Rivest Cipher 2 (RC2)

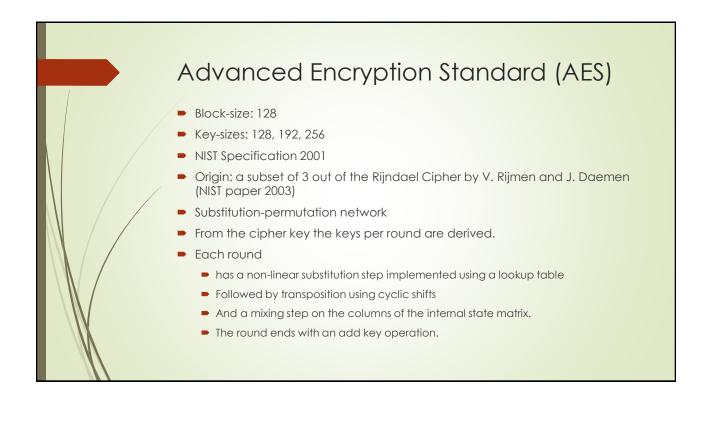
A symmetric encryption cipher by

R. Rivest in 1997.


- Designed for 16-bit microprocessors
- Uses 6 primitive operations

addition and subtraction mod 2³², XOR, COMPL, AND, and Left Circular Rotation.


- No Feistel Structure.
- 18 rounds: 16 mixing rounds, and 2 mashing rounds.
- 64-bits data blocks
- 8 1024-bits key


RC2 is used in S/MIME with 40-, 64-, and 128-bits keys.

RC2 is vulnerable to a related-key attack using 2³⁴ chosen plaintexts (Kelsey et al., 1997).

- Variable Key Length Blowfish, RC5, CAST-128, and RC2
- Mixed Operators
- Data-Dependent Rotation An alternative to S-boxes. No dependence on sub-keys. RC5.
- Key-Dependent Rotation CAST-128
- Key-Dependent S-Boxes Blowfish
- Lengthy Key Schedule Algorithm Against brute-force attacks. Blowfish
- Variable F to complicate cryptanalysis. CAST-128

A Short Introduction to Number Theory Primes Factorization Euclid's Algorithm Modular Arithmetic and Groups Fast Exponentiation Discrete Logarithms Euler Phi

Definition (Divisors):

 $b \neq 0$ divides a, if a = mb for some m (where a, b, and m are integers)

Notation: b|a

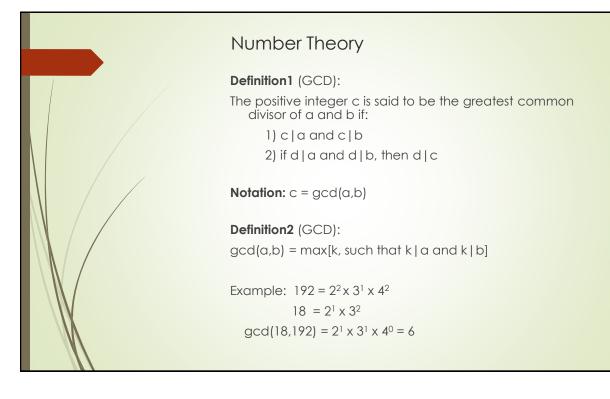
Example: divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24

The following relations hold:

- if a | 1, then a = ±1
- if $a \mid b$ and $b \mid a$, then $a = \pm b$
- any $b \neq 0$ divides 0
- if b|g and b|h, then b| (mg+nh) for arbitrary integers m and n

Number Theory

Definition (Prime Numbers):

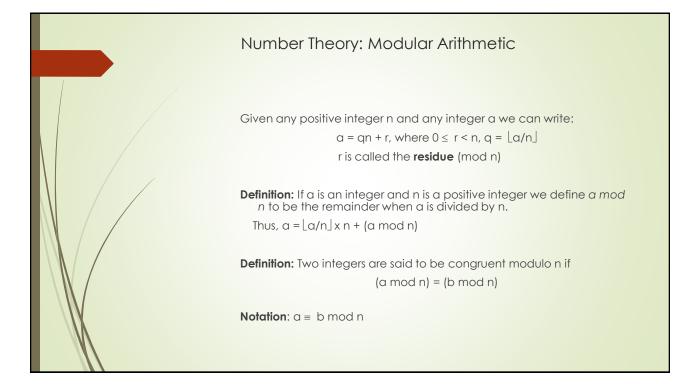

An integer p>1 is a prime number if its only divisors are ± 1 and $\pm p$.

Theorem: Any positive integer a>1 can be factored in a unique way as:

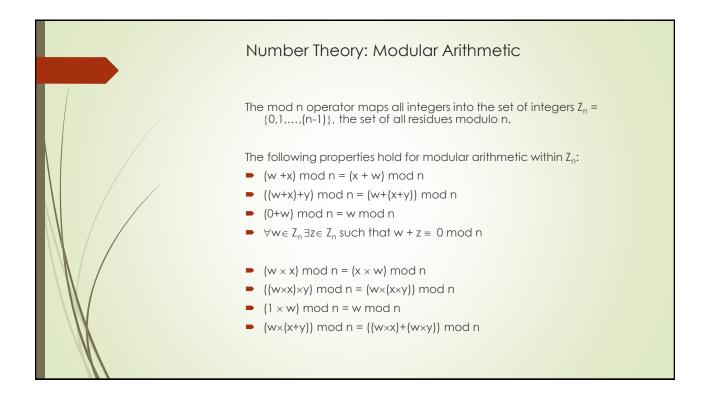
 $a = p_1^{a_1} . p_2^{a_2} ... p_t^{a_t},$ where $p_1 > p_2 > ... > p_t$ are prime, and $a_i > 0$

or $a = \prod_{i=1...t} p_i^{a_i}$, where $p_1 > p_2 > ... > p_t$ are prime and each $a_i \ge 0$

Example: $91 = 7 \times 13$, $11011 = 7 \times 11^2 \times 13$


Number Theory

Definition1 (Relative Prime): The integers a and b are said to be relatively prime if gcd(a,b) = 1.


Example: 192 and 18 are not relatively prime: $192 = 2^2 \times 3^1 \times 4^2$ $18 = 2^1 \times 3^2$

 $10^{\circ} = 2^{1} \times 3^{2}$ gcd(18,192) = $2^{1} \times 3^{1} \times 4^{0} = 6$

74 and 75 are relatively prime: $74 = 2 \times 37$ $75 = 3 \times 5^2$ gcd(74,75) = 1

Number Theory: Modular Arithmetic Examples: 73 = 4 mod 23 as 73 = 3 x 23 + 4, hence 4 = 73 mod 23, and clearly 4 = 4 mod 23 21 = -9 mod 10 as 1 = -9 mod 10 as 1 = -9 mod 10 1 = -9 mod 10 Competities (Check): • a = b mod n ifn | (a-b) • (a mod n) = (b mod n) implies a = b mod n • a = b mod n implies b = a mod n • a = b mod n and b = c mod n implies a = c mod n

18

Number Theory: Modular Arithmetic Z₈: 0 1 2 3 4 5 6 7 ×6: 0 6 12 18 24 30 36 42 mod 8: 0 6 4 2 0 6 4 2 $Z_8: \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$ ×5: 0 5 10 15 20 25 30 35 mod 8: 0 5 2 7 4 1 6 3 Note: gcd(6,8) = 2, and gcd(5,8) = 1**Notation:** $Z_p^* = \{1, 2, ..., (p-1)\}$ **Theorem:** Let p prime, then for each $w \in Z_p^*$ there exists a z such that $w \times z \equiv 1 \mod p$, z is equal to the multiplicative inverse w⁻¹ of w

Public-Key Cryptography Fast Exponentiation

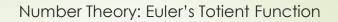
Calculate $a^{b} \mod n = 7^{560} \mod 561$
a = 7, b = 560 = 1000110000, n = 561

I	Bit b,	Exponent C	result d	->7 ⁵⁶⁰
9	1	1	7	7 ¹
8	0	2	49	7 ²
7	0	4	157	74
6	0	8	526	7 ⁸
5	1	17	160	7 ¹⁶⁺¹
4	1	35	241	732+2+1
3	0	70	298	764+4+2
2	0	140	166	7 ¹²⁸⁺⁸⁺⁴
1	0	280	67	7 ²⁵⁶⁺¹⁶⁺⁸
0	0	560	1	7512+32+16

 $c \leftarrow 0; d \leftarrow 1$ for $i \leftarrow k$ downto 0do $c \leftarrow 2 \times c$ $d \leftarrow (d \times d) \mod n$ if $b_i = 1$ then $c \leftarrow c + 1$ $d \leftarrow (d \times a) \mod n$ return d

Number Theory: Euler Totient Function

Definition: The Euler's totient function $\Phi(n)$ of n is equal to the number of positive integers <n that are relative prime to n.


Examples:

8: {1,3,5,7} are relative prime to 8 and <8, thus $\Phi(8) = 4$

11: {1,2,3,4,5,6,7,8,9,10} are relative prime to 11 and <11, thus $\Phi(11) = 10$

Lemma: If p is prime, then $\Phi(p) = p - 1$.

Lemma: If n = pq, with p and q prime, then Φ(n) = (p-1)(q-1). **Proof:** {p,2p,...,(q-1)p}, {q,2q,...,(p-1)q}, and 0 are not relatively prime. Thus Φ(n) = pq - (q-1) - (p-1) - 1 = (p-1)(q-1).

Fermat's Theorem (1640): For every prime p and any integer a, the following holds:

 $a^{p-1} \equiv 1 \mod p.$

Euler's Theorem (~1740): For any positive integer n, and any integer a relative prime to n, the following holds:

$$a^{\Phi(n)} \equiv 1 \mod n$$

Corollary: Let p,q be prime, and n = pq, m an integer such that gcd(m,n)=1, then

 $m^{(p-1)(q-1)} \equiv 1 \mod n$

Examples:

 $2^6 = 64 = 63 + 1 \equiv 1 \mod 7$

 $4^{(5-1)(7-1)} = 4^{24} = (4^8)^3 \mod 35 \equiv 16^3 \mod 35 \equiv 4096 \mod 35 \equiv 1 \mod 35$

Number Theory: Testing for Primality

[Miller'75, Rabin'80] **Procedure** Witness(a,n) n is to be tested for primality, a is some integer less than n.

if (not aⁿ⁻¹≡ 1 mod n) or (∃x: x²≡ 1 mod n and x≠±1)
then return TRUE {n is no prime}
else return FALSE {n may be prime}

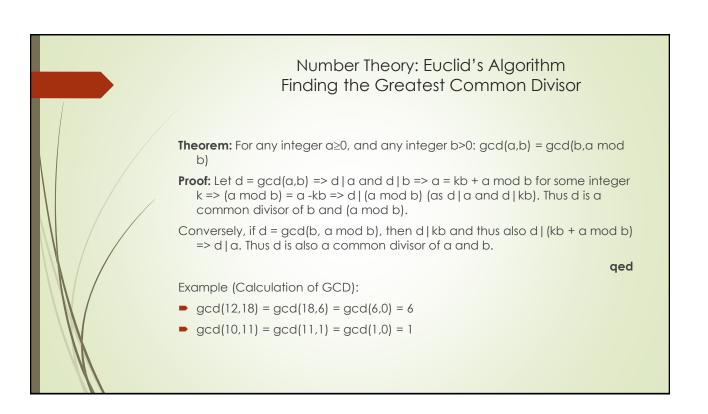
If n is no prime the probability that Witness returns FALSE is <0.5. Thus, if Witness returns FALSE s times the probability that n is prime is at least 1 - 2^{-s}.

Number Theory: Number of Primes

Definition: $\pi(n)$ is equal to the number of primes p that satisfy $2 \le p \le n$.

Theorem (The Prime Number Theorem, conjectured by Legendre, Gauss, Dirichlet, Chebyshev, and Riemann; proven by Hadamard and de la Vallee Poussin in 1896).

 $\pi(n) \sim n/ln(n)$


Thus there are about

 $10^{100}/\ln(10^{100})-10^{99}/\ln(10^{99}) =$

0.039x10⁹⁹ 100-digit primes

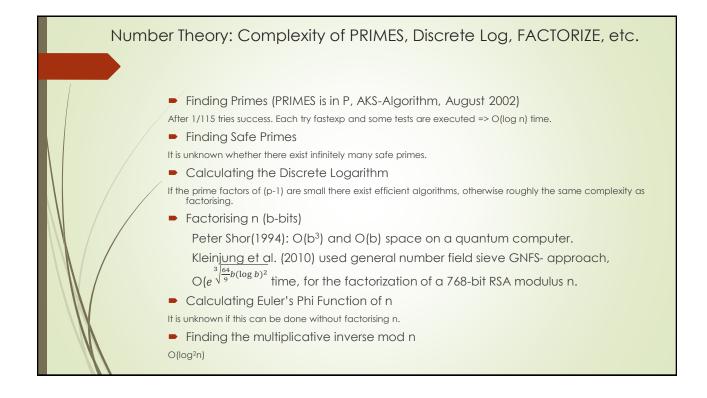
There are 4.5x10⁹⁹ 100-digit odd numbers.

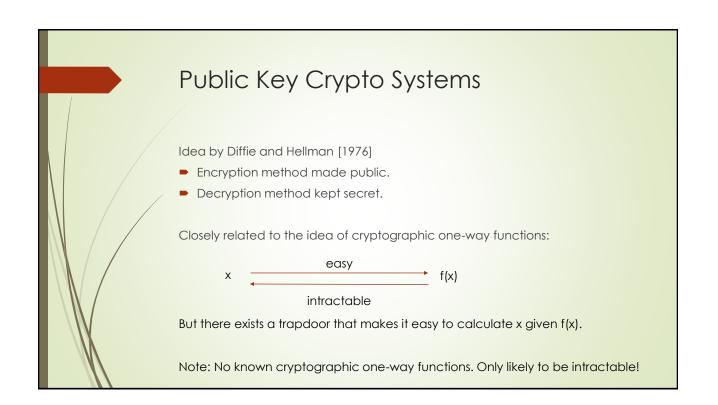
That is, about 1 of every 115 100-digit odd numbers is prime.

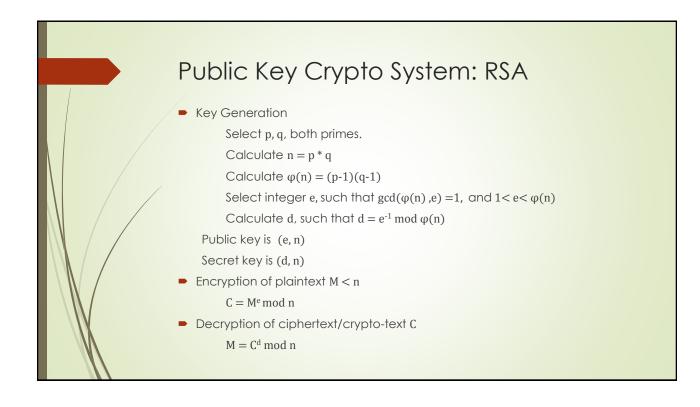
Number Theory: Euclid's Extended Algorithm Finding the Multiplicative Inverse

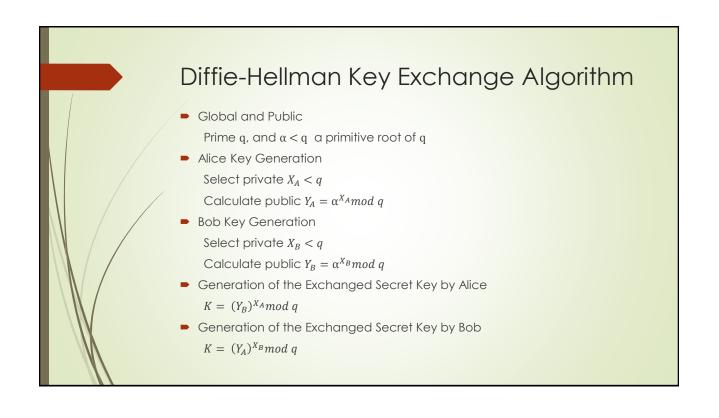
If gcd(d,n) = 1, then $(d^{-1} \mod n)$ exists. I.e., $dd^{-1} = 1 \mod n$.

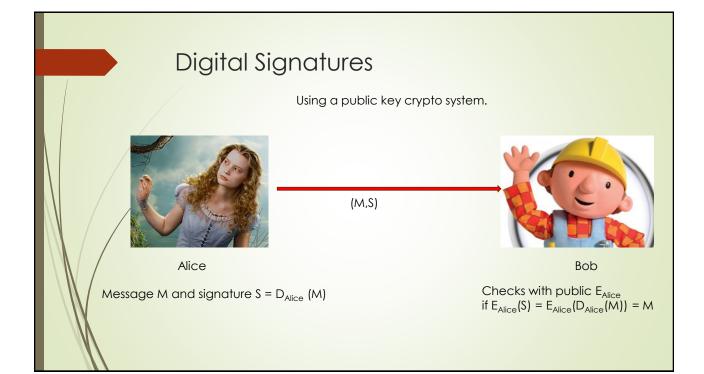
Complexity: The multiplicative inverse can be found in O(log²n) time.


Number Theory: Discrete Logarithm


Definition: Let $Z_n^* = \{1, 2, ..., (n-1)\}$, and g in Z_n^* . Then any integer x such that: $g^x = y \mod n$


is called a discrete logarithm of y to base g.


Example: Z_7^* 1 2 3 4 5 6 $3^1 3^2 3^3 3^4 3^5 3^6$ g=3 3 2 6 4 5 1 Z_7^* 1 2 3 4 5 6 \log_3 6 2 1 4 5 3 N.B. g=3 is a generator of Z_7^*


Definition: If for g in $Z_p^* \{g^1, \dots, g^{(p-1)}\} = Z_p^*$ holds, then g is a generator of Z_p^* .

