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Social Networks

 Social network:  A social structure made of nodes (individuals 
or organizations) that are related to each other by various 
interdependencies: friendship, kinship, like, ...

 Graphical representation

 Nodes = members

 Edges = relationships
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Social Networks

Nodes: individuals 

Links:  social relationship 
(family/work/friendship/etc.)

S. Milgram (1967) 

Social networks: Many individuals with diverse social interactions between them

For example: What is Facebook’s degree of Separation?

John Guare (play-writer)

Six Degrees of Separation (hops)
The Small-World Problem. Psychology Today, vol 1. no. 1, May 1967, pp66-67
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Social Networks

Facebook Study 

2008: on average 4.28 intermediate ‘friends’ between any two users, i.e., 5.28 hops.    

11-2011: on average 3.74 Facebook users in between (4.74 hops)

2-2016: on average 3.57 (4.57 hops)  (Note there are 1.6 x 109 Facebook users )

From: https://research.fb.com/three-and-a-half-degrees-of-separation/
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Communication Networks

The Earth developed an electronic nervous system, a 
network with diverse nodes and links are

-computers

-routers

-satellites

-network cables

-TV cables

-EM waves

Communication 
networks: Many non-
identical components 
with diverse
connections between 
them

The Internet of Things

Note: the number of IPv4 addresses is 232, IPv6 has an address space of size 2128.
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Complex systems

Made of many non-identical 
elements connected by diverse 

interactions.

NETWORK

Sequencing@home: The Internet of Sequences
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“Natural” Networks and Universality

 Consider many kinds of networks:

 social, technological, business, economic, content,…

 These networks tend to share certain informal properties:

 large scale; continual growth

 distributed, organic growth:                          

vertices “decide” who to link to

 interaction restricted to links

 mixture of local and long-distance connections

 abstract notions of distance:                     

geographical, content, social,…
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“Natural” Networks and Universality

 Consider many kinds of networks:

 social, technological, business, economic, content,…

 Social network theory and link analysis

 Do natural networks share more quantitative

universals?

 What would these “universals” be?

 How can we make them precise and measure them?

 How can we explain their universality?
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Networks and Their Representations

 A network (or a graph): 

G = (V, E), where V: vertices (or nodes), and E: edges (or links)

 Multi-edge: if more than one edge between the same pair of 

vertices

 Self-edge (self-loop): if an edge connects vertex to itself

 Simple network/graph if a network has neither self-edges nor multi-

edges

Networks and Their Representations

 A network (or a graph): G = (V, E), where V: vertices (or nodes), and 

E: edges (or links)

 Adjacency matrix: 

 Aij = 1 if there is an edge between vertices i and j; 0 otherwise

 Weighted networks:

 Edges having weight (strength), usually a real number

 Directed network (directed graph): if each edge has a direction

 Aij = 1 if there is an edge from i to j; 0 otherwise

1

6

2

3

5

4
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Cocitation & Bibliographic Coupling: Comparison

 For strong cocitation: must have a lot of outgoing edges

 Must be well-cited => (influential) papers, surveys, or books

 Takes time to accumulate citations

 Strong bib-coupling if two papers have similar citations

 A more uniform indicator of similarity between papers

 Can be computed as soon as a paper is published

 No change over time

 Analysis algorithms

 HITS (Hyperlink Induced Topic Search) (J. Kleinberg, 1998) 

explores both cocitation and bibliographic coupling

 Current methods use additional full text analysis.

Degree and Network Density

 Degree of a vertex i:

where n is the number of vertices

For an undirected graph:

 # of edges m = 1/2 of the sum of degrees of all the vertices:

 The mean degree c of a vertex in an undirected graph:

18What is a dense graph?
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Degree and Network Density

 Degree of a vertex i:

 # of edges m = 1/2 of sum of degrees of all the vertices:

 The mean degree c of a vertex in an undirected graph:

 Density ρ of a graph: 

 A network is dense if density ρ tends to be a constant as n → ∞

 A network is sparse if density ρ → 0 as n → ∞.  The fraction of 
nonzero element in the adjacency matrix tends to zero

 Internet, WWW and friendship networks are usually regarded as 
sparse 19
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Some Interesting Network Quantities

 Connected components:
 how many, and how large?

 Network diameter:
 maximum (worst-case) or average?
 exclude infinite distances? (disconnected components)
 the small-world phenomenon

 Clustering:
 to what extent links tend to cluster “locally”?
 what is the balance between local and long-distance 

connections?
 what roles do the two types of links play?

 Degree distribution:
 what is the typical degree in the network?
 what is the overall distribution?

22

Natural Network Characteristics

 Few connected components:

 often only 1 or a small number, indep. of network size

 Small diameter:

 often a constant independent of network size (like 6, 3.57)

 or perhaps growing only logarithmically with network size 
or even shrink? 4.28 -> 3.74 -> 3.57 (4 years in between)

 typically exclude infinite distances

 A high degree of clustering:

 considerably more so than for a random network

 in tension with small diameter

 A heavy-tailed degree distribution:

 a small but reliable number of high-degree vertices

 often of power law form (random variable X assuming integer values  

(> 0) probability of value x ~ 1/xa (typically 0 < a < 2) ( … See next slides)
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The Normal Distribution

 The normal or Gaussian density:
 characterized by mean m and standard 

deviation s
 density at x is defined as 

 (1/(s sqrt(2pi))) exp(-(x-m)2/2s2)
 special case m = 0, s = 1: a exp(-x2/b) for 

some constants a,b > 0
 peaks at x = m, then dies off exponentially

rapidly

 the classic “bell-shaped curve”
 exam scores, human body temperature 

 remarks:
 can control mean and standard deviation 

independently
 can make as “broad” as we like, but always 

have finite variance

24

The Binomial Distribution

 Coin with Pr[heads] = p, flip n 

times, probability of getting exactly 

k heads:

 choose (n, k) = pk(1-p)n-k

 For large n and p fixed:

 approximated well by a normal 

with 

m = np, s = sqrt(np(1-p))

 s/m  0 as n grows

 leads to strong large deviation 

bounds

www.professionalgambler.com/ 
binomial.html

http://www.professionalgambler.com/binomial.html
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The Poisson Distribution

 Like binomial, applies to variables taken on 

integer values > 0 

 Often used to model counts of events

 number of phone calls placed in a given 

time period

 number of times a neuron fires in a given 

time period

 Single free parameter l, probability of exactly 

x events:

 exp(-l) lx/x!

 mean and variance are both l

 Binomial distribution with n large, p = l/n (l 

fixed)

 converges to Poisson with mean l

single photoelectron distribution 

26

Power Law (or Pareto) Distributions

 Heavy-tailed, pareto, or power law
distributions: 

 For variables assuming integer values > 0

 probability of value x ~ 1/xa

 Typically 0 < a < 2; smaller a gives 
heavier tail

 sometimes also referred to as being 
scale-free

 Note: for binomial, normal, and Poisson
distributions the tail probabilities approach 
0 exponentially fast 

 What kind of phenomena does this 
distribution model?

 What kind of process would generate it?

a = 3
a = 2
a = 1
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Probabilistic Models of Networks

 All of the network generation models we will study are 
probabilistic or statistical in nature

 They can generate networks of any size

 They often have various parameters that can be set:

 size of network generated

 average degree of a vertex

 fraction of long-distance connections

 The models generate a distribution over networks

 Statements are always statistical in nature:

 with high probability, diameter is small

 on average, degree distribution has heavy tail
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Some Models of Network Generation

 Random graphs (Erdös-Rényi models, 1959):

 gives few components and small diameter

 does not give high clustering and heavy-tailed degree distributions

 is the mathematically most well-studied and understood model

 Watts-Strogatz models (1998):

 give few components, small diameter and high clustering

 does not give heavy-tailed degree distributions

 Scale-free Networks (1965, 1976, … 1999):

 gives few components, small diameter and heavy-tailed distribution

 does not give high clustering

 Hierarchical networks:

 few components, small diameter, high clustering, heavy-tailed

 Affiliation networks:

 models group-actor formation

Degrees and Clustering Coefficients

 Let a network G = (V, E), degree of a vertex

 Undirected network: d(vi): 

 Directed network

 In-degree of a vertex din(vi): 

 Out-degree of a vertex dout(vi):

 Clustering coefficients 

 Let Nv be the set of adjacent vertices of v, kv be the number of adjacent 

vertices to node v

 Local clustering coefficient for directed network

 Local clustering coefficient for undirected network

 For the whole network: Averaging the local clustering coefficient of all 

the vertices (Watts & Strogatz):

30
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The Erdös-Rényi (ER) Model: 
A Random Graph Model

 A random graph is obtained by starting with a set of N vertices and adding 

edges between them at random

 Different random graph models produce different probability distributions

on graphs

 Most commonly studied is the Erdős–Rényi model, denoted G(N,p), in which 

every possible edge occurs independently with probability p

 Random graphs were first defined by Paul Erdős and Alfréd Rényi in their 

1959 paper "On Random Graphs” 

 The usual regime of interest is when p ~ 1/N, N is large

 e.g., p = 1/2N, p = 1/N, p = 2/N, p=10/N, p = log(N)/N, etc.

 in expectation, each vertex will have a “small” number of neighbors

 will then examine what happens when N  infinity

 can thus study properties of large networks with bounded degree

 Sharply concentrated; not heavy-tailed

32

Erdös-Rényi Model (1959)

- Democratic

- Random

Pál Erdős
(1913-1996)

Connect with 
probability p

p=1/6
N=10 
k~1.5 Poisson distribution

Btw.: My Erdös Number = 3
E.M. Bakker – J. Van Leeuwen – S. Zaks – P. Erdös
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Erdös-Rényi Model (1959)

The First, Well-Studied 

Random Graph Model

BUT

Not a Good Model for Natural Networks!

The Watts and Strogatz Model

 Proposed by Duncan J. Watts, Steven Strogatz in their 1998 Nature paper

 A random graph generation model that produces graphs with small-world 

properties, including short average path lengths and high clustering

 Known as the (Watts) beta model after Watts used β to formulate it in his 

popular science book Six Degrees

 The Erdos-Renyi graphs fail to explain two important properties observed in 

real-world networks:

 Do not account for local clustering, i.e.,  having a low clustering 

coefficient as a result of assuming a constant and independent 

probability of two nodes being connected

 Do not account for the formation of hubs. Formally, the degree 

distribution of Erdos-Renyi graphs converges to a Poisson distribution, 

rather than a power law observed in most real-world, scale-free 

networks
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The a-model: Propensity

 For any vertices u and v:

 m(u,v) equal to the number of common neighbors (so far)

 Key quantity: the propensity R(u,v) of u to connect to v

if m(u,v) >= k then // parameter k average degree

R(u,v) = 1 // u,v share too many friends not to be connected

if m(u,v) = 0 then

R(u,v) = p // no mutual friends  no bias to connect)

else

R(u,v) = p + (m(u,v)/k)a (1-p) // probability has m(u,v) as bias

u
v

m(u,v) = 3

36

The a-model

 The a-model has the following parameters:

 N: size of the network to be generated

 k: the average degree of a vertex in the network to be generated

 p: the default probability that two vertices are connected

 a: adjustable parameter dictating bias towards local connections

 For any vertices u and v:

 define m(u,v) to be the number of common neighbors (so far)

 Key quantity: the propensity R(u,v) of u to connect to v

 if m(u,v) >= k, R(u,v) = 1 (u,v share too many friends not to be connected)

 if m(u,v) = 0, R(u,v) = p (no mutual friends  no bias to connect) 

 else, R(u,v) = p + (m(u,v)/k)a (1-p)

 Generate new edges incrementally

 using R(u,v) as the edge probability; details omitted

 Note: a = infinity is “like” Erdos-Renyi (but not exactly)
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The a-model
Small Worlds and Occam’s Razor

 For small a, should generate large clustering coefficients

 we “programmed” the model to do so

 Watts claims that proving precise statements is hard…

 But we do not want a new model for every little property

 Erdos-Renyi small diameter

 a-model  high clustering coefficient

 In the interests of Occam’s Razor, we would like to find

 a single, simple model of network generation…

 … that simultaneously captures many properties

=> Watt’s β-Model, small world: small diameter and high clustering

38

Watts β-Model Discovered by 

Examining the Real World…

 Watts examines three real networks as case studies:

 the Kevin Bacon graph

 the Western states power grid

 the C. elegans nervous system

 For each of these networks, he:

 computes its size, diameter, and clustering coefficient

 compares diameter and clustering to best Erdos-Renyi approx.

 shows that the best a-model approximation is better

 important to be “fair” to each model by finding best fit

 Overall:

 if we care only about diameter and clustering:
a is better than p
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Case 1: Kevin Bacon Graph

 Vertices: actors and actresses

 Edge between u and v if they appeared in a film together

Is Kevin Bacon 

the most 

connected actor?

NO!

Rank Name
Average

distance

# of

movies

# of

links

1 Rod Steiger 2.537527 112 2562

2 Donald Pleasence 2.542376 180 2874

3 Martin Sheen 2.551210 136 3501

4 Christopher Lee 2.552497 201 2993

5 Robert Mitchum 2.557181 136 2905

6 Charlton Heston 2.566284 104 2552

7 Eddie Albert 2.567036 112 3333

8 Robert Vaughn 2.570193 126 2761

9 Donald Sutherland 2.577880 107 2865

10 John Gielgud 2.578980 122 2942

11 Anthony Quinn 2.579750 146 2978

12 James Earl Jones 2.584440 112 3787

…

876 Kevin Bacon 2.786981 46 1811

…
876 Kevin Bacon 2.786981        46       1811

Kevin Bacon

No. of movies : 46       

No. of actors : 1811         

Average separation: 2.79

40

Rod Steiger

Martin Sheen

Donald 

Pleasence

#1

#2

#3

#876

Kevin Bacon

Bacon
-map
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Case 2: New York State Power Grid

 Vertices: generators and substations

 Edges: high-voltage power transmission lines and transformers

 Line thickness and color indicate the voltage level

 Red 765 kV, 500 kV; brown 345 kV; green 230 kV; grey 138 kV

42

Case 3: C. Elegans Nervous System

 Vertices: neurons in the C. elegans worm

 Edges: axons/synapses between neurons

From: http://wormwiring.org/
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Two More Examples

 M. Newman on scientific collaboration networks

 coauthorship networks in several communities

 differences in degrees (papers per author)

 empirical verification of 

 giant components

 small diameter (mean distance)

 high clustering coefficient

 Alberich et al. on the Marvel Universe

 purely fictional social network

 two characters linked if they appeared together in an issue

 “empirical” verification of

 heavy-tailed distribution of degrees (issues and characters)

 giant component

 rather small clustering coefficient

12/4/2018 44
Image credit: Daniel Eisenstein and the SDSS-III collaboration (July 2016)
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Network Cosmology

Network Cosmology
Dmitri Krioukov, Maksim Kitsak, Robert S. Sinkovits, David Rideout, David Meyer3 and 
Marian Boguna

Prediction and control of the dynamics of complex networks is a central problem in network science. 
Structural and dynamical similarities of different real networks suggest that some universal laws might 
accurately describe the dynamics of these networks, albeit the nature and common origin of such laws 

remain elusive. Here we show that the causal network representing the large scale 
structure of space-time in our accelerating universe is a power-law graph with 
strong clustering, similar to many complex networks such as the Internet, social, or 
biological networks. We prove that this structural similarity is a consequence of the asymptotic 

equivalence between the large scale growth dynamics of complex networks and causal networks. This 
equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and 
space-time in the universe, with implications to network science and cosmology.

arXiv: 1203.2109v2 (November 2012)

Image on previous slide: The image shows 48,741 galaxies, which is about 3% of the full survey
dataset. It covers ~t 1/20th of the sky with a volume of 6 billion light-years (w) x 4.5 billion light-years
(h) high x 500 million light-years (d). Color ranges from yellow to purple, where yellow is closest to
earth (Sloan Digital Sky Survey III (SDSS-III), BOSS).
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Towards Improvements on Watts-
Strogatz Model: Scale-Free Networks

 The Watts-Strogatz model thus far:

 Gives few components, small diameter and high clustering

 It produces graphs that are homogeneous in degree, hence        
still do not exactly follow the heavy-tailed degree distributions

 The Watts-Strogatz model also implies a fixed number of nodes 

and thus cannot be used to model network growth

 Proposal new model: Scale-Free Networks:

 Real networks are often scale-free networks inhomogeneous in 

degree, having hubs and a scale-free degree distribution. 

 Such networks are better described by the preferential 

attachment family of models, such as the Barabási–Albert (BA) 

model

 Degree distribution follows a power law, at least asymptotically.
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What Does that Mean?

Poisson distribution

Exponential Network

Power-law distribution

Scale-free Network

48

Scale-Free Networks

 The number of nodes (N) is not fixed

 Networks continuously expand by additional new nodes

 WWW: addition of new nodes

 Citation: publication of new papers

 The attachment is not uniform

 A node is linked with higher probability to a node that 

already has a large number of links

 WWW: new documents link to well known sites (CNN, 

Yahoo, Google)

 Citation: Well cited papers are more likely to be cited 

again
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Scale-Free Networks

 Start with (say) two vertices connected by an edge
 For i = 3 to N:

 for each 1 <= j < i
d(j) is degree of vertex j so far

 let Z = Σj d(j)   (sum of all degrees so far)

 add new vertex i with k edges back to {1, …, i-1}:
 i is connected back to j with probability d(j)/Z

 Vertices j with high degree are likely to get more links! 
—“Rich get richer”

50

Scale-Free Networks

 Start with (say) two vertices connected by an edge
 For i = 3 to N:

 for each 1 <= j < i, d(j) = degree of vertex j so far
 let Z = Sumj d(j) (sum of all degrees so far)
 add new vertex i with k edges back to {1, …, i-1}:

 i is connected back to j with probability d(j)/Z

 Vertices j with high degree are likely to get more links! —“Rich get richer”

 Natural model for many processes:
 hyperlinks on the web
 new business and social contacts
 transportation networks

 Generates a power law distribution of degrees
 exponent depends on value of k

 Preferential attachment explains
 heavy-tailed degree distributions
 small diameter (~log(N), via “hubs”)

 Will not generate high clustering coefficient
 no bias towards local connectivity, but towards hubs
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Robustness of 
Random vs. Scale-Free Networks

 The accidental failure 
of a number of nodes 
in a random network 
can fracture the 
system into non-
communicating islands.

 Scale-free networks 
are more robust in the 
face of such failures

 Scale-free networks 
are highly vulnerable 
to a coordinated 
attack against their 
hubs

12/4/2018 52http://www.opte.org/the-internet/

Nov. 22nd 2003
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