

Degree and Network Density

The α -model Small Worlds and Occam's Razor

For small α, should generate large clustering coefficients

- we "programmed" the model to do so
- Watts claims that proving precise statements is hard...
- But we do not want a new model for every little property
 - Erdos-Renyi → small diameter
 - α -model \rightarrow high clustering coefficient
- In the interests of Occam's Razor, we would like to find
 - a *single, simple* model of network generation...
 - ... that simultaneously captures many properties

=> Watt's β-Model, small world: small diameter and high clustering

Watts β-Model Discovered by Examining the Real World...

- Watts examines three real networks as case studies:
 - the Kevin Bacon graph
 - the Western states power grid
 - the C. elegans nervous system
- For each of these networks, he:
 - computes its size, diameter, and clustering coefficient
 - compares diameter and clustering to *best* Erdos-Renyi approx.
 - shows that the best α-model approximation is better
 - important to be "fair" to each model by finding best fit
- Overall:
 - if we care only about diameter and clustering:
 α is better than p

Case :	1: Kev	in Bacon G	Graph	Em	Ze	
Vertices:	actors an	d actresses			V	
 Edge between u an 	<mark>d v</mark> if they	appeared in a fil	m togeth	ier		
	Rank	Name	Average	# of movies	# of links	
	1	Rod Steiger	2.537527	112	2562	
Kevin Bacon	2	Donald Pleasence	2.542376	180	2874	
	3	Martin Sheen	2.551210	136	3501	
No. of movies : 46	4	Christopher Lee	2.552497	201	2993	
No. of actors : 1811	5	Robert Mitchum	2.557181	136	2905	
Average separation: 2.79	6	Charlton Heston	2.566284	104	2552	
0 1	7	Eddie Albert	2.567036	112	3333	
	8	Robert Vaughn	2.570193	126	2761	
Is Kevin Bacon	9	Donald Sutherland	2.577880	107	2865	
	10	John Gielgud	2.578980	122	2942	
the most	11	Anthony Quinn	2.579750	146	2978	
connected actor?	12	James Earl Jones	2.584440	112	3787	
<i>NO!</i>	876	Kevin Bacon	2.786981	46	1811	
2/4/2018						3

Two More Examples

- M. Newman on scientific collaboration networks
 - coauthorship networks in several communities
 - differences in degrees (papers per author)
 - empirical verification of
 - giant components
 - small diameter (mean distance)
 - high clustering coefficient
- Alberich et al. on the Marvel Universe
 - purely fictional social network
 - two characters linked if they appeared together in an issue
 - "empirical" verification of
 - heavy-tailed distribution of degrees (issues and characters)
 - giant component
 - rather small clustering coefficient

Network Cosmology

Network Cosmology

Dmitri Krioukov, Maksim Kitsak, Robert S. Sinkovits, David Rideout, David Meyer3 and Marian Boguna

Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing **the large scale structure of space-time in our accelerating universe** is a **power-law graph** with **strong clustering**, similar to many complex networks *such as the Internet, social, or biological networks*. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and space-time in the universe, with implications to network science and cosmology.

arXiv: 1203.2109v2 (November 2012)

Image on previous slide: The image shows 48,741 galaxies, which is about 3% of the full survey dataset. It covers \sim t 1/20th of the sky with a volume of 6 billion light-years (w) x 4.5 billion light-years (h) high x 500 million light-years (d). Color ranges from yellow to purple, where yellow is closest to earth (Sloan Digital Sky Survey III (SDSS-III), BOSS).

12/4/2018

ReferencesD. Liben-Nowell and J. Kleinberg. The Link Prediction Problem for Social Networks. CIKM'03 P. Domingos and M. Richardson, Mining the Network Value of Customers. KDD'01 M. Richardson and P. Domingos, Mining Knowledge-Sharing Sites for Viral Marketing. KDD'02

D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the Spread of Influence through a Social Network. KDD'03.

.

- P. Domingos, Mining Social Networks for Viral Marketing. IEEE Intelligent Systems, 20(1), 80-82, 2005.
- S. Brin and L. Page, The anatomy of a large scale hypertextual Web search engine. WWW7.
- S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S.R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, Mining the link structure of the World Wide Web. IEEE Computer'99
- D. Cai, X. He, J. Wen, and W. Ma, Block-level Link Analysis. SIGIR'2004.
- Lecture notes from Lise Getoor's website: <u>www.cs.umd.edu/~getoor/</u>