

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Summary

Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns

Multi-level association mining may generate many redundant rules

Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items

(Suppose the *Reduced Fat milk* sold in about ¼ of milk sold in gallons)

- $\square milk \Rightarrow wheat bread [support = 8\%, confidence = 70\%]$ (1)
- **\Box** Reduced fat milk \Rightarrow wheat bread [what do you expect ?] (2)

Customized Min-Supports for Different Kinds of Items

Until now: the same min-support threshold for all the items or item sets to be mined in each association mining

- But, some items (e.g., diamond, watch, ...) are valuable but less frequent
- □ Necessary to have customized min-support settings for different kinds of items
- One Method: Use group-based "individualized" min-support
 - E.g., valuable group {diamond, watch}: 0.05%; whereas {bread, milk}: 5%; ...
 - □ How to mine such rules efficiently?
 - □ Existing scalable mining algorithms can be easily extended to cover such cases

Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
 - **Ex.:** Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)
 - LHS: a subset of the population: Gender = female
 - RHS: an extraordinary behavior of this subset: Wage: mean=\$7/hr
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - □ Ex.: (Gender = female) ^ (South = yes) \Rightarrow mean wage = \$6.3/hr
- **u** Rule condition can be categorical or numerical (quantitative rules)
- □ Ex.: Education in [14-18] (yrs) \Rightarrow mean wage = \$11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD'99)

	Rare Patterns vs. Negative Patterns
L F	are patterns
	Very low support but interesting (e.g., buying Rolex watches)
	How to mine them? Setting individualized, group-based min-support thresholds for different groups of items (similar to valuable items)
	legative patterns
	Negatively correlated: Unlikely to happen together
	Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
	How to define negative patterns?

Defining Negative Correlated Patterns

- □ A support-based definition of Negative Correlated Patterns
 - □ If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)
 - □ Then A and B are negatively correlated

18

□ Is this a good definition for large transaction datasets?

Defining Negative Correlated Patterns

- A support-based definition of Negative Correlated Patterns
 - □ If itemsets A and B are both frequent but rarely occur together, i.e.,
 - Then A and B are negatively correlated
 Does this remind you the definition of *lift*?
- □ Is this a good definition for large transaction datasets?

19

- A support-based definition of Negative Correlated Patterns
 - If itemsets A and B are both frequent but rarely occur together, i.e., $sup(A \cup B) \ll sup(A) \times sup(B)$ Does this remind you the definition of lift?
- □ Then A and B are negatively correlated
- □ Is this a good definition for large transaction datasets?
- **Ex.:** Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have
 - □ $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) \iff s(A) \times s(B)$
 - But when there are 10⁵ transactions, we have
 - □ $s(A \cup B) = 1/10^5$, $s(A) \times s(B) = 1/10^3 \times 1/10^3$, $s(A \cup B) > s(A) \times s(B)$

PROBLEM: Null transactions: The support-based definition is not null-invariant!

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the nullinvariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the nullinvariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
- □ A Kulczynski measure-based definition
 - □ If itemsets A and B are frequent but $(P(A|B) + P(B|A))/2 < \epsilon$, where ϵ is a negative pattern threshold, then A and B are negatively correlated
- □ For the same needle package problem:
 - □ No matter if there are in total 200 or 10⁵ transactions
 - □ If $\epsilon = 0.01$, we have $(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining
- Summary

A data mining query can be in the form of a meta-rule or with the following language primitives

- Knowledge type constraint:
 - Ex.: classification, association, clustering, outlier finding,
- Data constraint using SQL-like queries
 - Ex.: find products sold together in NY stores this year
- Dimension/level constraint
 - Ex.: in relevance to region, price, brand, customer category
- <u>Rule (or pattern) constraint</u>
 - Ex.: small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - Ex.: strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7

Meta-Rule Guided Mining

- A meta-rule can contain partially instantiated predicates & constants
- $\Box \quad P_1(X, Y) \land P_2(X, W) \Longrightarrow buys(X, "iPad")$
- □ The resulting mined rule can be
- □ $age(X, "15-25") \land profession(X, "student") \Rightarrow buys(X, "iPad")$
- In general, (meta) rules can be in the form of
 - $\Box \quad P_1 \land P_2 \land \dots \land P_l \Longrightarrow Q_1 \land Q_2 \land \dots \land Q_r$

Method to find meta-rules

- □ Find frequent (I + r) predicates (based on *min-support*)
- Push constants deeply when possible into the mining process
- Also, push min_conf, min_correlation, and other measures as early as possible (measures acting as constraints)

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints

- Anti-monotonic: If constraint c is violated (by pattern of items), its further mining can be terminated
- Monotonic: If constraint *c* is satisfied, no need to check *c* again
- Succinct: if the constraint c can be enforced by directly manipulating the data
- Convertible: constraint c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated (by pattern of items), its further mining can be terminated
- Monotonic: If constraint *c* is satisfied, no need to check *c* again
- Succinct: if the constraint *c* can be enforced by directly manipulating the data
- Convertible: constraint c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing
- Data space pruning constraints

29

- Data succinct: Data space can be pruned at the initial pattern mining process
- Data anti-monotonic: If a transaction t (data) does not satisfy constraint c, then t can be pruned to reduce data processing effort

Pattern Space Pruning with Pattern Anti-Monotonicity

Constraint c is <i>anti-monotone</i>	TID	Transaction	Item	Price	Profit
If an itemset S violates constraint c. so does any		Transaction Item Price Profit 10 a, b, c, d, f, h a 100 40 20 b, c, d, f, g, h b 40 0 30 b, c, d, f, g C 150 -20 40 a, c, e, f, g d 35 -15 price(item)>0 ff 45 -30 ff 45 -10 10 5			
of its superset	20	b, c, d, f, g, h	b	40	0
	30	b, c, d, f, g	С	150	Profit 40 0 -20 -15 -30 -10 20 5
That is, mining on itemset S can be terminated	40	a, c, e, f, g	d	35	-15
• Ex. 1: c_1 : sum(S.price) $\leq v$ is anti-monotone	mi	n_sup = 2	е	55	-30
Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone price(item)>0				45	-10
Itemset ab violates c ₂ (range(ab) = 40)			g h	80 10	20 5
So does every superset of <i>ab</i>					
• Ex. 3. c_3 : <i>sum</i> (<i>S</i> . <i>Price</i>) $\ge v$ is not anti-monotone					
• Ex. 4. Is c_4 : <i>support(S)</i> $\geq \sigma$ anti-monotone?					
Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!					

Pattern Monotonicity and Its Roles

- A constraint c is monotone: if an itemset S satisfies the constraint c, then so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : sum(S.Price) $\ge v$ is monotone
- Ex. 2: c_2 : *min(S.Price)* $\leq v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
 - Itemset *ab* satisfies c₃
 - So does every superset of ab

TID	Transaction	Item	Price	Profit
10	a, b, c, d, f, h	а	100	40
20	b, c, d, f, g, h	b	40	0
30	b, c, d, f, g	С	150	-20
40	a, c, e, f, g	d	35	-15
min $sup = 2$		е	55	-30
price(item)>0		f	45	-10
		g	80	20
		h	10	5

Data Space Pruning with **Data** Anti-Monotonicity

Succinctness: Pruning Both Data and Pattern Spaces

- Succinctness: if the constraint *c* can be enforced by directly manipulating the data
- Ex. 1: To find those patterns without item *i*
 - Remove *i* from DB and then mine (pattern space pruning)
- Ex. 2: To find those patterns containing item *i*
- Mine only *i*-projected DB (data space pruning)
- Ex. 3: c_3 : *min*(*S*.*Price*) $\leq v$ is succinct
 - Start with only items whose price ≤ v (pattern space pruning) and remove transactions that only have high-price items (data space pruning)
- Ex. 4: c_4 : sum(S.Price) $\ge v$ is not succinct
- Satisfying the constraint cannot be determined beforehand since sum of the price of itemset S keeps increasing

Convert tough constraints into (anti-)monotone by proper				
ordering of items in transactions		min_sup = 2	а	40
Examine c ₁ : avg(S.profit) > 20				0
Order items in value-descending order	TID	Transaction	d	-20
	10	a, b, c, d, f, h	e	-30
\blacksquare < <i>u</i> , <i>y</i> , <i>j</i> , <i>n</i> , <i>v</i> , <i>u</i> , <i>c</i> , <i>e</i> >	20	b, c, d, f, g, h	f	10
An itemset ab violates c ₁ (avg(ab) = 20)	30	b, c, d, f, g	g	20
 So does ab* (i.e., ab-projected DB) 	40	a, c, e, f, g	h	5
 C₁: anti-monotone if patterns grow in the right or 	der!			
Can item-reordering work for Apriori?				
 Does not work for level-wise candidate generation 	n!			
avg(agf) = 23.3 > 20, but avg(gf) = 15 < 20, hence would have been incorrectly pruned	gf			

Colossal Patterns: A Motivating Example

Chapter 7 : Advanced Frequent Pattern Mining

- Pattern Mining: A Road Map
- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

48

Next Lectures

