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Introduction 

These lectures in Computational Molecular Biology aim to make participants familiar with a number of widely 
used approaches for computational analysis of biopolymers. In particular, the purpose is to give an idea 
about the main principles behind the algorithms for analysis of biopolymer structures and functions. Of 
course, the text below is just some (lecture) notes that may assist in understanding the material given in 
lectures and should not be considered as independent comprehensive description. 

Basic Molecular Biology Introduction: 

Biopolymers (DNA, RNA, proteins) are the main components of life on Earth. DNA and RNA molecules are 
the polynucleotide chains containing four nucleotides, protein polypeptide chains contain 20 residue types 
(amino acid residues). The main "dogma" of Molecular Biology states that DNA is a carrier of genetic 
information, which is transcribed into messenger RNA (mRNA) molecules that are translated to proteins 
responsible for functioning and reproduction of organisms. Furthermore, multiple types of RNA exist that 
have important functions in the cell and are not protein-coding (non-coding RNAs, ncRNAs)    

Genes carrying genetic information in the majority of species (except some viruses) are the regions of 
double-helical DNA genomes containing two complementary antiparallel polynucleotide strands that have a 
so-called 5'->3' polarity (following the nomenclature of atoms in monomer units). Each monomer unit 
(nucleotide) contains phosphate, sugar (desoxyribose) and one of nucleotide bases: adenine (A), 
thymine(T), guanine (G) or cytosine (C). The complementarity is determined by Watson-Crick base-pairing in 
AT and GC pairs. Thus a double-helical DNA molecule is described by the sequence of one of its strands, 
e.g. TAGCGCAGGG... (in this case the complementary strand in this fragment is  ...CCCTGCGCTA). DNA 
replication mechanism ensures the transfer of genetic information upon reproduction, sequence changes 
occurring due to replication errors (mutations) may lead to disorders or evolutionary development. 

Transcription of DNA into RNA is carried out by RNA polymerase complex which uses one of DNA strands as 
a template. The resulting RNA sequence is determined by Watson-Crick complementarity rules and thus is 
the copy of complementary DNA strand sequence, except that thymine is substituted by another nucleotide 
base, uracil (U). Start and termination points of transcription are important elements of gene sequence 
analysis. Sequence signals that determine transcription starts, are called promoters. Apart from a protein-
coding region, which is translated to amino acid sequence, an mRNA molecule contains two untranslated 
regions "before" (upstream) and "after" (downstream) of the coding sequence. These regions are called 5' 
untranslated region (5'UTR) and 3'UTR, respectively. Translation of a nucleotide sequence in an amino acid 
sequence occurs according to the genetic code, with amino acids encoded by triplets of nucleotides 
(codons). Genetic code is redundant, as the majority of amino acids can be encoded by different codons, 
frequently with the last 3rd position being so-called "wobble" one. Start-codons are ATG sequences (or AUG 
in RNA, encoding for methionine amino acid), stop-codons are TAA, TAG and TGA. The translated region 
between a start- and stop-codon is called open reading frame (ORF). Due to the triplet coding, for any DNA 
sequence 6 reading frames are possible: 3 frames in each of the complementary strands.  

In prokaryotic organisms (those lacking nucleus in their cells), an mRNA molecule may contain an operon 
consisting of several ORFs coding for several proteins. In eukaryotes, genes have different complexity: 
mRNA molecules with ORFs are not transcribed directly, but are produced by processing of precursor pre-
mRNA molecules. In the processing (RNA splicing), non-coding pre-mRNA regions (introns) are removed, 
and the rest (exons) are ligated, leading to mature mRNA molecules. A number of eukaryotic genes are 
characterised by alternative splicing, leading to various exon combinations in mRNAs and, therefore, 
different encoded proteins. 

Biopolymer sequences contain multiple sequence patterns that regulate their functions. Furthermore, these 
functions depend on 3D structures of biopolymer molecules, in particular, RNA and proteins. Prediction and 
analysis of biopolymer 3D structures on the basis of one-dimensional sequences are also essential parts of 
Bioinformatics and Computational Molecular Biology. 
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Basic Bioinformatics Sequence Analysis Introduction: 

Analysis of monomer sequences of biopolymers is of great importance for understanding all living systems, 
from viruses to humans. Computational analysis of sequence data involves large databases and a number of 
algorithms developed for sequence comparisons, recognition of functional sequence patterns and 
processing of experimental sequencing data. Sequence analysis is the core of bioinformatics. 

The widely used nucleotide sequence database is GenBank of the retrieval system Entrez provided by The 
National Center for Biotechnology Information, NCBI (www.ncbi.nlm.nih.gov). Entrez also include curated 
databases of nucleotide sequences, e.g. Gene, Genome etc. Protein amino acid sequences are mostly 
derived from nucleotide sequence entries and stored in curated databases, also accessible in Entrez. 
Sequence data are also available in the resources of European Bioinformatics Institute (EBI). The exchange 
of sequence information is mostly done using so-called flat-file sequence entry format. It contains a number 
of datafields, classified into header, features and sequence parts. The main nucleotide sequence databases 
exchange the data on regular basis, they also use a unified system of accession numbers. 

Sequence alignment is the main approach to compare the sequences and analyse their similarity. The 
alignment maps the monomers of two or more sequences to each other, what could suggest functional and/
or evolutionary links between them. The alignment task is finding the alignment which is the most likely 
corresponding to biological relationships between sequences in question. Due to enormous number of all 
possible alignments even in case of two moderately long sequences, this is not always straightforward. Two 
essential components of any alignment algorithm are the scoring system and the procedure to calculate 
highly-scoring alignments. Scoring parameters are defined for matches, substitutions and gaps in 
alignments. Various scoring systems may be used, the parameters are mostly derived from estimated 
statistics of mutations in related sequences. 

The optimal pairwise alignment of two sequences can be found by a dynamic programming algorithm that  
guarantees to find the optimal alignment with the highest score. Dynamic programming is used for finding 
optimal global (Needleman-Wunsch algorithm) and local (Waterman-Smith algorithm) pairwise alignments. 
The optimal local alignment for two sequences is defined as the alignment of their subsequences with the 
highest score. 

One of the frequent alignment tasks is the sequence database similarity search. The query sequence is 
aligned to each subject sequence in the database, yielding a list of sequence hits with relatively high 
similarity to the query. An application of the optimal alignment computation by dynamic programming is not 
practical for this task, being rather slow. More efficient approach is to first identify local similarities of short 
"words" (oligomers) in two sequences, which could be further extended to significant alignments. The most 
popular algorithm of this kind is BLAST (Basic Local Alignment Search Tool, available at the NCBI resources: 
www.ncbi.nlm.nih.gov), which implements a strategy to find statistically reliable local alignments. 

Alignment of more than two sequences is called multiple sequence alignment (MSA). A number of 
algorithms is developed for this task. The classical approach is progressive MSA. In such an algorithm, first 
the pairwise alignments are produced, e.g. by dynamic programming. The scores of pairwise alignments are 
used to cluster the sequences according to their similarities, thus producing a guide tree. The guide tree is 
used for sequential alignments of (clusters of) sequences, starting from the closely related ones and 
proceeding to more distant relations. At every step, the alignment of two (clusters of) sequences is actually a 
pairwise alignment, the difference being is that substitution scores at alignment positions are calculated as 
average values of the scores for monomers in previously aligned sequences. More complex MSA algorithms 
have been developed as well, mostly aiming to escape from greedy character of progressive alignment and 
to solve the problems arising in large datasets of sequences. 

None of alignment algorithms can actually guarantee the finding of biologically relevant solution. Therefore 
alignments are frequently improved by human intervention according to additional data, like protein-coding 
properties, presence of specific motifs, structures etc.  

Identification of regions of high similarity in sequence alignments can lead to recognition of common 
(consensus) patterns in them, or sequence motifs. In turn, a number of algorithms exist to align various 
descriptors of these motifs to other sequences in order to recognize new pattern-matching domains. The 
classic form of such a descriptor (profile) is a position-specific score matrix (PSSM). Such a matrix has 
dimensions 4xL for nucleic acids and 20xL for proteins, where L is the motif size. The matrix elements are 
computed from monomer frequencies in a dataset of sequences assumed to contain the motif. Other types 
of profiles, e.g. based on Markov models, are also possible. Profile descriptions are used in the databases of 
nucleotide and amino acid motifs, which can be searched by query sequences. 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1. RNA structure prediction 

1.1. Thermodynamics of RNA folding and RNA structure predictions 

RNA folding occurs in hierarchical way, with secondary structure formed first, followed by the formation of 
tertiary structure. The secondary structure of an RNA molecule is determined by base-pairing between 
complementary regions and is usually described as the configuration consisting of double-stranded helices 
(stems) and loops of different topologies (hairpins, bulges, internal and multibranch loops), formed by various 
combinations of stems. Tertiary structure is a spatial (3D) conformation of RNA determined by various 
interactions between atoms within RNA (bases, ribose, phosphates) and with environment (solvent). 

Usually the energy content of the 2D structure is very high compared to that of 3D, and the majority of RNA 
structure prediction algorithms deal with secondary structure prediction without account for 3D-structure 
elements. The methods for calculating secondary structure are based either on thermodynamic approach 
or comparative analysis, or some combination of them. The thermodynamics-based methods may apply 
free energy minimization (thermodynamics) or folding simulations (kinetics). The approaches for 3D structure 
predictions are based on stereochemical considerations and approximated energy potentials estimated for 
loop conformations (e.g. in RNA pseudoknots) and/or for interactions between atomic groups present in 
RNA.     

Free energy  ΔG of RNA secondary structure can be computed as the sum of stabilizing free energies 
determined by base-pairing and stacking of neighboring bases (ΔG < 0) and destabilizing loops (ΔG > 0). 
Many of these parameters have been estimated from thermodynamic experiments and are available in the 
Internet (e.g. Turner & Mathews, 2010). 

The positive free energies of loops are approximated by logarithmic dependences on their sizes. The 
approximations of general type 
                                                 loop ΔG ~ 1.75 RT ln (size)  
are used for various loop topologies. This formula is derived from size dependence of conformational entropy 
(in assumption that enthalpy of loop formation is zero). Some specific sequences, in particular, tetraloops, 
are extrastable, and usually this is taken into account by addition a negative term in the formula. 

The stacking free energies in the stems are calculated according to the nearest-neighbor rules. In helices, 
the stabilizing free energies, determined by H-bonds and stacking effects, depend on combinations of 
adjacent base pairs rather than on single pairs. Thus, for calculating the energy of a helix with 5 base pairs 4 
stacking values have to be added, see example: 

    G G
   A   A
   A   U       ΔGloop(N=8) = + 5.5 kcal/mol
   A   A
    C-G      ΔGmismatch(CG/AA) = - 1.5 kcal/mol
    U-A      ΔGstacking(UA/CG) = - 2.4 kcal/mol
    A-U      ΔGstacking(AU/UA) = - 1.1 kcal/mol
    C-G      ΔGstacking(CG/AU) = - 2.1 kcal/mol
    G.U      ΔGstacking(GU/CG) = - 2.5 kcal/mol

Stacking between the planar rings of nucleotide bases occurs also in the mismatches and single unpaired 
nucleotides adjacent to stems. These values also depend on nearest neighbors and are tabulated taking this 
into account. RNA folding free energies may depend on other contributions such as those arising from 
pseudoknot configurations, specific sequence motifs and coaxial stacking of helices. 

For a given secondary structure, it is easy to compute its free energy by simply adding all values for 
individual structural elements. However, the number of all possible structures for a given sequence is very 
large, and in order to find the one with the lowest free energy the dynamic programming is used. The 
algorithm used for energy minimization by dynamic programming is somewhat similar to the algorithm 
used for alignment problem. The program mfold (http://mfold.rna.albany.edu/) is the most frequently used. 
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Using dynamic programming algorithm, it is also possible to compute the equilibrium partition function Q: 

                              Q = ∑ exp [ - ΔG(S) / kT ] 
                                      s 
as the sum over all possible structures S. 
Knowing the partition function, one can compute the probability of a given structure S: 

                             P(S) =   exp [ - ΔG(S) / kT ] 

                                                      Q 

Furthermore, it is possible to calculate the probability of a given base pair.  

Apart from the global minimum conformation, analysis of probable alternative structures is frequently 
necessary. For instance, mfold can calculate suboptimal structures, within some ΔG increment of the energy 
minimum. A convenient way to overview the most likely suboptimal structures is to use  energy dot plots  that 
contain superpositions of possible foldings (e.g. base pairs from all structures with free energies less than 
some value). Dot plot is a two-dimensional plot where the sequence positions are on the two coordinates so 
as any base-pair can be represented by a dot and a helix by a diagonal region. 

1.2. Comparative RNA analysis 

Prediction of structure using comparative analysis is based on the assumption that functionally related 
sequences should have similar structures. Comparisons of RNA secondary structures usually exploit a 
principle of nucleotide covariations (coordinated variations), in order to derive a consensus secondary 
structure for related RNA molecules. 

  n n             n n             n n
 n   n           n   n           n   n 
  n-n             n-n             n-n     AnnGnnnnnnCnnU    RNA 1
  G-C             U-A             A-U     GnnUnnnnnnAnnC    RNA 2
  n-n             n-n             n-n     CnnAnnnnnnUnnG    RNA 3
  n-n             n-n             n-n     (((((....)))))    "bracket view" of the consensus
  A-U             G-C             C-G

   RNA 1                         RNA 2                          RNA 3

Many models of RNA secondary structures such as rRNAs, RNase P etc. were deduced mostly from 
comparative analysis. Base covariations are not necessary determined by Watson-Crick pairing, but can be 
a consequence of non-canonical base pairs  (e.g.G•A, C•C etc.) that may be found in both helical duplexes 
and long-range interactions. 

A significance of covariations as evidence for base-pairing can be estimated using mutual information (MI) 
calculations, based on Shannon's entropies of paired positions in alignments. For two columns x and y of 
multiple sequence alignment the MI value M(x,y) is computed as follows: 

Here f(bx) and f(by) are the nucleotide frequencies at positions x and y, and f(bxby) are the nucleotide 
combination frequencies. The formula can be rewritten as M(x,y) = H(x) + H(y) - H(x,y), where Shannon's 
entropy H is defined as 

   
The M(x,y) values are in the interval [0,1] and measure a correlation between variations at positions x and y, 
with value 1 corresponding to ideal covariation and 0 to absence of any correlation. Several other measures, 
derived from M(x,y), can be used for correlation statistics as well. For instance, normalized MI values 
 M(x,y)/H(x) and M(x,y)/H(y) may compensate for biases in datasets of aligned sequences. On the other 
hand, MI values alone are frequently not sufficient to conclude about pairwise interactions because high 
correlation values could be also determined by speciation. Some algorithms are designed to distinguish 
covariations determined by physical contacts, for instance, by identification of independent covariation 
events. Similar approaches are also used in protein structure prediction (see section 2.5). 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1 Formulas

Hereby the formulas.

M(x, y) =

X

bx,by2(A,G,C,U)

f(bxby) · log4
f(bxby)

f(bx)f(by)
. (1)

Rewritten:

M(x, y) = H(x) +H(y)�H(x, y), (2)

H = �
X

f(b) · log4f(b) (3)

Then the ratios:

R1(x, y) =
M(x, y)

H(x)
, (4)

R2(x, y) =
M(x, y)

H(y)
. (5)

[Gutell et al.,1992]

Tanimoto =
AB

A+B �AB
(6)
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1.3. Detecting conserved structures in related RNA sequences 

A number of algorithms is designed to predict most likely conserved structures in datasets of related RNA 
molecules. For instance, the program RNAalifold of ViennaRNA Web Services (http://rna.tbi.univie.ac.at) 
predicts the consensus secondary structure for a set of aligned sequences using modified dynamic 
programming algorithm that adds a covariance term to the standard energy model. The program calculates 
the probabilities of separate base pairs from the ensemble of suboptimal structures, taking base pair 
conservation into account. The conservation of base pairs is estimated by a measure that includes a term 
depending on (co)variation of presumably paired nucleotides in alignment and a term derived from stacking 
energies with neighboring base pairs.  

If RNA sequences are not reliably aligned, the algorithms computing both the alignment and consensus 
structure are used. Usually they iterate back and forward from the steps improving the structure-based 
alignment and retrieving the consensus structures from the alignment. Of course, due to complexity of the 
problem, such algorithms are less accurate than those based on reliable alignments.  

1.4. RNA motif search 

Several programs have been developed for genome-wide search of known structural motifs (e.g. tRNAs, 
snoRNAs, iron-responsive elements etc.) using descriptors for consensus structures. Different descriptors 
with various sequence and structure requirements (scoring functions or threading potentials) may be 
combined. For instance, below a descriptor in a so-called bracket notation for the consensus structure 
consisting of a conserved hairpin with a bulge: 

                      (((((.(((((......))))))))))
                      NNNNNCNNNNNCAGWGHNNNNNNNNNN

where N is any nucleotide; W is  A or U; H is C, A or U; base-pairs are indicated by parentheses. Such kind of 
descriptor can be threaded along the sequences in the database to search for matching sequences. 

More efficient and flexible descriptions of RNA structural motifs are based on covariance models (CM) 
derived from alignments of related RNA molecules. Such covariance models, that serve as mathematical 
descriptions of RNA structures, can be used as queries for the search in a given sequence, genome or 
database. The idea is somewhat comparable to the use of profiles (PSSMs) in the protein motif search. For 
instance, such an approach is implemented in the database of RNA families (Rfam, http://
rfam.sanger.ac.uk/), where each family is stored in the form of an alignment (“SEED” alignment) that 
specifies a covariance model used for the search for new family members. 

For instance: 
M14879/224-175             AAACAGAGAAGUCAACCAGAGAAACACACGUUGUG..GUAUAUUACCUGGUA
M17439/226-177             AAACAGAGAAGUCAACCAGAGAAACACACGUUGUG..GUAUAUUACCUGGUA
M21212/157-106             CAACAGCGAAGCGGAACGGCGAAACACACCUUGUGUGGUAUAUUACCCGUUG
#=GC SS_cons               ..............<<<<<.......<<<...>>>...........>>>>>.

New sequences (database hits) are aligned to the CM, leading to an extended FULL alignment. The process 
can be iterated, if some sequences from the FULL are taken to the SEED in order to refine it (this is done in 
curated way). 
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1.5 3D RNA structure prediction 

In recent years, the promising approaches for prediction of RNA three-dimensional (3D) structure using 
molecular dynamics (MD) have been developed. The MD simulations are very demanding computationally, 
even when they use simplified structural models e.g. so-called “bead-on-a-string” coarse-grained polymer 
models like the one shown below (Ding et al., 2008). In this model, the structure of the polynucleotide chain 
is reduced to three beads: sugar (S), phosphate (P) and base (B). The RNA folding is simulated using the 3D 
constraints and the energy functions describing interactions between these units. 
 

(Ding et al., 2008) 

Depending on the approximation level, a "bead" or "grain" in a coarse-grained model can be any unit for 
which interactions with other unit can be defined: an atom, a group of atoms, a nucleoside, or even a helix or 
an independently folded domain. A number of 3D RNA models of structural RNAs were built sequentially, 
with the first step being secondary structure prediction followed by rearrangement of secondary structure 
units according to most likely interactions between them. Such interactions can be derived from nucleotide 
covariations in secondary structure-based alignments and serve as structural constraints for 3D modeling. 

Obviously, all-atom models of RNA folding are more complex and computationally demanding. Below the 
all-atom structure of the GUG sequence is compared to coarse-grained representation of polyphosphate 
backbone with virtual bonds connecting phosphate and sugar C4' carbon atoms. 

  

(Dawson et al., 2016) 

All-atom simulations of RNA folding may use different potential energy functions, so-called force fields, 
derived from various approximations of quantum mechanics. Simulation of RNA folding can be done using 
Molecular Dynamics that yields possible trajectories that lead to the folded structure(s). In general, all-atom 
Molecular Dynamics simulations of RNA folding are computationally demanding. 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experimental observations (Cao and Chen 2006). However,
due to the lattice constraints and the dynamic issues asso-
ciated with predefined Monte Carlo moves (Baumgartner
1987), this approach is inadequate to study the folding
dynamics of RNAs. Several other computational tools were
developed for RNA 3D structure prediction (for review, see
Shapiro et al. 2007). These methods either use comparative
modeling of RNA sequences with known structures or
utilize known secondary and tertiary structural information
from experiments in interactive modeling (Major et al.
1991, 1993; Shapiro et al. 2007). Therefore, novel auto-
mated computational tools are required to accurately pre-
dict the tertiary structure and dynamics of RNA molecules.
Recently developed knowledge-based approaches using as-
sembly of trinucleotide torsion-angle libraries (Das and
Baker 2007) are successful in predicting RNA structures for
small globular RNA fragments (z30 nucleotides [nt]).
However, RNA molecules often do not adopt globular
topologies, such as the L-shaped tRNA. Enhanced pre-
diction accuracy for longer RNA molecules is attainable by
using physically principled energy functions and using an
accurate sampling of RNA conformations.

Here, we introduce a discrete molecular dynamics (DMD)
(Ding and Dokholyan 2005) approach toward ab initio 3D
RNA structure predictions and characterization of RNA
folding dynamics using simplified structural models. In
contrast to the traditional molecular dynamics simulations,
which are computation-intensive and hence expensive in
probing RNA folding dynamics over long time scales, the
DMD algorithm provides rapid conformational sampling
(Ding and Dokholyan 2005). It is demonstrated in numer-
ous studies that the DMD method is suitable for study-
ing various properties of protein folding (Chen et al.
2008) and protein aggregation (Ding and Dokholyan
2005), and for probing different biomolecular mechanisms
(Ding and Dokholyan 2005; Sharma et al. 2006, 2007). Here,
we extend this methodology to the RNA folding problem.
We simplify the RNA structural model by using a ‘‘bead-on-
a-string’’ model polymer with three coarse-grained beads—
phosphate, sugar, and base—representing each nucleotide
(see Materials and Methods; Fig. 1). We include the base-
pairing, base-stacking, and hydrophobic interactions, the
parameters of which are obtained from experiments. The
coarse-grained nature of the model, as well as the efficiency
of the conformational sampling algorithm, enables us to
rapidly explore the possible conformational space of RNA
molecules.

RESULTS

Large-scale benchmark test of DMD-based ab initio
RNA structure prediction on 153 RNA sequences

We test the predictive power of the DMD-based RNA
folding approach by selecting a set of intermediate-length

RNA sequences, whose experimentally derived structures
are available at the Nucleic Acid Database (NDB, http://
ndbserver.rutgers.edu), and compare our predictions with
experimentally derived structures and folding dynamics.
We restrict our study to RNA molecules having a length
greater than 10 nucleotides (nt) and shorter than 100 nt.
Short RNA molecules lack well-formed tertiary structures
and were excluded from this study. All simulated RNA
molecules (153 in total) are listed in Supplemental Table 1.
Notably, this set of 153 molecules spans a range of tertiary
structural motifs: cloverleaf-like structures, L-shaped
tRNAs, hairpins, and pseudoknots.

For each RNA molecule, we first generate a linear con-
formation using the nucleotide sequence. Starting from this
extended conformation, we perform replica exchange simu-
lations at different temperatures (see Materials and Meth-
ods). The three-dimensional conformation corresponding
to the lowest free energy is predicted as the putative
structure of the RNA molecule, assuming that the corre-
sponding native structure is unknown. The extent of native
structure formation in simulations is measured by com-
puting the Q-values (akin to protein folding experiments
[Sali et al. 1994], see Materials and Methods), defined as
the fraction of native base pairs present in a given RNA
conformation. We compute Q-values for the lowest free

FIGURE 1. Coarse-grained structural model of RNA employed in
DMD simulations. (A) Three consecutive nucleotides, indexed i ! 1,
i, i + 1, are shown. Beads in the RNA: sugar (S), phosphate (P), and
base (B). (Thick lines) Covalent interactions, (dashed lines) angular
constraints, (dashed–dotted lines) dihedral constraints. Additional
steric constraints are used to model base stacking. (B) Hydrogen
bonding in RNA base pairing. (Dashed lines) The base-pairing
contacts between bases Bi ! 1:Bj + 1 and Bi:Bj. A reaction algorithm
is used (see Materials and Methods) for modeling the hydrogen
bonding interaction between specific nucleotide base pairs.

Ab initio RNA folding
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to these two virtual bonds [121]. This approach has been imple-
mented in some approaches that will be discussed later.

Reduction of eight bonds to two pseudobonds that connect two
beads is not the only way to cover the RNA backbone. Olson had
also shown the possibility of using a single virtual bond on the
backbone that connects the phosphate atoms [122]; though this
approach required different virtual bonds for 30-endo and 20-endo
sugar pucker (the two most common conformations). It is also pos-
sible to increase the number of beads. Another minimalist way is to
use very few beads, but employ very complex potentials [21] to
describe the composite interactions in a rigid body nucleotide for
both the backbone and the base, as implemented in oxRNA [50]
and in models from Liwo, Scheraga and coworkers; e.g., Ref. [53].

It is also possible to consider beads or blocks that represent
much larger structures than individual ribonucleotide residues.
Examples of this approach occur early on with programs like
YAMMP [123,124] that could reduce the whole dsRNA helix to a
single bead, and more recent methods like RAGTOP [125] and ERN-
WIN [126] that reduce the RNA structure to helices, loops and junc-
tions and try to arrange them based on the statistics of loops and
junctions. The model of Jost and Everaers [127] uses a lattice model
where the stems are treated as a unit and the conformation space
of the loop regions is explored. This allows for efficient sampling of
all the possible conformations; however, the lattice model also
limits any precise transformation between the CG representation
and the actual 3D structure.

4.1.2. Representation of the base
If the decision is to divide the structure into monomers and

work with beads within these monomers, then the next issue is
how to show the base that is attached to the backbone. In general,
although nucleic acids have far more regularity in the side chains

compared to proteins, the backbone configurations alone are not
sufficient to describe important physical properties of the bases.
However, the P–C40 model is uniquely suited to this purpose
[119]. The details of these strategies will be discussed in the
philosophy sections where many of the strengths and weakness
of the approaches can be compared.

4.2. Philosophy behind TBP-like CG approaches

Here, we discuss the methodology, some examples, and some
challenges to the TBP-like approach.

4.2.1. The force fields of TBP-like CG methods
Since TBP-like CG methods derive their concepts mostly from

the all-atom MD approaches, the concept of a force field and its
application to beads instead of individual atoms has considerable
appeal. For one thing, biomolecules typically contain a plethora
of hydrogens. Why not just ignore them if we can make life easier?
The difference is that the beads now represent the collective
motion and the interaction of a cluster of atoms is built from the
chemical intuition of the person developing the CG representation.
There is no obvious way to select or construct the beads and no
recipe to derive or estimate the interaction potential as for AAMM
[17,18].

For TBP-like CGmethods, one seeks to re-parameterize the force
field parameters in MD simulations to approximate the AA-MD
simulations. In such a model, the binding interactions are approx-
imated from all atom simulation and possibly other auxiliary
experimental information, when available [17,18]. These resulting
force fields typically have the same form as Eq. (1); however, the
interaction potentials represent an integration of the forces over
the groups of atoms being approximated by individual beads. For
example, when this involves treating a methyl group as a bead, it
is relatively easy to understand that the H atoms are ‘‘smeared
out”. However, when a whole residue is treated as a bead, it is
not so obvious what to neglect in the pseudo-atoms that one
creates.

The core advantage of TBP-CG approaches over TBP-AA is the
large reduction of conformational space available for the molecule.
There are several consequences of such an operation. First, the
number of interactions is reduced, which may speed up the com-
putations. Second, the potential energy function is usually
smoothed and, therefore, with the absence of many local minima,
the conformation of the molecule can evolve faster. Third, the high
frequency vibrations (especially these of protons) are removed and
a longer time-step can be used in MD simulation; i.e., a longer real
time evolution of the system can be achieved with the same com-
putational effort. However, switching from TBP-AA to TBP-CG usu-
ally leads to a more complicated analytical potential. For example,
in NARES-2P [53], the spherically symmetric Lennard-Jones poten-
tial is replaced by the Gay-Berne ellipsoid of revolution potential
and charges are replaced with electric dipoles, which are also used
in the dipolar-bead model [52]. Also replacing many covalent
bonds with one virtual bond usually leads to larger deviations from
harmonicity of the bonding terms of potential energy function.

Nevertheless, in principle, low energy vibrational modes of RNA
could be used to model the vibrational modes of the beads and like
AA approaches and these parameters could be obtained from IR
spectroscopy. However, such information is usually quite difficult
to extract from spectroscopic data and rarely all that helpful [18].
Using TBP-CG methods, one is able to simulate the time-
dependent dynamics of RNA (only with less resolution) and the
simplifications (such as the number of beads and bonds) can be
adjusted to the scale of the interaction of interest. Thermodynamic
potentials result from the collective sampling of conformations

Fig. 3. Definition of angles and bonds along the backbone of RNA. Top: All atom
representation (minus the H atoms) showing a short ribonucleotide sequence GUG
with the names of the relevant atoms and torsion angles. Bottom: The same chain
showing only the two bead per residue coarse-grained representation (composed of
P–C40 and C40–P virtual bonds) of the same sequence and the pseudo-torsion angles
g and h.
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2. Protein structure prediction 

The development of algorithms for protein structure prediction from sequence has relatively long history. 
Various secondary (2D) structure prediction algorithms consider the residues in a polypeptide chain to be 
in three (helix, strand, coil), four (helix, strand, coil, turn) or even eight states and try to predict the location of 
these states. The majority of methods for protein structure prediction are based on empirical (statistical) 
approaches. They try to extrapolate the statistics, revealed in the known structures, to other proteins. 

The most simple observation: 
   - Ala, Gln, Leu and Met are commonly found in α helices; 
   - Pro, Gly, Tyr and Ser usually are not; 
   - Pro – a “helix-breaker” (bulky ring prevents the formation of n/n+4 H-bonds)  

The algorithm of Chou and Fasman (1978) was a widely used approach in 1970’s-1980’s. It was based on 
the calculation of a moving average of values that indicated the probability (or propensity) of a residue type 
to adopt one of three structural states, α-helix, β-sheet and turn conformation. The probabilities were simply 
the frequencies of a given residue type to be observed in a particular secondary structure, normalized by the 
frequency expected by chance. Some additional heuristic rules were added that attempted to determine the 
exact ends of secondary structure elements. 

In the further developments of these ideas, the algorithm of Garnier et al. (1978) introduced an estimate of 
the effect that residues within the region eight residues N-terminal to eight residues C-terminal of a given 
position have on the structure of that position. For each of 20 amino acids, a profile (17 residues long) was 
defined that quantifies the contribution this residue makes towards the probabilities of other residues to be in 
one of four states, α-helix, β-sheet, turn and coil.  Thus, for every residue the values from +8 positions are 
added (four values from each), so as four probability profiles are produced, and at any position the highest 
profile value predicts the structure. 

Further developments of prediction methods  (until the early 1990s) were based on implementing various 
rules for pattern recognition, in particular, the hydrophobicity patterns, periodicity of helices, different ways 
for calculating propensities in windows of variable sizes (3-51 residues). However, it seemed that prediction 
accuracy of such approaches stalled at levels slightly above 60% (percentage of residues predicted correctly 
in one the three states: helix, strand, and other). Next generation of methods incorporated multiple 
alignments into predictions. They incorporated a concept that homologous proteins should have similar 
structures. For example, all naturally evolved proteins with more than 35% pairwise identical residues over 
more than 100 aligned residues have similar structures (Rost, 1999). Predictions were further improved by 
application of neural networks, trained on known structures. 

Multiple algorithms for protein 3D structure prediction are developed. The modern approaches for protein 
tertiary structure prediction can be divided into three general strategies: 
    
(1) Comparative (homology) modeling. If there is a clear sequence homology between the target and one 
or more known structures, an algorithm tries to obtain the most accurate structural model for the target, 
consistent with the known set. 
(2) Fold recognition. Algorithms that try to recognize a known fold in a domain within the target protein. 

(3) Ab initio methods. Modeling of structures using energy calculations, considering both secondary and 
tertiary structures. 

There are overlaps between the methodologies. 
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2.1. Homology modeling 

Homology modeling approach assumes that a sequence similarity between a target protein and at least one 
related protein with known structure (the template) implies the 3D-similarity as well, and therefore allows one 
to extrapolate template structures to the target sequence. 

Main steps in comparative protein structure modeling 
(Fiser et al., 2001) 

1.  Identify related structures. 
2.  Select templates. 
3.  Align target with templates. 
4.  Build a model for the target (using information from template structures). 
5.  Evaluate the model. 
6.  If model is not satisfactory, repeat the steps 2-5 or 3-5. 

Identification of structures related to the target sequence is usually done by searching the database of known 
protein structures (PDB) using the target sequence as the query. For instance, a specific algorithm for 
template search in PDB is PDB-BLAST that not only builds a multiple alignment using target as a query, but 
also constructs similar multiple alignments using all found potential templates as queries (here each 
alignment is called sequence profile, and it can be converted into a matrix). The templates are found by 
comparing the target sequence profile with each of the template sequence profiles (e.g. by dynamic 
programming method). This allows to capture essential sequence motifs for a fold to be predicted. Selection 
of optimal templates is guided by several criteria, such as overall sequence similarity to the target and the 
quality of the experimentally determined structure. It is not necessary to select only one template: alignments 
of the target to different templates may be used for model building. These alignments may be refined after 
template selection. Various algorithms are used for model building, e.g. based on "rigid bodies" or spatial 
restraint satisfaction (based on core conserved structures obtained from aligned template structures). There 
are systems for (web-based) automated homology modeling that are able to predict the structures for one or 
many sequences without human intervention. For instance, SWISS-MODEL (http://swissmodel.expasy.org), 
one of the first servers for protein structure predictions, initiated in 1993 and accessible via the ExPASy web 
server. 

2.2 Fold recognition 

In case of relatively low sequence similarity of a target protein to the known structures, an attempt may be 
done to recognize a known fold within the target by a search for an optimal sequence-to-structure 
compatibility. Mostly this is done by threading algorithms:  a target sequence is threaded through templates 
from the structure database and alternative sequence-structure alignments are scored according to some 
measure of compatibility between the target sequence with the template structures. The scoring is done 
using threading potentials, for instance so-called knowledge-based or mean-force potentials. These 
potentials do not consider physical nature of interactions in proteins and are derived from the statistics of the 
databases of known structures. 

Knowledge-based (database-derived) mean force potentials incorporate all forces (electrostatic, van der 
Waals etc) acting between atoms as well as the influence of the environment (solvent). For the interaction 
between two residues (a,b) with a sequence separation k and distance r between specified types of atoms 
(e.g. Cβ→Cβ, Cβ→N etc.) a general definition of the potential is (“inverse Boltzmann equation”) 

                   Eabk (r)  = - RT ln [ fabk (r) ], 
where the occurrence frequency fabk (r) is obtained from a database of known structures. 

A definition of the reference state is very important. A convenient choice for the reference state is  
                    Ek (r)  = - RT ln [ fk (r) ] ,  
where  fk (r) is an average value over all residue types. 

Thus the potential for the specific interaction of residues is 

                ΔEabk (r) =  Eabk (r) - Ek (r) = - RT ln [ fabk (r) / fk (r)  ] 

A solvation potential for an amino acid residue a is defined as: 

                     ΔEasolv (r) = - RT ln ( fa(r) / f(r)), 
where 
         r        is the degree of residue burial, 
        fa(r)   is the frequency of occurrence of residue a with burial r, 
         f(r)     is the frequency of occurrence of an arbitrary residue with burial r. 
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Obviously, threading algorithms are more complex than sequence-sequence alignments and require some 
approximations.  For instance, in ungapped threading, the query sequence is mounted over an equally long 
part of template fold. The total alignment score is easily computed as sum of pairwise potentials for all query 
residues. Ungapped threading is mostly used not for real predictions, but rather for testing and adjusting the 
energy functions.  

Treatment of gaps in sequence-structure alignments presents a problem because a score that should be 
computed for a given residue in a query sequence, assumed to be aligned to a residue in a template 
structure, would depend not only on the type of these two residues (as in sequence-sequence alignments), 
but on the gaps that may be introduced at other alignment positions. Here usually a so-called  frozen 
approximation is used (e.g. Sippl, 1993). In frozen approximation, an appropriate comparison matrix of the 
size N×M (N residues in the template and M in the query) is calculated by replacing the amino acids in the 
template structure with amino acids from the target sequence one at a time. The rest of the structure is kept 
intact, and it is assumed that the field created by the native protein will also favour the correct replacement. 
Although it is a very crude approximation, it is rather efficient, despite the fact that it does not solve the full 
threading problem. 

The subsequent steps are equivalent to sequence-sequence alignment: the scores in the comparison matrix 
may be used for calculating dynamic programming matrix leading to the final alignment.  

Often in fold recognition methods several scores are produced, related to different aspects of the sequence-
structure alignment, some of the most important: initial sequence profile alignment score, number of aligned 
residues, length of target sequence, length of template sequence, pairwise energy sum, solvation energy 
sum. Each of these scores separately may be not sufficient, but they can be used to calculate some 
determinant score. 
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2.3. Ab initio protein structure prediction 

Ab initio, or de novo approaches predict a protein structure and folding mechanism from knowledge only of 
its amino acid sequence. Often the term ab initio is interpreted as applied to an algorithm based entirely on 
physico-chemical interactions. On the other hand, the most successful ab initio methods utilize information 
from the sequence and structural databases in some form. Basic idea of an ab initio algorithm: search for the 
native state which is presumably in the minimum energy conformation. Usually an ab initio algorithm consists 
of multiple steps with different levels of approximated modeling of protein structure. 

For a consideration of side chains in ab initio predictions, a so-called united residue approximation (UNRES) 
is frequently used: 
- Side chains are represented by spheres (“side-chain centroids”, SC). Each centroid represents all the 
atoms belonging to a real side chain. A van der Waals radius is introduced for every residue type. 
- A polypeptide chain is represented by a sequence of Cα atoms with attached SCs and peptide group 
centers (p) centered between two consecutive  Cα atoms. 
- The distance between successive Cα atoms is assigned a value of 3.8 Å (a virtual-bond length, 
characteristic of a planar trans peptide group CO-NH). 
-  It is assumed that   Cα - Cα - Cα  virtual bond angles have a fixed value of 90° (close to what is observed in 
crystal structures). 
- The united side chains have fixed geometry, with parameters being taken from crystal data. 

�
                                    (Liwo et al., 1993) 

The only variables in this model of protein conformation are virtual-bond torsional angles γ.  

The energy function for the simplified chain can be represented as the sum of the hydrophobic, hydrophilic 
and electrostatic interactions between side chains and peptide groups (potential functions dependent on the 
nature of interactions, distances and dimensions of side chains). The parameters in the expressions for 
contact energies are estimated empirically from crystal structures and all-atom calculations. 

An example of the basic algorithm for structure prediction using UNRES: 

 1. Low-energy conformations in UNRES approximation are searched using Monte Carlo energy 
minimization. A cluster analysis is then applied to divide the set of low-energy conformations whose lowest-
energy representatives are hereafter referred to as structures. Structures having energies within a chosen 
cut-off value above the lowest energy structure are saved for further stages of the calculation. 

 2. These virtual-bond united-residue structures are converted to an all-atom backbone (preserving 
distances between α-carbons). 

 3. Generation of the backbone is completed by carrying out simulations in a “hybrid” representation 
of the polypeptide chain, i.e. with an all-atom backbone and united side chains (still subject to the constraints 
following the UNRES simulations, so that some or even all the distances of the virtual-bond chain are 
substantially preserved). The simulations are performed by a Monte Carlo algorithm.  

 4. Full (all-atom) side chains are introduced with accompanying minimization of steric overlaps, 
allowing both the backbone and side chains to move. Then Monte Carlo simulations explore conformational 
space in the neighborhood of each of the low-energy structures. 

Monte Carlo algorithms start from some (random) conformation and proceed with (quasi)randomly 
introduced changes, such as rotations around a randomly selected bond. If the change improves energy 
value, it is accepted. If not, it may be accepted with a probability dependent on energy increase. The 
procedure is repeated with a number of iterations, leading to lower energy conformations. A function defining 
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higher energy acceptance probability is usually constructed with a parameter that leads to lower probabilities 
in the course of simulation ("cooling down" the simulation) in order to achieve convergence and stop the 
algorithm. 

2.4. Combinations of approaches 

Many of the modern packages for protein structure predictions attempt to combine various approaches, 
algorithms and features. One of the most successful examples is Rosetta - ab initio prediction using 
database statistics. 

(D. Baker & coworkers) 
Rosetta is based on a picture of protein folding in which local sequence fragments (3-9 residues) rapidly 
alternate between different possible local structures. The distribution of conformations sampled by an 
isolated chain segment is approximated by the distribution adopted by that sequence segment and related 
sequence segments in the protein structure database. Thus the algorithm combines both ab initio and fold 
recognition approaches. 

In such a model, folding can be considered as low-energy combinations of conformations of the local 
segments and their relative orientations. For instance, local conformations can be sampled from the 
database of structures and scored using Bayesian logic: 

P(structure | sequence)  =  P(structure)  x  P(sequence | structure)  /  P(sequence). 

For comparisons of different structures for a given sequence, P(sequence) is constant. P(structure) may be 
approximated by some general expression favouring more compact structures. P(sequence | structure) is 
derived from the known structures in the database by assumptions somewhat similar to those used in fold 
recognition, for instance by estimating probabilities for pairs of amino acids to be at particular distance and 
computing the probability of sequence as the product over all pairs).  

Non-local interactions are optimized by a Monte Carlo search through the set of conformations that can be 
built from the ensemble of local structure fragments. 

In the standard Rosetta protocol, initially an approximated protein representation is used: backbone atoms 
are explicitly included, but side chains are represented by centroids (so-called low-resolution refinement of 
protein structure). The low-resolution step can be followed by high-resolution refinement, with all-atom 
protein representation. Similar stepwise refinement protocols can be used to improve predictions yielded by 
other methods, for instance, in loops (variable regions) of homology-modeling structures. 

Obviously, none of prediction approaches is ideal. Therefore it is reasonable to try to combine the best 
features of many different procedures or to derive a consensus, meta-prediction. For instance, the 3D-Jury 
system generated meta-predictions using models produced by a set of servers. The algorithm scored 
various models according to their similarities to each other. 

2.5. Inference of amino acid residue contacts from covariations 

The information on 3D contacts between amino acid residues in protein native structures can be also 
obtained from the data on coordinated substitutions in the families of structurally similar proteins. The 
approach resembles the covariation analysis of RNA structural models (section 1.2). Alignments of related 
protein amino acid sequences are compiled in several databases, e.g. protein families database Pfam. In 
such families, the pairs of amino acid residues located close to each other in similar 3D structures may co-
evolve. Thus, pairwise correlations of amino acid variations could be used to infer the contacts that 
determine 3D structure. Similar to studies on RNA covariations, mutual information (MI) turned out to be a 
poor measure of 3D contact probability, because correlated monomer pairs do not necessarily directly 
interact. Nevertheless, several algorithms using various measures for contact prediction have been used to 
derive 3D structural constraints in protein families. For instance, approaches to identify maximally informative 
couplings in global maximum entropy or Bayesian network models over the whole lengths of alignments 
turned out to be better predictors of 3D contacts as compared to local statistics like MI values. Such 3D 
contacts can be used as structural constraints in protein structure predictions.  
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2.6. Predictions of coiled coil domains and transmembrane segments 

Special algorithms have been developed for domains characterized by special types of interactions. The 
coiled coil domains are very stable structures formed by regular arrangement of hydrophobic and polar 
residues in adjacent α-helices. In the left-handed supercoil, each of the helices contain repeats of seven 
residues, usually denoted (a-b-c-d-e-f-g)n and  (a’-b’-c’-d’-e’-f’-g’)n.  In normal  α-helix, each residue would 
rotate about 100° around helix axis, thus 7 residues would rotate 700° (20° less than two full turns). Two 
slightly left-handed supercoiled (20° every 7 residues) helices can face each other at the axis of superhelical 
rotation with the same positions of the repeats. In left-handed coiled coils, the residues a and d are usually 
nonpolar (e.g. Leu, Val, Ile), yielding hydrophobic interactions with a’ and d’, while e and g are charged (e.g. 
Glu, Lys), maintaining electrostatic interactions. Positions b, c and f are typically hydrophilic. In the right-
handed supercoil, there are repeats of 11 residues (11 × 100° = 1100°, that is, 20° more than three full turns). 
Here in the repeat (a-b-c-d-e-f-g-h-i-j-k)n positions a, d and h are hydrophobic.  Two types of supercoils are 
shown below to illustrate how supercoiling brings repeat units (heptads or undecatad) in identical positions 
relative to the superhelix axis, as seen in the helical wheel projections. 
 

(Harbury et al., 1998) 

The most simple approach to predict coiled coils was based on the frequencies of amino acids found in each 
of the seven positions in the heptad repeats contained in the database. These frequencies are used to 
calculate the scores for a given sequence that determine the probability to form a left-handed coiled coil. 
Such an approach can be further improved to include the frequencies of each pair of residues in each pair of 
heptad positions. Furthermore, an extension of this algorithm allows to identify three-stranded coiled coils as 
well. 

Transmembrane proteins contain α-helical segments buried in the membranes. Due to the specific 
hydrophobic environment in a membrane, protein folding occurs differently as compared to globular proteins 
folded in the polar water environment. In the first approximation, the sequences of transmembrane proteins 
can be represented as transmembrane helical segments of high hydrophobicity alternating with the 
hydrophilic loops inside or outside the membrane. This leads to special folding algorithms, mostly based on 
known statistics of amino acid frequencies in transmembrane α-helices. Efficient modern algorithms use 
probabilistic approaches such as Markov models and Bayesian approach. 
 

(Rost et al., 1996) 
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with a right-handed superhelical structure.
Although a nuclear magnetic resonance
(NMR) structure of a right-handed dimer of
helices in detergent micelles has been report-
ed (9), no structures of trimeric or tetrameric
right-handed coiled coils exist. The x-ray
crystal structure of the tetrameric bundle de-
signed here matches the predicted structure in
atomic detail, adopting an unprecedented, but
deliberately engineered, right-handed super-
helical fold.

Design principles. The first step of our
design is based on an analysis of the hydro-
phobic-polar residue pattern in left-handed
coiled coils. The superhelical twist of left-
handed coiled coils arises from a small dif-
ference between the integral frequency of the
heptad repeat and the characteristic frequency
of ! helices (10). Each amino acid in a
straight helix rotates about 100° radially

around the helix axis (360° for 3.6 residues).
Seven amino acids rotate 700°, lagging two
full turns (720°) by 20°. A sevenfold repeat,
therefore, forms a left-handed stripe in a
straight ! helix (Fig. 1). In a left-handed
supercoiled conformation that evolves 20°
every seven residues, this stripe can always
face toward the axis of superhelical rotation
(Fig. 1).

Application of this principle to an 11-fold
(undecatad) amino acid repeat suggests that a
right-handed supercoil should form. Eleven
amino acids rotate about 1100°, which leads
three full turns (1080°) by 20°. Thus, an
undecatad repeat produces a right-handed
stripe in a straight ! helix, which should give
rise to a right-handed supercoil (Fig. 1). Ex-
amination of an 11-residue helical-wheel pro-
jection indicates that amino acids in the first,
fourth, and eighth positions (positions a, d,

and h) fall on the same surface of the helix.
These considerations suggest that a 3-4-4 hy-
drophobic repeat might specify a right-hand-
ed coiled coil.

The second step of our design consisted of
determining which amino acids can pack the
core of a right-handed bundle with a 3-4-4
hydrophobic repeat, and by their shapes di-
rect dimer, trimer, or tetramer formation. De-
tailed dimer, trimer, and tetramer right-hand-
ed coiled coils were modeled for all possible
core sequences made up of the small aliphatic
amino acids alanine, valine, norvaline,
leucine, isoleucine, and alloisoleucine. Allo-
isoleucine, the stereoisomer of isoleucine
with inverted chirality at the C" carbon, was
included in the design calculation because
preliminary models suggested the need for a
residue that would orient side-chain volume
into a trans #1 dihedral angle in its most

Fig. 1. (Left) Sevenfold hydrophobic repeats give rise to
left-handed coiled coils, and 11-fold repeats to right-hand-
ed coiled coils. (A) A heptad repeat in a regular ! helix
produces a left-handed stripe and a left-handed supercoil.
This arrangement is schematically illustrated alongside
the standard sevenfold helical wheel projection for
coiled coils. (B) An undecatad repeat in a regular ! helix
produces a right-handed stripe and a right-handed su-
percoil. The 11-fold helical wheel projection is illustrat-
ed. H, hydrophobic residue; P, polar residue; $ /% ,
charged residue. Fig. 2. (Right) Calculating the ef-
fects of sequence changes on unfolding free energies, illustrated for
an isoleucine-to-valine substitution at position a of a right-handed
coiled-coil dimer. The top panels show axial projections of one
right-handed and one left-handed coiled coil. The top left panel
differs from the top right panel by interchange of the amino acid at
position a of the right-handed coiled coil with the amino acid at
position f of the left-handed coiled coil. The lower panels show the
unfolded polypeptides. Each leg of the thermodynamic cycle is labeled
with a letter. The legs labeled A and B correspond to unfolding of the
wild-type and mutant coiled-coil sequences respectively. The legs
labeled C and D correspond to residue permutation in the folded and
unfolded states, respectively. Because the cycle is closed, the differ-
ence in the two unfolding free energies is equal to the difference in
the two permutation free energies: A % B & C % D. The A and B legs

are a sum of two terms, the unfolding free energy for the right-handed coiled
coil, 'GRH

unfold, and the unfolding free energy for the left-handed coiled coil,
'GLH

unfold. Expanding A and B and rearranging terms gives ['GRH
unfold, (I at a) –

'GRH
unfold, ( V at a)] & C % D $ ['GLH

unfold (I at f ) – 'GLH
unfold, ( V at f )]. For the

computational studies reported here (12, 16), D was assumed to be 0
kcal/mol, C was computed from the bonded, van der Waals and hydrogen
bonding terms of the CHARMM19 potential (26) and a solvent accessible
surface hydration potential (25), and ['GLH

unfold, ( V at f) – 'GLH
unfold, (I at f )]

was taken from experimentally measured free energies of unfolding (15).
Differences in calculated stability are dominated by the CHARMM19 poten-
tial, which accounts for 80% of the variance in the calculated stabilities of
right-handed coiled-coil sequences. The surface hydration potential and
left-handed coiled-coil unfolding free energies each account for ( 10% of
the variance in the calculated stabilities.
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Fig. 1. Topology  for  helical  transmembrane  proteins.  In  one  class  of 
membrane  proteins,  typically  apolar  helical  segments  are  embedded  in 
the lipid bilayer oriented  perpendicular to  the  surface of the  membrane. 
The helices  can  be  regarded as  more or less rigid cylinders.  The  orien- 
tation  of  the  helical  axes,  i.e.,  the  topology of the  transmembrane  pro- 
tein,  can  be  defined by the  orientation  of  the  first  N-terminal  residues 
with  respect to  the cell. The  topology is defined  as out when  the  pro- 
tein  N-term  starts  on  extracytoplasmic  region  (protein A) and  as in i f  
the  N-term  starts  on  the  intracytoplasmic  side  (proteins B and C). 

transmembrane  segments  usually  focus  on helical transmem- 
brane  proteins,  for which more  experimental  data is available. 
Prediction  methods were  designed to  predict  the  locations of 
HTMs (von Heijne, 1981,  1986a, 1986b, 1992; Argos et al., 
1982; Kyte & Doolittle, 1982; Engelman et al., 1986; Cornette 
et al., 1987; von  Heijne & Gavel, 1988; Degli Esposti et al., 1990; 
von  Heijne & Manoil, 1990; Landolt-Marticorena et al., 1992; 
Donnelly et al., 1993; Edelman, 1993; O’Hara et al., 1993; Sipos 
& von Heijne, 1993; Jones et al., 1994; Persson & Argos, 1994; 
Donnelly & Findlay, 1995; Casadio et al., 1996) and  the  orien- 
tation of HTMs with respect to  the cell (dubbed topology, Fig. 1; 
von  Heijne & Gavel, 1988;  von Heijne, 1989,  1992;  Nilsson & 
von Heijne, 1990; Sipos & von Heijne, 1993; Jones et al., 1994; 
Casadio & Fariselli, 1996). If the locations  of the  HTMs  and  the 
topology  are  known with sufficient  accuracy,  3D  structure  can 
be predicted successfully for  the  membrane  spanning  segments 
by an  exhaustive  search of the  entire possible structure  space 
(Taylor et al., 1994). 

Accuracy of prediction methods 

One of the  problems in predicting structure  for helical transmem- 
brane  proteins is the lack of  accurate experimental information. 
Most  prediction  methods designed for  globular  water-soluble 
proteins  are typically based on  more  than 100 proteins  (Rost & 
Sander, 1994, 1995) of known 3D structure as stored in the  Pro- 
tein Data  Bank  (PDB)  (Bernstein et al., 1977). To obtain  suffi- 
ciently  large  data  sets,  prediction  methods  for  membrane 
proteins use data  from  experimental sources other  than crystal- 
lography or spectroscopy (Manoil & Beckwith, 1986; Park et al., 
1992; Hennessey & Broome-Smith, 1993). There  are  numerous 
examples for  proteins  for which “reliable  experimental informa- 
tion”  obtained  from  different  groups is contradictory. To list a 
few controversial cases: ( I )  nicotinic acetylcholine receptor chan- 
nel:  four  a-helices  versus  two  a-helices  and  two  P-strands 
(Hucho et al., 1994); (2) P-type  ATPases: 8 versus  10 a-helices 
(Stokes et al., 1994); (3) a-subunit of the FO channel Escheri- 
chia coli: topology our (Lewis et al., 1990)  versus topology in 
(Bjorbaek et al., 1990); (4) mitochondrial  cytochrome b: 7-9 
a-helices  (Degli  Esposti et al., 1993). One  consequence  of  this 
is that  prediction  methods  are likely t o  become  more  accurate 
as  reliable  experimental  information  about  integral  membrane 
proteins is being added  to  the  databases.  Another  consequence, 

however, is the  problem  to  adequately  estimate  prediction  ac- 
curacy.  Thus,  estimates  for expected accuracy  have  to be taken 
with caution. 

Are further improvements of prediction 
accuracy necessary? 

Advanced  methods  for  the  prediction of HTMs  (Jones et al., 
1994; Persson & Argos, 1994; Rost et al., 1995) reach levels of 
about  90%  accuracy (correctly  predicted HTMs).  Thus, predic- 
tions of HTMs  are significantly more  accurate  than  are two-state 
secondary  structure predictions of,  for  example, helix, nonhelix 
for  globular  proteins  (Rost & Sander, 1993b). Is there  any need 
for  further  improvement of 1D  predictions  for  transmembrane 
proteins?  Indeed,  two  methods  that  start  from  1D  predictions 
of HTMs  to  predict  further  aspects  of  3D  structure  would  pre- 
sumably  benefit  from  better  1D  predictions. (1) Taylor  et  al. 
(1994) achieve to  predict  3D  structure  for  the  membrane  span- 
ning helices using the  knowledge of the  exact  locations  of  the 
helices as  the  starting  point. In general,  current  1D  predictions 
are  not  accurate  enough  to  provide  the  demanded precision  in 
locating  the helices. (2) A  simple and successful technique to pre- 
dict  topology is the positive-inside rule  (von  Heijne & Gavel, 
1988; Hartmann et al., 1989; von  Heijne, 1989, 1992; Boyd & 
Beckwith, 1990; Dalbey, 1990;  Nilsson & von  Heijne, 1990; 
Sipos & von  Heijne, 1993): positively charged residues occur 
more  often in intra-cytoplasmic  than in extra-cytoplasmic re- 
gions.  Applying  this  rule  for  the  prediction  of  topology relies 
crucially on a correct  prediction  of  the  nontransmembrane re- 
gions. We shall  show  that relatively small  improvements in ID 
predictions of HTMs  can result in significantly better  predictions 

An  improvement  and extension  of a technique described pre- 
viously to  predict  locations  of  HTMs  (Rost  et  al., 1995) is pre- 
sented  here.  The  initial  method  (PHDhtm) used information 
derived from  multiple  sequence  alignments  as  input  for a sys- 
tem of neural  networks  (Fig.  2,  step 1). The  neural  network 
preferences were  used  in two ways. (1) A  region of 18 adjacent 
residues  was searched  that  had  the highest propensity in the 
protein to  be in a transmembrane helix (Fig.  2,  step 2). Then 
two  thresholds were applied  (Equation 5 )  to  decide  whether 
the  protein was predicted  to  contain  at least one  HTM. (2) The 
preferences  for  HTM  and  not-HTM were input  to a dynamic 
programming  algorithm  that  produced a model  (locations  and 
number of HTMs)  that was optimally  compatible with the neu- 
ral network  preferences and  the  assumption  that  the protein  con- 
tains  HTMs  of lengths 18-25 residues (Fig.  2,  step 3; Figs. 6,7). 
By working on  the preferences for  the  entire  protein,  the refine- 
ment  procedure  introduced  an  aspect  global in sequence,  i.e., 
the resulting model was not  as  constrained  to signals  local  in 
sequence (17 adjacent  residues used as  input  to  the  neural  net- 
works)  as  the  previous  network  prediction.  Finally,  the  refine- 
ment  model  was used to  predict  topology  (Fig.  1) by applying 
the positive-inside rule  (Fig. 2,  step  4; Fig. 6). The main elements 
of the  method  are  described in mathematical  details elsewhere 
(Rost et al., 1996). Here, we focused on  the new aspects (reduc- 
tion  of  false positives; definition  of reliability indices for  the pre- 
diction)  and  present a thorough  analysis  of  the  performance 
of  the novel method.  Finally,  the  tool was applied to  the  first 
entirely  sequenced genome of Haemophilus infruenzae (Fleisch- 
mann et al., 1995) and  particular aspects  of the results were com- 

of topology. 



3. Biomolecular design 

The so-called inverse folding task is the search for a sequence that will fold into a desired structure. Unlike 
the folding problem with presumably single solution (native state), the inverse problem may have many 
solutions. There are examples of structurally similar biopolymers (proteins or RNAs) with very different 
monomer sequences. 

Computationally, inverse folding (or design) is not an easy problem. Importantly, it is not sufficient to find a 
sequence that may fold into a given topology, it is also necessary to ensure that the sequence would not fold 
into any alternative structure (because of lower free energy). Refinement of designed structure can be based 
on probabilistic algorithms that gradually improve the quality of solution (sequence folded into unique 
structure).  

The first successful protein designs were restricted by relatively simple topologies such as coiled coils. A 
breakthrough was achieved in 2003, when a novel 93-residue fold was designed using a computational 
strategy with multiple iterations back and forwards between sequence design and structure refinement 
(Rosetta) in order to produce a desired topology. Recently a significant progress was achieved in both 
algorithms for protein design and understanding of important elements of protein structure that may by used 
as standard "building blocks". For instance, the units with two secondary structure elements connected by 
loops, such as ββ-, βα- or αβ-units, have preferred orientations depending on loop lengths, what can 
considerably decrease computational complexity of protein design and guide it towards stable solutions. 
An example of fundamental rule in βα-units: 

               
              Loop = 2 => orientation P is more likely. 
              Loop = 3 => orientation A is more likely. 
                                                                           (Koga et al., 2012) 

It has been also noted that the complexity of natural proteins has been partially evolved from combinations of 
ancestral folded peptides. A strategy to compose functionally active proteins from a pool of well-
characterized structured domains can be also applied in computational protein design. 

Inverse folding may be also used for design of RNA secondary structures, with the same main principle: 
searching for a sequence with the lowest free energy conformation consistent with the predefined structure. 
Such a search can be based on minimization of structural difference between the minimum free energy 
conformation of designed sequence and the target structure. Computational approaches for RNA design can 
also exploit the usage of previously known folded blocks as initial structures that can be improved by a 
design algorithm. Apart from the efforts to design stable equilibrium RNA conformations, the protocols for 
RNA switches (riboswitches) between alternative conformations were developed as well. Such inducible 
switches have a number of interesting applications, e.g. in making RNA sensors or molecular gates coding 
for Boolean operators AND, OR, NOR in "ribocomputing" devices. 

Design of nucleic acid structures (RNA and DNA) is increasingly used in nanobiology. In so-called RNA or 
DNA origami the nanostructures can be assembled in programmable way from the building blocks that are 
base-paired to form diverse shapes like a cube or more complex configurations, nanocages etc. An example 
of using "kissing" loop (KL) interactions to design a 3D RNA tetrahedron: 

(M. Li et al., 2018) 
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collinear with the vector between the centres of the strand and
the helix. We define the orientation of a ba-unit to be parallel (P) if
the vector from strand to helix is parallel to the CaCb

!!!!
vector of the

last residue in the strand, and to be antiparallel (A) if the two are

antiparallel (Fig. 1b). The orientation of an ab-unit is P if the CaCb
!!!!

vector of the first residue in the strand is parallel to the vector from
helix to strand, and is A if the two are antiparallel (Fig. 1c) (see
Supplementary Methods 4 and 5 for details).

bb-rule
The chirality of b-hairpins is determined by the length of the loop
between the two strands. Rosetta folding simulations of a peptide
with two equal-length b-strands connected by a variable-length
loop were carried out on a sequence-independent backbone model
(Methods Summary, Methods and Supplementary Methods 1). The
chirality (Fig. 1d) of the end points of multiple independent Monte
Carlo trajectories was computed. The results (Fig. 1a, left) are quite
striking: two- and three-residue loops almost always give rise to
L-hairpins, whereas five-residue loops give rise primarily to R-hairpins.
These results suggest that the chirality of b-hairpins is determined by
the chirality (L-amino acids versus D-amino acids) and local structural
preferences of the polypeptide chain; indeed, only a restricted set of loop
types have been found to be compatible withbb-junctions23. Analysis of
bb-units in known protein structures (Supplementary Methods 3)
shows that the chirality of bb-units in native structures is correlated
with loop length in a manner very similar to the simulations (Fig. 1a,
right). Consistent with the idea that torsional strain is responsible for
the trends, the calculated torsion energies of loops in native structures
for two- and three-residue loops are lower for L-hairpins, and those for
five-residue loops are lower for R-hairpins (Supplementary Fig. 2). This
rule allows control over the pleating of b-hairpins.

ba-rule
The preferred orientation of ba-units is P for two-residue loops and A
for three-residue loops. Secondary-structure-constrained folding
simulations similar to those described in the previous paragraph
strongly show this trend, and it is also observed in native protein
structures (Fig. 1b). The rule arises in part from the bendability of
the protein backbone (Supplementary Fig. 3). This rule is very useful
for both positive and negative design, as it allows control of the side of
a b-sheet that a helix will pack onto.

ab-rule
The preferred orientation of ab-units is P. In secondary-structure-con-
strained folding simulations, this trend is observed strongly for loops two
residues in length and for longer lengths when the loop provides a
hydrogen-bonded capping interaction to stabilize the helix and does
not extend the strand (Fig. 1c, left, and Supplementary Fig. 4). A very
similar trend is again observed in native protein structures (Fig. 1c, right).

It must be emphasized that the three rules are largely independent
of the amino-acid sequence of the secondary structures or connecting
loops. As such, they must arise from the intrinsic chirality and local
structural preferences of the polypeptide chain rather than from
sequence-specific contributions. Whereas local sequence–structure
relationships have been extensively studied24–27, there has been much
less work on sequence-independent properties (the cataloguing of the
discrete sets of loops compatible with junctions between secondary
structure elements is a notable exception23). These rules provide a
powerful way to perform negative design at the backbone level.

Emergent rules
The next level of complexity in ab-proteins beyond two secondary
structure elements is segments of three consecutive secondary struc-
ture elements. Secondary-structure-constrained Rosetta folding simu-
lations revealed strong dependencies of the chirality (Supplementary
Fig. 1d) of bba- and abb-units and the foldability of bab-units on
the lengths of the connecting loops and the secondary structure ele-
ments. These dependencies are formulated in emergent rules (Sup-
plementary Fig. 1 and Supplementary Discussion 1), which follow
from the fundamental rules described in the previous section. The
rules specify how to choose the lengths of secondary structure
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Figure 1 | Fundamental rules. a, bb-rule. L (left-handed) and R (right-
handed) bb-units are illustrated (see Fig. 1d for chirality definition). The
dependence of chirality on loop length is shown in the histograms. b, ba-rule. P
(parallel) and A (antiparallel) ba-units are illustrated. The dependence of
orientation (P versus A) on loop length is shown in the histograms. c, ab-rule.
d, Chirality (L versus R) of a bb-unit. The chirality is defined on the basis of the
orientation of the Ca-to-Cb vector, CaCb
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, of the strand residue preceding or

following the connecting loop. u is a vector along the first strand and v is a
vector from the centre of the first strand to the centre of the second strand.
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templates and RNA), some linear structures (150–400 nm long)
were observed. They were unfolded or partially folded RNA
molecules, or truncated RNA molecules and DNA templates (the
designed DNA template is 1591 bps or 540 nm long). In the
purified RNA samples, only the 5-petal nanoflowers remained in
the AFM image. Such a complicated pattern would be quite
challenging for the traditional tile-based method, which would
involve multiple different tiles and sophisticated inter-tile inter-
actions, generally leading to a low assembly yield. With this
ssRNA folding strategy, complicated structures could quickly self-

fold with high yields. And this strategy was further confirmed by
the success of the folding of an RNA tetra-square (S4) structure
(Fig. 3c, d and Supplementary Fig. 4).

RNA tetrahedron. One important test of molecular self-assembly
is to generate discrete, 3D nanostructures, which can be readily
achieved by the reported strategy (Fig. 4). For demonstration, a
tetrahedral structure (T4) is designed to fold from a 623-base-
long ssRNA. It contains six edges and four vertices. All edges are
four helical turns long. Three of them are standard A-form
duplexes and each of the other three contains a KL interaction in
the middle. Each of the vertexes is an o3WJ containing four
unpaired uracils on each strand at the center to ensure sufficient
out-of-plane flexibility to fold. Upon cooling, the ssRNA first
folded into a three-branched structure (Fig. 4a, left), and then
closed into a tetrahedral geometry via KL interactions (Fig. 4a,
right). To show the importance of the KL interactions, a control
molecule (T4*) was prepared, in which a pair of KL interaction
was disrupted by sequence mutation. It is expected to only fold
into an open, 2D, double-triangular shape instead of the compact,
fully folded, 3D tetrahedron (Fig. 4b).

We have characterized the tetrahedron by native PAGE
(Supplementary Fig. 6), AFM imaging (Fig. 4c, d), and cryoEM
(Fig. 4e–g). PAGE analysis suggests that RNA molecules
efficiently fold into the designed structures (Supplementary
Fig. 6a). Each sample appears as a sharp, dominant band in the
corresponding lane. The migration pattern is consistent with the
expected structures. The fully-folded, compact, 3D tetrahedron
(T4) has a higher mobility than the open, 2D, double-triangle
structure (T4*). The folding is fast, and no difference has been
observed between quenching and annealing for each sample. In
the lane of T4, no RNA migrates like the partially folded T4*
molecule; suggesting that all T4 molecules are fully folded. In
order to confirm the migration pattern and the folding ability, we
have prepared two more RNA tetrahedrons with different sizes
and their corresponding control molecules: a three-turn-edged
tetrahedron (T3 and T3*, 484 bases long, Supplementary Fig. 5)
and a two-turn-edged tetrahedron (T2 and T2*, 340 bases long,
Supplementary Fig. 5). Similar migration patterns are observed
(Supplementary Fig. 6b-c). AFM imaging gives more direct
structural clues. T4 samples appear compact and consistent with
a collapsed tetrahedral geometry (Fig. 4c), while T4* samples
exhibit clear double-triangle structures (Fig. 4d and Supplemen-
tary Fig. 7). Please note that some T4 structures are disturbed
during AFM imaging.
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Fig. 4 Folding of a single-stranded, 4-turn, RNA tetrahedron (T4).
a Structural design of T4. An RNA single strand is rainbow colored from 5′
to 3′ end. It contains four 3WJs and will fold from a 2D branching structure
into a 3D tetrahedron upon the three pairs of KL interactions (indicated by
dashed, double-arrowed lines). Each edge is four helical turns long. Scale
bar, 50 nm. b A control molecule T4*. One loop sequence is altered to
prevent one KL interaction. Thus T4* will assemble into a flat, double-
triangular shape instead of a tetrahedron. The models were built with
Coot39 and Chimera37. All KLs are colored orange in the model. Scale bar,
50 nm. c, d AFM images of T4 and T4*, respectively. For each structure,
three particles are zoomed-in and fitted with corresponding shapes. e, g
Cryogenic electron microscopy (cryoEM) characterization of T4. e A raw
cryoEM image. Each white box indicates an individual RNA particle. Scale
bar, 50 nm. f Four different views of the reconstructed structural model of
the RNA tetrahedron (top) and corresponding views of the simulated model
(bottom). Scale bar, 5 nm. g Pairwise comparison between raw cryoEM
images of individual particles (left) and the corresponding projections
(right) of the reconstructed structural model. The raw particles were
selected from different images to represent views at different orientations
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4. Molecular docking and computation of protein-protein interactions 

Molecular docking strategies identify the orientations of molecules that are optimal for their interactions. 
The application of these approaches for protein-ligand or protein-protein interactions play an important role in 
drug discovery. 

In the most simple approximation of protein-ligand interaction, molecular docking is based on lock-and-key 
assumption that considers both protein and ligand being rigid bodies with affinity proportional to geometric 
fit between them. The fit is searched in six-dimensional rotational/translational space. Rigid body docking can 
be also carried out with account of binding free energy. The binding free energy potentials can be calculated 
as the sum of van der Waals, electrostatic and hydrogen-bonding interaction energies. Additional factors 
such as interactions with solvent can be included as well. Rigid body docking algorithms consider large 
numbers of docked conformations that can be scored using calculated free energies. Two main components 
of a docking protocol are a scoring function and a strategy of searching for highly-scoring configurations. The 
search can be carried out by various algorithms, e.g. Molecular Dynamics, Monte Carlo simulations, genetic 
algorithms, evolutionary programming. 

Rigid body docking is sometimes less accurate when applied to protein crystal structures obtained with 
unbound proteins. The main reason is that the conformations of both receptor and ligand change upon the 
binding. This is taken into account by "induced-fit" or flexible docking. Obviously, flexible docking involves 
multiple degrees of freedom and in general more computationally demanding. Different approximations can 
be used. For instance, a flexible ligand docking into rigid receptor, or limiting flexibility only to side chains 
with a rigid backbone. 

The information on protein-protein interactions is very important for understanding their function. 
Interactions between proteins can be classified as physical  (direct interactions) and functional ones 
(involvement in the same process). Interacting proteins could be also combined in a protein network (based 
on both physical and functional interactions). 

Prediction of structures of protein-protein complexes is computationally more demanding than modeling of 
receptor-ligand complexes. Rigid-body docking has been applied for protein dimers and some other protein-
protein interactions. However, conformational changes in proteins upon binding are an important and 
challenging problem for accurate structure prediction of protein complexes. Various approximations and 
search programs can be used. For instance, displacement of rigid bodies combined with optimization of side-
chain conformations by Monte Carlo procedure turned out to be successful predictions. The algorithms for 
multimeric threading, somewhat similar to fold recognition structure predictions, were also developed. 

Functional associations between proteins are derived from different sources. A number of computational 
procedures is designed for integration of this knowledge. Thus, the interactions can be derived directly from 
experimental data (available in primary databases), information on metabolic pathways available in curated 
databases, automated text-mining of PubMed or collections of full-text articles, the databases containing 
gene (co)expression data, orthology relations etc. 

�16



Recommended reading and Internet Resources 

Basic Bioinformatics: 

Sayers EW et al. (2019). Database resources of the National Center for Biotechnology Information. Nucleic 
Acids Res. 47:D23-D28. 
(Reference source/summary/update of NCBI resources, in particular, Entrez retrieval system.) 

Eddy SR (2004a). What is dynamic programming? Nature Biotechnology 22:909-910 

Eddy SR (2004b). Where did the BLOSUM62 alignment score matrix come from? Nature Biotechnology 
22:1035-1036. 

Altschul SF et al. The statistics of sequence similarity scores. (BLAST tutorial). http://www.ncbi.nlm.nih.gov/
BLAST/tutorial/Altschul-1.html 

Thompson JD, Higgins DG & Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive 
multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix 
choice. Nucleic Acids Res. 22:4673-4680. 

RNA secondary structure prediction: 

Lorentz R et al. (2016). Predicting RNA secondary structures from sequence and probing data. Methods 
103:86-98. 

Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008). RNAalifold: improved consensus structure 
prediction for RNA alignments. BMC Bioinformatics 9:474. 

Protein secondary structure prediction: 

Fiser A (2010). Template-based protein structure modeling. Methods Mol Biol 673:73-94. 

Baker D & Sali A (2001). Protein structure prediction and structural genomics. Science 294:93-96. 

Rohl CA, Strauss CEM, Misura KMS & Baker D (2004). Protein structure prediction using Rosetta. Methods 
Enzymol 383:66-93. 

Biomolecular design: 

Koga N et al. (2012) Principles for designing ideal protein structures. Nature 491:222-227. 

Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene 
expression. Cell 159:925-939. 

Han D et al. (2017) Single-stranded DNA and RNA origami. Science 358(6369):eaao2648. 

Internet resources: 

NCBI homepage:                                                        http://www.ncbi.nlm.nih.gov/ 

European Bioinformatics Institute:                          http://www.ebi.ac.uk 

The mfold Web Server:                                 http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form 

ViennaRNA Web Services:                                         http://rna.tbi.univie.ac.at 

The ExPASy (Expert Protein Analysis System):     http://www.expasy.org 

�17


