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Novel Techniques
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Secondary Structure Prediction
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K. Paliwal, J. Lyons, R. Heffernan A Short Review of Deep 
Learning Neural Networks in Protein Structure 

Prediction Problems, Adv Tech Biol Med 3:3, 2015.

Deep Neural Network Architectures

Lot’s of available data

Data to be normalized

Various deep neural network architectures [3]:

• deep feed-forward neural networks

• recurrent neural networks

• neural Turing machines

• memory networks.
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Feed Forward Neural Networks

Many current state-of-the-art protein predictors are based on feedforward DNNs 

• use a fixed-width window of amino acids, centered on the predicted residue. 
• The window is moved over the protein so that predictions can be made for each 

residue.

Examples:
• PSIPRED (1999) a protein secondary structure predictor based on a neural 

network with a single hidden layer 
• accuracies of around 80% when predicting 3 states (Q3): helix, coil and sheet.

• SPINE-X, Scorpion, DNSS and SPIDER-2 use deeper neural networks and increased 
accuracy to ~82% for the 3 states (Q3). 

• Deep neural networks for more states (e.g. 8 state (Q8), etc.) helix coil, sheet, 
Accessible Surface Area (ASA), phi and psi angles, theta, tau angles, and disorder 
prediction.

Feed Forward Neural Networks

• Deep neural networks for more states e.g. 8 state (Q8) than helix coil, 
sheet (Q3). 

• Accessible Surface Area (ASA)

• Phi and psi angles, theta, tau angles

• Protein Disorder prediction.
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Other DNN Architectures
Recurrent Neural Networks (RNNs)

Used for time series, are also used for sequence prediction problems: 
• Secondary structure prediction

• Protein disorder prediction

• 2-D RNNs for protein contact map prediction (for every pair of residues in a protein) 

• Prediction of disulfide bridges. 

• Pass information from one time step to the next. 

• Context information contained earlier in the sequence can be utilized later 
in the sequence. 

• Bidirectional Recurrent Neural Networks (BRNNs)
• Can utilize information along the entire sequence. 

RNNs with Memory

RNN’s

• Can remember information over longer time periods.

• Are widely used for sequence prediction tasks.

Long Short Term Memory (LSTM) RNN’s and BRNN’s, etc.

• These networks can be trained to solve problems that basic RNNs are incapable 
of solving, e.g., given examples of sorted and unsorted data, learn to sort new 
unseen data. 

• These architectures have not yet been applied to protein prediction problems 
(2015) and it remains to be seen whether they will be able to succeed where 
simpler architectures have not. 
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S.K. Sønderby, O. Winther, Protein Secondary Structure 
Prediction with Long Short Term Memory Networks, 

arXiv:1412.7828v2 [q-bio.QM] 4 Jan 2015. [7]

Secondary Structure Prediction
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Secondary Structure Prediction

Traditionally
• non-sequential models, typically feed-forward neural networks or SVM’s 

[Hua & Sun, 2001; Jones, 1999]. 
• Models originally for classifying fixed dimensional vector data: for 

sequences/streams => sliding window are used
• These methods only learn dependencies within the input window

Recent methods (2014 - )
• learning other dependencies beyond window size
• Conditional random field hybrid models
• RNN’s can be applied to sequential data of any length =>  able to learn 

long-term dependencies.

Secondary Structure Prediction

But RNN have some problems:
• Exploding or vanishing gradients [Bengio et al., 1994]

• Baldi et al. 1999: their RNN’s still were only able to learn dependencies of 15 
amino acids relative to the target

Solution to RNN Problem

• Long Short Term Memory (LSTM) RNN’s [Graves, 2012] against the vanishing 
gradients problem

• LSTM networks able to learn dependencies over 100’s of time steps. 

S.K. Sønderby, O. Winther [7] propose a bidirectional LSTM network for protein 
secondary structure prediction. 
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Deep Neural Networks for Protein Structure 
Prediction
• DNN’s state-of-the-art in speech recognition, image recognition, 

natural language processing tasks, games such a chess and go, etc. 

Various deep neural network architectures [3]:

• deep feed-forward neural networks (DNN)

• recurrent neural networks (RNN)

• …

• Long Short Term Memory (LSTM) networks.

Secondary Structure Prediction

Feed Forward Neural Network Recurrent Neural Network
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DNN: AlexNet, VGG16, ResNet, etc.

AlexNet Visualization
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Bi-directional 
LSTM RNN’s

LSTM memory cell: 

i: input gate, 

f : forget gate, 

o: output gate, 

g: input modulation gate, 

c: memory cell. 

input

forget

output

Input modulation

memory

Uni-directional LSTM Bi-directional LSTM RNN
S.K. Sønderby, O. Winther [7]

Protein Sequence InputProtein Sequence Input

Bi-directional LSTM RNN
When predicting the secondary structure, the whole Amino 
Acid Sequence x1,…,xN is known.

• In forward RNN’s only the past sequence x1,…,xt (t<N) is 
used to do the next prediction. 

• In our case this is not optimal.

Therefor bidirectional RNN’s were introduced: 

• Two separate RNN’s, the forward RNN starts the recursion 
from x1 and goes forwards

• The backwards model starts at xN and goes backwards. 

• The predictions from the forward and backward networks 
are combined and normalized.

• Normalize the activations from each layer in a softmax
layer.
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Bi-directional LSTM RNN
Therefor bidirectional RNN’s were introduced: 

• Two separate RNN’s, the forward RNN starts the recursion 
from x1 and goes forwards

• The backwards model starts at xN and goes backwards. 

• The predictions from the forward and backward networks 
are combined and normalized.

• Normalize the activations from each layer in a softmax
layer.

Here the standard stacked bidirectional LSTM model is 
extended:

• by a feed-forward network responsible for concatenating 
the output from the forward and backward networks into a 
single softmax prediction

• And a feed-forward network between recurrent hidden 
states, along with shortcut connections between the 
recurrent hidden layers. 

Data
Troyanskaya (2014)

• Amino acid sequences labeled with secondary structure.

• Sequences and structures were downloaded from PDB and annotated with the DSSP program [Kabsch & 
Sander, 1983]. 

• The 8-class DSSP output, the harder problem, is used. 

• Each amino acid is encoded as an 42 dimensional vector, 21 dimensions for orthogonal encoding and 21 
dimensions for sequence profiles. 

• For further descriptions see Troyanskaya 2014.

Filtering and division:

• The full dataset has 6128 non-homologous sequences (identity less than 30%). 

• This set is further filtered such that no sequences has more than 25% identity with the CB513 dataset [Cuff 
& Barton, 1999]. 

• The dataset is divided into a training (n=5278) and a validation set (n=256). 

• The CB513 dataset is used for testing.

DSSP (Define Secondary Structure Protein) “The DSSP program defines secondary structure, geometrical 
features and solvent exposure of proteins, given atomic coordinates in Protein Data Bank format. The program 
does NOT PREDICT protein structure.”
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Results

The LSTM network obtains a correct classification rate of 0.674, improves:

• 0.664 by generative stochastic network (GSN) [Bengio & Thibodeau-Laufer, 2013; Troyanskaya, 2014] 

• 0.649 by conditional neural field (CNF) [Lafferty et al., 2001; Peng et al., 2009]. 

• 0.511 by bidirectional RNN (BRNN) having a correct classification rate of 0.511 [Pollastri et al., 2002]

Secondary Structure Prediction
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Secondary Structure Prediction (Wikipedia 2019)

B. Zhang, J. Li, Q. Lü, Prediction of 8-state protein secondary 
structures by a novel deep learning architecture. BMC 

Bioinformatics, 19:293, 2018. [8]

A novel deep learning architecture for protein secondary structure prediction 
by integrating a convolutional neural network, residual network, and 
bidirectional recurrent neural network. 

• A local block comprised of convolutional filters and original input is 
designed for capturing local sequence features. 

• A subsequent bidirectional recurrent neural network consisting of gated 
recurrent units can capture global context features. 

• The residual network improves the information flow between the hidden 
layers and the cascaded recurrent neural network (integration).
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B. Zhang, J. Li, Q. Lü, Prediction of 8-state protein secondary 
structures by a novel deep learning architecture. BMC 

Bioinformatics, 19:293, 2018. [8]

The novel deep network achieved: 
• 71.4% accuracy on the benchmark CB513 dataset for the 8-state prediction 

(Q8) 
• The ensemble learning by our model achieved 74% accuracy. 
• Better than the state-of-the-art methods on three other independent 

datasets CASP10, CASP11 and CASP12 for both 8- and 3-state prediction. 

Conclusion: Our experiment demonstrates that it is a valuable method for 
predicting protein secondary structure, and capturing local and global 
features concurrently is very useful in deep learning.

CRRNN Architecture

Convolutional
Local features

bidirectional recurrent neural network
Global features 
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Data

Results
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F1-score:

Q3 Results
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Critical Assessment of protein Structure Prediction (CASP) 
http://predictioncenter.org/

• CASP7 – CASP11

CASP7 CASP9 CASP11

Template Based Modeling

• Most accurate models. 
• First 10 years of CASP enormous improvements. Unmatched until CASP12.
• From CASP11 to CASP12 the backbone accuracy of the submitted models 

improved more than in the preceding 10 years. 
• This was due to:

• more accurate alignment of the target sequence to that of available templates
• combining multiple templates
• improved accuracy of regions not covered by templates 
• successful refinement of models
• better selection of models from decoy sets due to improved methods for estimation 

of model accuracy. 

[Kryshtafovych et al, 2018]
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Contact Prediction

• Progress in recent CASPs (2014, 2016) due to better methods for predicting three-dimensional 
contacts between pairs of residues in structures. 

• Average precision of the best CASP12 compared to that of the best CASP11 predictor increased 
from 27% to 47%.

• Overall 26 methods in CASP12 showed better results than the best method in CASP11. 
[Schaarschmidt et al, 2018]

• Theoretical advance in contact prediction lead to improved accuracy of 3D models, especially for 
ab initio modeling.

• CASP13 (2018) big improvement in accuracy of contact prediction, with the average precision of 
the best contact prediction group increasing by 23% (compared to CASP12) and reaching 70%. 

No contact restrictions With contact restrictions

Ab Initio Modeling

• Modeling proteins with no or marginal similarity to existing structures (ab initio, new fold, non-
template or free modeling) is the most challenging task in tertiary structure prediction. 

• Probably the first ab initio model of reasonable accuracy was built in CASP4. 

• Since then progress but mainly for small proteins (120 residues or less). 

• In CASP11 for the first time a larger new fold protein (256 residues, sequence identity to known 
structures <5%) was built with unprecedented before accuracy for targets of this size. 

• CASP11 and CASP12 experiments (2014, 2016) also showed a new trend in building better non-
template models by successful utilizing predicted contacts.

• CASP13 witnessed yet another substantial improvement in accuracy of template-free models 
likely due to employing deep learning artificial intelligence techniques. 

• The best models submitted on difficult for modeling targets showed substantial increase in 
average GDTTS (see next slide) scores going from 52.9 in CASP12 up to 65.7 in CASP13.
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CASP GDTTS Scores

CASP’s metric to quantify the quality of individual models is the Global 
Distance Test Total Score3 (GDTTS)

• a metric for model topology assessment.

• GDTTS reports an average of the maximum number of model residues that 
can be superimposed onto the target under cutoffs of 1, 2, 4, and 8 Å. 

• The GDTTS score ranges between 0 and 100. 

• <20 generally indicates poor models

• >50 generally indicates overall good topology.

• = 100 corresponds to a model that matches the full structure within 1 Å 
deviation in the Calpha coordinates of all residues. 

J. Hou, et al. Protein tertiary structure modeling driven by deep 
learning and contact distance prediction in CASP13, 2019.

• CASP10 (2012) deep learning for contact and distance distribution prediction.

• CASP11 (2014) prediction of residue-residue distance relationships (e.g. contacts) 
is the key direction to advance protein tertiary structure prediction.

• CASP11 and CASP12: successes of residue-residue co-evolutionary analysis

CASP13 (2018) MULTICOM (3rd place) a protein structure prediction system with 
three major deep learning components: 

• contact distance prediction based on deep convolutional neural networks
• contact distance-driven template-free (ab initio) modeling 
• protein model ranking empowered by deep learning and contact prediction 
• further components: template library, sequence database, and alignment tools. 
• MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based 

protein structure modeling in CASP13.
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co-evolutionary analysis 

two amino acids in contact (or spatially close according to a distance 
threshold such as 8Å) must co-evolve in order to maintain the contact 
relationship during evolution

• if one amino acid is mutated to a positively charged residue, the other one 
must change to a negatively charged one to be in contact. 

• A number of co-evolutionary methods of calculating direct rather than 
indirect/accidental correlated mutation scores has been developed 

=> improve contact prediction. 

The co-evolutionary scores can be used as input for machine learning 
methods to further improve contact prediction.

MULTICOM ideas
Challenges for accurately predicting protein contact distance:

• few homologous sequences to generate co-evolutionary signals.

• folding proteins from noisy contact distances

• ranking models of hard targets.

MULTICOM Deep convolutional neural network: 

• Utilize global information in pairwise residue-residue features

co-evolution scores to substantially improve inter-residue contact distance prediction, 

• Integrated 1D structural features, 2D contact information, and 3D structural quality scores
to improve protein model quality assessment

Note: the contact prediction enhances ranking of protein models for the first time. 

Key: Protein contact distance prediction and model selection using deep learning.
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