
3/19/2019

1

Next Generation Sequencing

E.M. Bakker

Several slides are based on/taken from [7].

Overview

• Introduction

• Next Generation Technologies

• The Mapping Problem

– The MAQ Algorithm

– The Bowtie Algorithm

– Burrows-Wheeler Transform

• Sequence Assembly Problem

– De Bruijn Graphs

– Other Assembly Algorithms

3/19/2019

2

Introduction

1953 Watson and Crick: the structure of the DNA molecule
 DNA carrier of the genetic information, the challenge of reading the

DNA sequence became central to biological research.

 methods for DNA sequencing were extremely inefficient, laborious
and costly.

1965 Holley: reliably sequencing the yeast gene for
tRNAAla required the equivalent of a full year's work
per person per base pair (bp) sequenced
(1bp/person year).

1970 Two classical methods for sequencing DNA
fragments by Sanger and Gilbert.

Sanger sequencing (sketch):

1. The polymerase extends the
labeled primer, randomly by
either:

– a normal dCTP base, or

– a modified ddCTP base

At every position where a ddCTP is
inserted, polymerization terminates !
=> a mix of fragments, where the
length of each fragment is a function
of the relative distance from the
modified base to the primer.

2. In 4 lanes electrophoretic
separation of the mix of fragments
in each of the four tubes (ddG,
ddA, ddT, and ddC) is established.
Now the bands on the gel
accumulate equal length
fragments representing the
Labelled Strands shown to the
right. => This
allows us to read the complement
of the original template from
bottom to top.

1.

2.

3/19/2019

3

Introduction

1980 In the 1980s methods were augmented by
• partial automation

• the cloning method, which allowed fast and exponential replication of a
DNA fragment.

1990 Start of the human genome project: sequencing
efficiency reached 200,000 bp/person-year.

2002 End of the human genome project: 50,000,000
bp/person-year. (Total cost summed to $3 billion.)

Note: Moore’s Law doubling transistor count every 2 years

Here: doubling of #base pairs/person-year every 1.5 years

Introduction

Recently (2007 – 2011/2012):

• new sequencing technologies next generation sequencing
(NGS) or deep sequencing

– reliable sequencing of 100x109 bp/person-year.

– NGS now allows compiling the full DNA sequence of a
person for ~ $10,000

– within 3-5 years cost is expected to drop to ~$1000.

2017: Veritas Genetics uses a Illumina HiSeq X Ten system
with an average coverage depth of 30X. Whole genome
sequencing in 8-10 weeks at a price of $999.
(See http://www.nanalyze.com/2016/03/does-full-genome-
sequencing-really-cost-1000-now/)

2018: HiSeq’s successor NovaSeq 6000 6Tb

<2 days (150b reads)

2019: NextSeq 500 Whole sequence run in

26h, 2 days shorter than NovaSeq 6000

http://www.nanalyze.com/2016/03/does-full-genome-sequencing-really-cost-1000-now/

3/19/2019

4

From: https://www.genome.gov/sequencingcosts/

100$ Genome scan soon!

Next Generation Sequencing Technologies

Next Generation Sequencing technology of Illumina, one of
the leading companies in the field:

– DNA is replicated => millions of copies.

– All DNA copies are randomly shredded into various fragments
using restriction enzymes or mechanical means => fragments
form the input for the sequencing phase.

– Hundreds of copies of each fragment are generated/assembled
at one spot (cluster) on the surface of a huge matrix.

– Initially it is not known which fragment sits where.

Note: There are quite a few other technologies available
and/or currently under development.

3/19/2019

5

Next Generation Sequencing technology

of Illumina (continued):

• A DNA replication enzyme is added to the matrix
along with 4 slightly modified nucleotides.

• The 4 nucleotides are slightly modified chemically
so that:

– each would emit a unique color when excited by laser,

– each one would terminate the replication.

– hence, the growing complementary DNA strand on
each fragment in each cluster is extended by one
nucleotide at a time.

Next Generation Sequencing technology

of Illumina (continued):

• A laser is used to obtain a read of the actual nucleotide that
is added in each cluster. (The multiple copies in a cluster
provide an amplified signal.)

• The solution is washed away together with the chemical
modification on the last nucleotide which prevented further
elongation and emitted the unique signal.

• Millions of fragments are sequenced efficiently and in
parallel.

• The resulting fragment sequences are called reads.

• Reads form the input for further sequence mapping
and assembly.

3/19/2019

6

Next Generation Sequencing

Technologies

(1) A modified nucleotide is added to the complementary DNA strand by a DNA polymerase enzyme.

(2) A laser is used to obtain a read of the nucleotide just added.

(3) The full sequence of a fragment thus determined through successive iterations of the process.

(4) A visualization of the matrix where fragment clusters are attached to flow cells.

MinION: nanopores

Phys.org

Nature.com

• Read length ~10kb

• Longest reported230 – 300 kb

• 500 bps per pore

3/19/2019

7

The Mapping Problem and

the Assembly Problem

The Mapping Problem

INPUT: m reads S1,…, Sm of length l and an
approximate reference genome R.

QUESTION: What are the positions x1,…, xm along R where
each read S1,…, Sm matches, respectively?

The Assembly Problem

INPUT: m reads S1,…, Sm of length l.

QUESTION: What is the sequence of the full genome?

The crucial difference between the problems of mapping and
assembly is that in case of assembly we do not have a
reference genome, and we must assemble the full
sequence directly from the reads.

3/19/2019

8

The Mapping Problem

The Short Read Mapping Problem on reference genome R

INPUT: m reads S1,…, Sm of length l and an approximate

reference genome R.

QUESTION: What are the positions x1,…, xm along R where each read
S1,…, Sm matches, respectively?

For example: after sequencing the genome of a person we want to map it to an
existing sequence of the human genome.

• The new sample will not be 100% identical to the reference genome:
– natural variation in the population

– mismatches or gaps

– sequencing errors

– repetitive regions

Humans are diploid organisms
– different alleles on the maternal and paternal chromosomes

– two slightly different reads mapping to the same location (some with mismatches)

Solutions for the Mapping Problem

Naive algorithm

• for each Si scan the reference string R

• match the read at each position p and

• pick the best match

Time complexity: O(m∙l∙|R|) for exact or inexact matching.

m number of reads, l read length

Considering the parameters for our problem (m ~108, l ~102, |R| ~3∙109) ,
this is impractical.

Less naive solution

• use the Knuth-Morris-Pratt algorithm to match each Si to R

Time complexity: O(m∙(l+|R|)) = O(ml + m|R|) for exact matching.

A substantial improvement but still not enough…

3/19/2019

9

a b a a b a b a

7
a b a a b a b a

a b a a b a b a
4

1 2 3 4 5 6 7 8
a b a a b a b a
0 1 1 2 2 3 4 3

8
a b a a b a b a

a b a a b ...
3

6
a b a a b a b a

a b a a b a b a
3

KMP Preprocessed P example

failure links (suffix = prefix):

top: as ‘automaton’

bottom: as table

• how to determine?

• how to use?

Pattern P ϵ {a,b,…}*:

P:

P:

P:

P:

P:

P:

Automaton:

Table:

NB See slide 67 and further (is part of the exam materials).

The Mapping Problem: Suffix Trees

1. Build a suffix tree for R.

2. For each Si (i in {1,…,m})find matches by traversing the tree
from the root.

Time complexity: O(ml+|R|), assuming the tree is built using
Ukkonen's linear-time algorithm.

Notes:

• Time complexity is practical.

• Only build the tree for the reference genome once.

• The tree can be saved and used repeatedly.

3/19/2019

10

Suffix Tree example: find ‘itt’ in ‘nittygritty’

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

1

2

3

4

5

6

7

8

9

10

11

nittygritty

1

itty

8

gritty

ε

2

ritty

y

4 10

t

εgritty

ty

3 9

εgritty

y

5 11

εgritty

7

positions

gritty

6

The Mapping Problem: Suffix Trees

Space complexity may be an obstacle:

• The leafs of the suffix tree also hold the indices where the
suffixes begin

=> the tree requires O(|R|∙log|R|) bits just for coding
of the indices.

• The constants are large due to the additional layers of
information required for the tree (such as suffix links, etc.).

• The original human genome reference sequence demands
just |R|log(#symbols) bits

=> we can store the human genome using ~750MB

But! ~64GB for the Suffix Tree (2016: very doable)!

• Final problem: suffix trees allow only for exact matching.

3/19/2019

11

The Mapping Problem: Hashing

• Preprocess the reference genome R into a hash table H.

• The keys of the hash are all the substrings of length l in R:
– Table H contains: the position p in R where the substring ends.

– Matching: given Si the algorithm returns H(Si).

Time complexity: O(m∙l+l∙|R|)

Note:

• The space complexity is O(l∙|R| + |R|∙log|R|) since we must also hold
the binary representation of each substring's position. (Still quite high.)

• Represent each nucleotide as a 2-bit code: factor of 4 reduction.

• Practical solution: Partition the genome into several chunks.

• Again, only exact matching allowed.

The Mapping Problem: The MAQ Algorithm

The MAQ (Mapping and Alignment with Qualities)
algorithm by Li, Ruan and Durbin, 2008 [5]

• An efficient solution to the short read mapping
problem

• Allows for inexact matching, up to a
predetermined maximum number of mismatches.

• Memory efficient.

• Measures for base and read quality, and for
identifying sequence variants.

3/19/2019

12

The MAQ Algorithm

A key insight:

• If a read in its correct position to the reference genome has
one mismatch, then partitioning that read into two makes
sure one part is still exactly matched.

• Hence, if we perform an exact match twice using only a subset of the
read bases (a template), one of the subsets is enough to find the match.

• For 2 mismatches, 6 templates:
– some templates are noncontiguous

– each template covers half the read

– Each template has a partner template that complements it to form the full
read

– If the read has no more than two mismatches, at least one template
will not be affected by any mismatch.

• For 3-mismatches, 20 templates guarantee at least one fully matched
template.

• Etc.

The MAQ Algorithm: Templates

A and B are reads, where purple boxes indicate
mismatches with respect to the reference.

The numbered templates have blue boxes in the
positions they cover.

1 mismatch:

• comparing read A through template 1 => no
full match

• template 2 fully matched

2 mismatches:

• read B is fully matched with template 6

• Any combination of up to two mismatched
positions will be avoided by at least one of the
6 templates.

Note: 6 templates guarantee 57% of all 3
mismatches will have at least one fully
matching template.

Template #

Read:

Read:

mismatch

3/19/2019

13

The MAQ Algorithm

The algorithm:

• Generate the number of templates required to guarantee at least one
full match for the desired maximal number of mismatches, and

• For each read:

– match the read against the templates

– use the exact matching template as a seed for extending across the
full read.

• Identifying the exact matches is done by
– hashing the read templates into template-specific hash tables, and

– scanning the reference genome R against each table.

Note:

• It is not necessary to generate templates and hash tables for the full
read, since the initial seed will undergo extension, e.g. using the Smith-
Waterman algorithm.

• Therefore the algorithm initially processes only the first 28 bases of
each read. (The first bases are the most accurate bases of the reads.)

The MAQ Algorithm

Algorithm (for the case of up to two mismatches):

1. Index the first 28 bases of each read with complementary templates 1,
and 2, thereby generating hash tables H1 and H2, respectively.

2. Scan the reference genome R:
– for each position and each orientation, query a 28-bp window through

templates 1, 2 against the appropriate tables H1, H2, respectively.

– If hit, extend and score the complete read based on mismatches.

– For each read, keep the two best scoring hits and the number of
mismatches therein.

3. Repeat steps 1+2 with complementary templates 3, 4, then 5, 6.

Remark:

The reason for indexing against a pair of complementary templates each
time has to do with a feature of the algorithm regarding paired-end
reads (see original paper for details).

3/19/2019

14

The MAQ Algorithm Complexity

Time Complexity:

• O(m∙l) for generating the hash tables in Step 1, and

• O(l∙|R|) for scanning the genome in Step 2.

• Repeating Steps 1+2 three times in this
implementation has no effect on the asymptotic
complexity.

Space Complexity:

• O(m∙l) for holding the hash tables in Step 1, and

• O(m∙l+|R|) total space for Step 2, but only O(m∙l)
space in main memory at any one time.

The MAQ Algorithm Complexity

• Note that, not the full read length l is used, but a window of
length l' <= l (l' = 28-bp in the implementation presented above).

• The size of each key in a template hash table is only l' /2, since each
template covers half the window.

=> Time and space complexity of step 1 is: O(2 m l' /2) = O(ml').

This space reduction makes running the algorithm on a PC very feasible.

The time and space required for extending a match in Step 2 using the
Smith-Waterman algorithm, where p the probability of a hit (using the
l’ length window):

• The time complexity : O(l' |R| + p|R|l2).

• The space complexity: O(ml' + l2).

Note: The value of p is small, and decreases drastically the longer l' is,
since most (other) l' -long windows in the reference genome will likely
not capture the exact coordinates of a true read.

3/19/2019

15

Read Mapping Qualities

The MAQ algorithm provides a measure of the confidence
level for the mapping of each read, denoted by QS and
defined as:

QS = -10 log10(Pr{read S is wrongly mapped})

For example:

QS = 30 if the probability of incorrect mapping of
read S is 1/1000.

This confidence measure is called phred-scaled quality,
similar to the scaling scheme originally introduced by Phil
Green et al. [3] for the human genome project.

Example: Base calling with Phred Quality Score = 30

=> Probability of incorrect base call is 1/1000.

The Bowtie Algorithm

Another way to map reads to a reference genome is
given by the Bowtie algorithm, presented in 2009
by Langmead et al.[1].

It solves the mapping problem using a space-efficient
indexing scheme.

The indexing scheme used is called the Burrows-
Wheeler Transform [2] and was originally
developed for data compression purposes.

3/19/2019

16

The Burrows-Wheeler Transform

Applying the Burrows-Wheeler transform BW(T) to the text

T = "the next text that i index.":

1. First, we generate all cyclic shifts of T.

2. Next, we sort these shifts lexicographically.

– define the character '.' as the minimum and we assume that it appears
exactly once, as the last symbol in the text.

– followed lexicographically by ' ‘ (space)

– followed by the English letters according to their natural ordering.

– Call the resulting matrix M.

The transform BW(T) is defined as the sequence of the last characters in the
rows of M.

Note that, the last column is a permutation of all characters in the text since
each character appears in the last position in exactly one cyclic shift.

Burrows-Wheeler Transform

Some of the cyclic shifts of T sorted lexicographically and indexed by the
last character.

3/19/2019

17

Burrows-Wheeler Transform

• Storing BW(T) requires the same space as

the size of the text T since it is a

permutation of T.

BW(the human genome)

Each base {A,C,T,G} represented by 2 bits =>

storing the permutation requires 2 times 3x109

bits (instead of ~30 times 3x109 for storing

all indices of T).

Burrows-Wheeler Transform

The following holds for BW(T):

1. # occurrences of char c in T = # occurrences of char c in BW(T)
(BW(T) permutation of the T).

2. The first column of the matrix M can be obtained by sorting
BW(T) lexicographically.

3. Determine the number of occurrences of the substring 'xt' in T:

– BW(T) is the last column of the lexicographical sorting of the
shifts.

– The character at the last position of a row appears in the
text T immediately prior to the first character in the same
row (each row is a cyclical shift).

– => consider the interval of 't' in the first column, and check
how many of these rows have an 'x‘ at the last position.

3/19/2019

18

Burrows-Wheeler Transform

1. Some of the cyclic shifts of T sorted lexicographically and indexed by
the last character.

Burrows-Wheeler Transform

The following holds for BW(T):

1. # occurrences of char c in T = # occurrences of char c in BW(T)
(BW(T) permutation of the T).

2. The first column of the matrix M can be obtained by sorting
BW(T) lexicographically.

3. Determine the number of occurrences of the substring 'xt' in T:

– BW(T) is the last column of the lexicographical sorting of the
shifts.

– The character at the last position of a row appears in the
text T immediately prior to the first character in the same
row (each row is a cyclical shift).

– => consider the interval of 't' in the first column, and check
how many of these rows have an 'x‘ at the last position.

3/19/2019

19

2. Recovering the first column (left) by sorting the last column.

3. Determine the number of occurrences of the substring 'xt' in T

BW(T)Sorted BW(T)

Burrows-Wheeler Transform

Given BW(T) also the second column can be derived:

• 'xt' appears twice in the text, and three rows start with an
'x'.

• Two of the three must be followed by a 't‘, where the
lexicographical sorting determines which 'x'.

• The third 'x' is followed by a '.' (see first row) => '.' must
follow the first 'x' in the first column since '.' is smaller
lexicographically than 't'.

• The second and third occurrences of 'x' in the first column
are therefore followed by 't'.

Note: We can use the same process to recover the characters at the second column
for each interval, and then the third, etc.

t text that i index. the nex

t that i index. the next tex

text that i index.the next

that i index. the next text

the next text that i index.

3/19/2019

20

Last-first mapping: Each 't' character in L is linked to its position in F and no
crossed links are possible.

The j-th occurrence of character X in L corresponds to the same text character as
the j-th occurrence of X in F.

F LWe have actually:

Burrows-Wheeler Transform

The previous two central properties of the BW-transform are
captured in the Lemma by Ferragina and Manzini[4]:

Lemma 12.1 (Last-First Mapping):

Let M be the matrix whose rows are all cyclical shifts of T
sorted lexicographically, and let L(i) be the character at the
last column of row i and F(i) be the first character in that
row. Then:

1. In row i of M, L(i) precedes F(i) in the original text:
T =…L(i) F(i)…

2. The j-th occurrence of character X in L corresponds to
the same text character as the j-th occurrence of X in F.

3/19/2019

21

Last-first mapping: j-th occurrence of character 't' character in L is linked
to its j-th position in F and no crossed links are possible.

F L

Burrows-Wheeler Transform

Proof:

1. Follows directly from the fact that each row in M is a
cyclical shift.

2. Let Xj denote the j-th occurrence of character X in L, and
let α be the character following Xj in the text

and β the character following Xj+1.

Then, since Xj appears above Xj+1 in L, α appears at the
beginning of a row above the row that starts with β.

The rows are lexicographically ordered,
hence α must be equal or lexicographically smaller than β.

Now clearly X α ≤lexicographically X β holds.

Hence, as the rows are lexicographically ordered, if
character Xj appears in F it is followed by α, and thus will
be above Xj+1 which is followed by β.

Thus proofing the Lemma.

3/19/2019

22

Reconstructing the Text

Algorithm UNPERMUTE for reconstructing a text T from its Burrows-Wheeler
transform BW(T) utilizing Lemma 12.1 [4]:

• assume the actual text T is of length u

• append a unique $ character (=‘.’) at the end, which is the smallest
lexicographically

UNPERMUTE[BW(T)]

1. Compute the array C[1,…,|Σ|] : where C(c) is the number of characters {$,
1,…,c-1} in T, i.e., the number of characters that are lexicographically smaller
than c

2. Construct the last-first mapping LF, tracing every character in L to its
corresponding position in F:

LF[i] = C(L[i]) + r(L[i], i) + 1, where r(c, i) is the number of
occurrences of character c in the prefix L[1, i -1]

3. Reconstruct T backwards:
s = 1, T(u) = L[1];

for i = u – 1,…, 1

do

s = LF[s];

T[i] = L[s];

od;

Last-first mapping: Each 't' character in L is linked to
its position in F and no crossed links are possible.

C
0

1

1

1

1

1

6

7

8

…

Notice, that C(e) + 1 = 9

is the position of the first

occurrence of ‘e' in F.

C(e) = 8, as there are 8

characters in T that are

smaller than ‘e’.

F L

3/19/2019

23

Example

T = acaacg$ (u = 6) is transformed to BW(T) = gc$aaac, and we now wish
to reconstruct T from BW(T) using UNPERMUTE:

1. Compute array C. For example: C(c) = 4 since there are 4 occurrences
of characters smaller than 'c' in T ('$' and 3 occurrences of 'a'). Now
C(c) + 1 = 5 is the position of the first occurrence of 'c' in F.

2. Perform the LF mapping. For example, LF[c2] = C(c) + r(c,7) + 1 = 6,
and indeed the second occurrence of 'c' in F is at F[6].

3. Determine the last character in T: T(6) = L(1) = 'g'.

4. Iterate backwards over all positions using the LF mapping. For
example, to recover the character T(5), we use the LF mapping to trace
L(1) to F(7), and then T(5) = L(7) = 'c'.

Remark We do not actually hold F in memory, we only keep the array C
defined above, of size | Σ |, which we can easily obtained from L.

r(c,7) = # of occurences of ‘c’ in length 7-1 prefix, used as an offset to
obtain the right ‘c’.

Example of running UNPERMUTE to recover

the original text. Source: [1].

Determine its location in F and find its

corresponding predecessor in L using

C(.) and r(.,.)

i.e., find corresponding ‘g’ using the last-first mapping

First Last

Note: ‘$’ = ‘.’

3/19/2019

24

Exact Matching

EXACTMATCH exact matching of a query string P to T,
given BW(T)[4] is similar to UNPERMUTE, we use

• the same C and r(c, i)

• denote by sp the position of the first row in the interval of
rows in M we are currently considering

• denote by ep the position of the first row beyond this
interval of rows

=> the interval of rows is defined by the rows sp,…, ep - 1.

EXACTMATCH[P[1,…,p], BW(T)]

1. c = P[p]; sp = C[c] + 1; ep = C[c+1] + 1; i = p - 1;

2. while sp < ep and i >= 1
c = P[i];

sp = C[c] + r(c, sp) + 1;

ep = C[c] + r(c, ep) + 1;

i = i - 1;

3. if (sp == ep) return "no match"; else return sp, ep;

Example of running EXACTMATCH to find a query

string in the text [1].

P = ‘aac’

3/19/2019

25

Inexact Matching

Sketch

• Each character in a read has a numeric quality value, with lower
values indicating a higher likelihood of a sequencing error.

• Similar to EXACTMATCH, calculating matrix intervals for
successively longer query suffixes.

• If the range becomes empty (a suffix does not occur in the text), then
the algorithm selects an already-matched query position and substitute
a different base there, introducing a mismatch into the alignment.

• The EXACTMATCH search resumes from just after the substituted
position.

• The algorithm selects only those substitutions that

– are consistent with the alignment policy and

– yield a modified suffix that occurs at least once in the text.

– If there are multiple candidate substitution positions, then the
algorithm greedily selects a position with a maximal quality
value.

Example of running INEXACTMATCH to find a

query string in the text [1].

P = ‘gac’

g g

No ‘g’ => substitute ‘a’ and proceed.

3/19/2019

26

The Assembly Problem

How to assemble an unknown genome based on many highly
overlapping short reads from it?

Problem Sequence assembly

INPUT: m l-long reads S1,…, Sm.

QUESTION: What is the sequence of the full genome?

The crucial difference between the problems of mapping and
assembly is that now we do not have a reference genome,
and we must assemble the full sequence directly from the
reads.

De Bruijn Graphs

Definition

A k-dimensional de Bruijn graph of n symbols is a directed graph
representing overlaps between sequences of symbols.

It has nk vertices, consisting of all possible k-tuples of the given symbols.
Note: the same symbol may appear multiple times in a tuple.

If we have the set of symbols A = {a1,…,an} then the set of vertices is:

V = { (a1 ,…, a1, a1), (a1 ,…, a1, a2) ,…, (a1 ,…, a1, an),

(a1 ,…, a2, a1), … …, (an ,…, an, an)}

If a vertice w can be expressed by shifting all symbols of another vertex v
by one place to the left and adding a new symbol at the end, then v has
a directed edge to w.

Thus the set of directed edges E is:

E = {((v1, v2 ,…, vk), (w1,w2 ,…, wk))| v2 = w1, v3 = w2 ,…, vk = wk-1,
and wk new}

3/19/2019

27

A portion of a 4-dimensional de Bruijn graph.

The vertex CAAA has a directed edge to vertex
AAAC, because if we shift the label CAAA to the
left and add the symbol C we get the label AAAC.

In this way the word CAAAC defines a directed edge

De Bruijn Graphs

• Given a read, every contiguous (k+1)-long word

in it corresponds to an edge in the k-dimensional

de Bruijn graph of the symbols {A,C,T,G}.

• Form a subgraph G of the full de Bruijn graph by

introducing only the edges that correspond to

(k+1)-long words in some read.

• A path in this graph defines a potential

subsequence in the genome.

• Hence, we can convert a read to its corresponding

path in the constructed subgraph G

3/19/2019

28

Using the graph from the previous slide, we construct the path
corresponding to CCAACAAAAC:

• shift the sequence one position to the left each time, and
marking the vertex with the label of the 4 first nucleotides.

De Bruijn Graphs

• Form paths for all the reads

• Identify common vertices on different paths

• Merge different read-paths through these

common vertices of the paths into one long

sequence

3/19/2019

29

• The two reads in (a) are converted to paths in the graph

• The common vertex TGAG is identified

• Combine these two paths into (b).

De Bruijn Graphs

Velvet (2008), by Zerbino and Birney[6], Velvet GUI (2012)
, is an algorithm which uses de Bruijn graphs to assemble
reads; with the following difficulties:

• repeats will show up as cycles in the merged path that we
form. We do not know how many times each cycle must be
traversed in order to form the full sequence of the genome.

• If we have two cycles starting at the same vertex, we
cannot tell which one to traverse first.

• Velvet attempts to address this issue by utilizing the extra
information we have in the case of paired-ends sequencing
(both ends of a DNA fragment are sequenced in Read 1
and Read 2, respectively. The distance between each
paired read is known).

3/19/2019

30

Velvet (Wikipedia)

Example of a bubble:

Remove tips if the edges are weak.

3/19/2019

31

Other Assembly Algorithms

• HMM based

• Majority based

• Etc.

• Long reads: string graphs

Other Assembly Algorithms

K.R. Bradnan et al. Assemblathon 2: evaluating de novo

methods of genome assembly in three vertebrate species

(http://gigascience.biomedcentral.com/articles/10.1186/2047-217X-2-10, 2013)

“Many current genome assemblers produced useful

assemblies, containing a significant representation of their

genes and overall genome structure.

However, the high degree of variability between the entries

suggests that there is still much room for improvement in the

field of genome assembly and that approaches which work

well in assembling the genome of one species may not

necessarily work well for another.”

http://gigascience.biomedcentral.com/articles/10.1186/2047-217X-2-10

3/19/2019

32

Other Assembly Algorithms

Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren

S, Treangen TJ, Schatz MC, Delcher AL, Roberts M, et al.

Gage: A critical evaluation of genome assemblies and

assembly algorithms. Genome Res. 2012; 22(3):557–67.

Three conclusions:

1.Quality: data quality, rather than the assembler itself, has a

dramatic effect on the quality of an assembled genome

2.Variability: the degree of contiguity of an assembly varies

enormously among different assemblers and different

genomes

3.Correctness: the correctness of an assembly also varies

widely and is not well correlated with statistics on contiguity.

Other Assembly Algorithms

Scaffolding and completing genome assemblies in real-time with

nanopore sequencing

By Minh Duc Cao, Son Hoang Nguyen, Devika Ganesamoorthy, Alysha

G. Elliott, Matthew A. Cooper & Lachlan J. M. Coin

Nature Communications 8, Article number: 14515 (2017)

“Long read sequencing technologies, for example Pacific Biosciences’

(PacBio) and Oxford Nanopore MinION sequencing, allow users to

generate reads spanning most repetitive sequences, which can be used to

close gaps in fragmented assemblies.”

3/19/2019

33

Image from reference [8].

Bibliography

[1] Ben Langmead, Cole Trapnell, Mihai Pop and Steven L. Salzberg. Ultrafast and
memory-effcient alignment of short DNA sequences to the human genome. Genome
Biology, 2009.

[2] Michael Burrows and David Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[3] Brent Ewing and Phil Green. Base-calling of automated sequencer traces using phred. II.
Error probabilities. Genome Research, 1998.

[4] Paulo Ferragina and Giovani Manzini. Opportunistic data structures with applications.
FOCS '00 Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, 2000.

[5] Heng Li, Jue Ruan and Richard Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research, 2008.

[6] Daniel R. Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 2008.

[7] Ron Shamir, Computational Genomics Fall Semester, 2010 Lecture 12: Algorithms for
Next Generation Sequencing Data, January 6, 2011 Scribe: Anat Gluzman and Eran
Mick

[8] Minh Duc Cao, Son Hoang Nguyen, Devika Ganesamoorthy, Alysha G. Elliott, Matthew

A. Cooper & Lachlan J. M. Coin. Scaffolding and completing genome assemblies in real-

time with nanopore sequencing. Nature Communications 8, Article number: 14515, 2017.

3/19/2019

34

Exact Matching

Exact Matching Algorithms

Exact Matching Problem:

search pattern P in text T (P,T are strings)

• Knuth Morris Pratt

preprocess pattern P

• Aho Corasick

preprocess a pattern P

of several strings P = { P1, …, Pr }

• Suffix Trees

preprocess text T

or several texts, a ‘database’ of texts

3/19/2019

35

Exact Matching: Preprocessing Pattern(s)

Knuth-Morris-Pratt (KMP)

Aho-Corasick

Searching Pattern P in Text T

Naive:

T: neeneeneeneeeneneeeneeneneeneneen

P: neeneeen

neeneeen

neeneeen

neeneeen

Better:

T: neeneeneeneeeneneeeneeneneeneneen

P: neeneeen

neeneeen

neeneeen

3/19/2019

36

a b a a b a b a

7
a b a a b a b a

a b a a b a b a
4

1 2 3 4 5 6 7 8
a b a a b a b a
0 1 1 2 2 3 4 3

8
a b a a b a b a

a b a a b ...
3

6
a b a a b a b a

a b a a b a b a
3

KMP Preprocessed P example

failure links (suffix = prefix):

top: as ‘automaton’

bottom: as table

• how to determine?

• how to use?

Pattern P ϵ {a,b,…}*:

P:

P:

P:

P:

P:

P:

Automaton:

Table:

Flink[1] = 0;
for k from 2 to PatLen
do fail = Flink[k-1]

while (fail>0 and P[fail]P[k-1])
do fail = Flink[fail];
od
Flink[k] = fail+1;

od

a b b a

kk-1

òr 0

KMP computing failure links

failure link ~ new ‘best’ match (after mismatch)

Pattern P:

3/19/2019

37

Flink[1] = 0;
for k from 2 to PatLen
do fail = Flink[k-1]

while (fail>0 and P[fail]P[k-1])
do fail = Flink[fail];
od
Flink[k] = fail+1;

od

KMP computing failure links

1 2 3 4 5 6 7 8
a b a a b a b a
0
0 1
0 1 1
0 1 1 2
…
0 1 1 2 2 3 4 3

Table:

fail:
0
0->F->Flink[2]=0+1
1->T->0->F->Flink[3]=1
1->F->Flink[4]=1+1
…
0 1 1 2 2 3 4 3

r k
Flink[k]=r

r

P1…Pr-1 = Pk-r+1…Pk-1 maximal r<k

r1r2r3r4

P

k

all such values r:

P1…Pr2-1 = Pk-r2+1…Pk-1 = Pr1-r2+1…Pr1-1

 Flink[r1]=r2

prefixes via failure links

P1…Pr-1 Pk-r+1…Pk-1Pattern P:

prefix suffix

3/19/2019

38

 Karp-Rabin ‘fingerprint’

ai-1 ai … ai+n-1ai+n
p1 … pn

aiB
n-1+ai+1B

n-2 +ai+n-1B
0

ai+1B
n-1+ … +ai+n-1B

1+ai+nB
0

 Boyer-Moore

hash-value

T = marktkoopman
P = schoenveter

schoe…

other methods

work backwards

exact matching with a set of patterns

• AHO CORASICK

generalizes KMP failure links:

longest suffix that is prefix

(perhaps in another string)

> assume no subwords within P

total length m

length n

P = { P1, …, Pr }

all occurrences in text T

3/19/2019

39

keyword tree - trie

s

c

i

e

c

e

n

p

o

t

a

t

o r

y

e

t

r

y

t

e

o

l

o

h

4

1

3

2 5

{ potato,

poetry,

pottery,

science,

school }

1

2

3

4

5

leaves ~ keywords

edges ~ letters

failure links

o

t

p

o

t

a

t

o

e

r

h

{ potato,

tattoo,

theater,

other }

t

t

h

a

t

e

t

r

e

a

o

o

potato
other

potato
tattoo

failure links into

other branches!

=> into other patterns

3/19/2019

40

Algorithm for adding the failure links:

follow the links

edge with label a: follow existing failure links

starting at the parent node of the edge until

an outgoing edge with label a is found

a

a

new

existing failure links

Adding failure links

o

t

p

o

t

a

t

o

e

r

h

{ potato,

tattoo,

theater,

other }

t

t

h

a

t

e

t

r

e

a

o

o

potato
other
theaterattoo

breadth first
(level-by-level)

3/19/2019

41

failure links

o

t

p

o

t

a

t

o

e

r

h

{ potato,

tattoo,

theater,

other }

t

t

h

a

t

e

t

r

e

a

o

o

 root

to child of root (see for example ‘po’)
[single letter]

‘shortcuts’

Preprocess text T: Suffix Trees

3/19/2019

42

trie vs. suffix tree

a

b

b

a

aa

a
a

b

b

b

Text T: abaab

Suffixes: baab

aab

ab

b

trie

From: www.cs.helsinki.fi/u/ukkonen/Erice2005.ppt

Text string T (= ‘abaab’) + all its suffixes

aab

suffix tree

a

aab

ab

b

b

Trie vs. Suffix Tree

• |Trie(T)| = O(|T|)2 quadratic

• bad example: T = anbn

• Trie(T) like DFA for the suffixes of T

• minimize DFA → directed acyclic word graph

DFA = Deterministic Finite Automaton

(also used by Ukkonen)

• only branching nodes and leaves represented

• edges labeled by substrings of T

• correspondence of leaves and suffixes

• |T| leaves, hence < |T| internal nodes

• |Tree(T)| = O(|T| + size(edge labels)) linear

a
b

b

a
aa

a
a

b

b

b

a

aab
ab

b
b

aab

Given text T:Trie:

Suffix Tree:

3/19/2019

43

‘nittygritty’

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

1

2

3

4

5

6

7

8

9

10

11

Order of insertion is position of suffix in Suffix Tree of text T:

nittygritty

1

itty

8

gritty

ε

2

ritty

y

4 10

t

εgritty

ty

3 9

εgritty

y

5 11

εgritty

7

gritty

6

‘nittygritty’

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

1

2

3

4

5

6

7

8

9

10

11

nittygritty

1

itty

8

gritty

ε

2

ritty

y

4 10

t

εgritty

ty

3 9

εgritty

y

5 11

εgritty

7

1-11

2-5

6-11

7-11

5-5

3-3

6-11

4-5

6-11

5-5

6-11

implementation: refer to positions of the substrings in T

gritty

6
6-11

Text T and its suffixes:

3/19/2019

44

linear time construction

Weiner

(1973)

’algorithm

of the year’

McCreight

(1976)

‘on-line’ algorithm

(Ukkonen 1992)

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

Text T and its suffixes:

online construction of suffix trie for T = ’abaab’

a a

b

b a

b

b

a

a

a

b

b

a

aa

a
a

a

b

b

a

aa

a
a

b

b

b

abaa

baa

aa

εa

ε

abaab

baab

aab

ab

εb
ε

from here

b already exists

next symbol = b

suffix links

Failure link to

maximal prefix

of suffix in T

3/19/2019

45

Suffix Tree application: full text index

P in T P is prefix of suffix of T

P

pos

pos

P
T

pos’

pos’

subtree under P

~ locations of P

example: find ‘itt’ in ‘nittygritty’

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

1

2

3

4

5

6

7

8

9

10

11

nittygritty

1

itty

8

gritty

ε

2

ritty

y

4 10

t

εgritty

ty

3 9

εgritty

y

5 11

εgritty

7

positions

gritty

6

3/19/2019

46

Suffix Tree application: longest common substring

P

pos

pos

P
T

pos’

T’

pos’

Construct a ‘generalized’ suffix tree

Containing suffixes of both T and T’.

Mark T and T’ suffixes:

apples

plate

And find the longest common

prefixes of suffixes from

different texts stored in the

Suffix Tree.

application: counting ‘motifs’

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

1

2

3

4

5

6

7

8

9

10

11

The suffix tree now contains counts for the number

of suffixes in a sub-tree

nittygritty

1

itty

8

gritty

ε

2

ritty

y

4 10

t

εgritty

ty

3 9

εgritty

y

5 11

εgritty

7

22

4

2

gritty

6
2

11

3/19/2019

47

Suffix Trees Experiments: ‘motifs’, repeats in DNA

• human chromosome 3

• the first 48 999 930 bases

• 31 min cpu time (8 processors, 4 GB)

• human genome: 3x109 bases

• suffix tree for Human Genome is feasible

as reported by Ukkonen

longest repeat?

Occurrences at: 28395980, 28401554r Length: 2559

ttagggtacatgtgcacaacgtgcaggtttgttacatatgtatacacgtgccatgatggtgtgctgcacccattaactcgtcatttagcgtta

ggtatatctccgaatgctatccctcccccctccccccaccccacaacagtccccggtgtgtgatgttccccttcctgtgtccatgtgttctca

ttgttcaattcccacctatgagtgagaacatgcggtgtttggttttttgtccttgcgaaagtttgctgagaatgatggtttccagcttcatccata

tccctacaaaggacatgaactcatcatttttttatggctgcatagtattccatggtgtatatgtgccacattttcttaacccagtctacccttgttg

gacatctgggttggttccaagtctttgctattgtgaatagtgccgcaataaacatacgtgtgcatgtgtctttatagcagcatgatttataatcc

tttgggtatatacccagtaatgggatggctgggtcaaatggtatttctagttctagatccctgaggaatcaccacactgacttccacaatggt

tgaactagtttacagtcccagcaacagttcctatttctccacatcctctccagcacctgttgtttcctgactttttaatgatcgccattctaactg

gtgtgagatggtatctcattgtggttttgatttgcatttctctgatggccagtgatgatgagcattttttcatgtgttttttggctgcataaatgtctt

cttttgagaagtgtctgttcatatccttcgcccacttttgatggggttgtttgtttttttcttgtaaatttgttggagttcattgtagattctgggtatta

gccctttgtcagatgagtaggttgcaaaaattttctcccattctgtaggttgcctgttcactctgatggtggtttcttctgctgtgcagaagctct

ttagtttaattagatcccatttgtcaattttggcttttgttgccatagcttttggtgttttagacatgaagtccttgcccatgcctatgtcctgaatg

gtattgcctaggttttcttctagggtttttatggttttaggtctaacatgtaagtctttaatccatcttgaattaattataaggtgtatattataaggtg

taattataaggtgtataattatatattaattataaggtgtatattaattataaggtgtaaggaagggatccagtttcagctttctacatatggctag

ccagttttccctgcaccatttattaaatagggaatcctttccccattgcttgtttttgtcaggtttgtcaaagatcagatagttgtagatatgcgg

cattatttctgagggctctgttctgttccattggtctatatctctgttttggtaccagtaccatgctgttttggttactgtagccttgtagtatagttt

gaagtcaggtagcgtgatggttccagctttgttcttttggcttaggattgacttggcaatgtgggctcttttttggttccatatgaactttaaagt

agttttttccaattctgtgaagaaattcattggtagcttgatggggatggcattgaatctataaattaccctgggcagtatggccattttcacaa

tattgaatcttcctacccatgagcgtgtactgttcttccatttgtttgtatcctcttttatttcattgagcagtggtttgtagttctccttgaagaggt

ccttcacatcccttgtaagttggattcctaggtattttattctctttgaagcaattgtgaatgggagttcactcatgatttgactctctgtttgtctg

ttattggtgtataagaatgcttgtgatttttgcacattgattttgtatcctgagactttgctgaagttgcttatcagcttaaggagattttgggctga

gacgatggggttttctagatatacaatcatgtcatctgcaaacagggacaatttgacttcctcttttcctaattgaatacccgttatttccctctc

ctgcctgattgccctggccagaacttccaacactatgttgaataggagtggtgagagagggcatccctgtcttgtgccagttttcaaaggg

aatgcttccagtttttgtccattcagtatgatattggctgtgggtttgtcatagatagctcttattattttgagatacatcccatcaatacctaattt

attgagagtttttagcatgaagagttcttgaattttgtcaaaggccttttctgcatcttttgagataatcatgtggtttctgtctttggttctgtttata

tgctggagtacgtttattgattttcgtatgttgaaccagccttgcatcccagggatgaagcccacttgatcatggtggataagctttttgatgt

gctgctggattcggtttgccagtattttattgaggatttctgcatcgatgttcatcaaggatattggtctaaaattctctttttttgttgtgtctctgt

caggctttggtatcaggatgatgctggcctcataaaatgagttagg

3/19/2019

48

ten occurrences?

ttttttttttttttgagacggagtctcgctctgtcgcccaggctggagtgcagtg

gcgggatctcggctcactgcaagctccgcctcccgggttcacgccattct

cctgcctcagcctcccaagtagctgggactacaggcgcccgccactacg

cccggctaattttttgtatttttagtagagacggggtttcaccgttttagccgg

gatggtctcgatctcctgacctcgtgatccgcccgcctcggcctcccaaag

tgctgggattacaggcgt

Length: 277

Occurrences at: 10130003, 11421803, 18695837, 26652515,

42971130, 47398125

In the reversed complement at: 17858493, 41463059,

42431718, 42580925

Suffix Tree Remarks

suffix tree

efficient (linear) storage,

but constant ±40, large, ‘overhead’

suffix array

has constant ±5 ‘overhead’

hence more practical

but has its own complications

naïve n log(n) algorithm is in some

cases not too bad… (next slide)

3/19/2019

49

Suffix Array

nittygritty

ittygritty

ttygritty

tygritty

ygritty

gritty

ritty

itty

tty

ty

y

1

2

3

4

5

6

7

8

9

10

11

gritty

itty

ittygritty

nittygritty

ritty

tty

ttygritty

ty

tygritty

y

ygritty

6

8

2

1

7

9

3

10

4

11

5

lexicographic order of the suffixes

References

Dan Gusfield

Algorithms on Strings, Trees, and Sequences

Computer Science and Computational Biology

Several slides on suffix-trees are based on and/or copied from

Esko Ukkonen, Univ Helsinki (Erice School, 30 Oct 2005)

This book lists many applications for suffix trees

and has extended implementation details.

