Protein structure prediction



Protein structure prediction

- Predictions of protein secondary structure
- Homology modeling
- Fold recognition

- Ab initio structure prediction (energy minimization)
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Model of the a helix
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Protein secondary structure prediction

* Protein secondary structure models consider amino acids of a polypeptide
chain to be in one of the states typical for protein structures. Most simple
models consider three states: a-helix, B-strand and coil.

» Secondary structure prediction algorithms identify a state for every amino acid.

* For instance, below a result from the PSIPRED server is shown:

cont: JIINznn-ARNNRNRNRaRNnRNRN nnR=NRnnRNRNR
Pred: — — S

Pred: CCCCCCCCHHHHHHHHHHCCCCEEEEEECCCEEEEEEEEE
AA: MAERSONLODLEFLNSVRKSKNPLTIFLINGVKLTGVVTSFE

10 20 30 40

conf: julzlNIINnElznnEiioonnnnnaninznnsiiENnn0Nt

Pred: __ S

Pred: CCEEEEEEECCEEEEEECCCEEEEECCCEEECCCCCCCCC
AA: DNFCVLLRRDGHSQLVYKHAISTIMPSQPVOMEDGEESQG

50 60 70 80

ﬁ

helix Conf: ]::]Il[ = confidence of prediction
- +
= strand Pred: predicted secondary structure

= coil AA: target sequence
(www.psipred.net)



Protein secondary structure prediction

 Algorithms for secondary structure prediction mostly try to recognize similar
patterns in local structural elements and extrapolate information from known
structures to target sequences.

* The so-called first-generation algorithms were based on single amino acid
propensities: for instance, Ala, GIn, Leu and Met are frequently found in
helices, Gly, Tyr and Ser are not, Pro is a “helix-breaker”. A moving window
with calculation of average propensity score along a sequence can indicate
most likely states for sequence regions.

MAERSONLODLFLNSVRKSKNPLTIFLINGVKLTGVVTSF

[« «Savg(X)..] > “X-profile”
[..Savg(B) -] > “B-profile”
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» Second-generation algorithms used propensities for segments of 3-51 amino
acids.

» Currently used algorithms exploit the information from multiple alignments of
related protein families, constructing profiles of patterns (PWM, Markov
models) that identify most likely structural predictions.

» E.g. PSIPRED algorithm is based on profiles yielded by PSI-BLAST.



PSI-BLAST

(position-specific iterated BLAST)
(Altschul et al., 1997)

Sequence query Q

!

Collection of all BLAST hits aligned to the query with

v

E-value below a threshold (default 0.01).

!

Multiple alignment M.

!

Alignment columns involving gaps inserted into the query are
ignored, so M has the same length as the query.

!

The PSSM matrix is calculated, using sequence weighting to avoid “outvoting” a small number of
divergent sequences by a large set of closely related ones.

!

PSSM is submitted to BLAST as a query
(only minor modifications to the code as compared with single sequence querying).

PSSM: position-specific score matrix (pronounced "possum") - a
profile constructed using alignment of related sequences. PSSM
dimensions are 4xN (nucleic acids) or 20xN (proteins), where N
is the size of the aligned region (motif). PSSM columns
correspond to motif positions, the matrix items reflect monomer
frequencies at these positions.



Homology modeling

- Basic idea: “extrapolation” of the known structures to proteins with
homologous sequences

Similar sequences may fold into very similar structures, e.g. below the
superposition (stereoview) of the Ca backbones of three proteins (elastase,
tonin and trypsin) [Sali & Blundell, 1993].




Main steps of homology modeling

Identify related structures
(Templates)
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Algorithms used in homology modeling

Search for template proteins of known structure. Based on alignments of the
target sequence against sequences stored in the database of structures (PDB). The
best template(s) is (are) found using multiple alignments of sequences and profiles or
profile hidden Markov models (HMMs).

Alignment of the target to template(s) can be optimized after finding the best
template(s).

Model building. A number of algorithms exist. For instance, the core regions of the
target can be modeled by averaging the positions of backbone atoms in the
templates. Alternatively, the spatial restraints can be retrieved from multiple alignment
and used to guide the modeling. The model is derived by minimizing the violations of
restraints.

Loop modeling. The regions with poor or no similarity to template sequences are
modeled separately. E.g. using the conformations of similar fragments in the structure
database or ab initio predictions.



Calculation of knowledge-based (mean force) potentials
using a database of protein structures

A general idea to compute a pairwise interaction
potential:

Eaby(r) = - RT In [ faby (r) ]

where frequency fabg (r) is obtained from a
database of known structures

(a and b: some amino acid types),

R - universal gas constant,

(M. Sippl, 1993)
T - temperature (K).

("Inverse" Boltzmann law)

Reference state can be defined as Ex(r) =- RT In [ fk (r) ],
where fk (r) is an average value over all amino acid types.

Thus:

AEad(r) = Eaby(r) - Ex(r) = - RT In [ faby (r) / fk (r) ].



Sequence/structure alignment (threading)

In sequence/structure threading, first the
changes of total interaction energies of residues
are calculated in assumption of the template
structure interactions. E.g. amino acid at position
i of the structure is replaced by amino acid j of
the sequence, yielding the element [i, j] of the
comparison matrix.

(frozen approximation)

The alignment is computed by dynamic
programming, yielding a structural model for

| the query sequence.
Fﬂﬁymh The quality of such models can be tested using
i— — calculations of total energies and energy
o profiles.

(M. Sippl, 1993)



Using energy profiles to evaluate structure models

(M. Sippl, 1993)
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The profiles are smoothened using “gliding
average” (e.g. over 10 residues).

Good models have relatively low energies along
a sequence. The 2GN5 model does not seem

to be good (positive peaks).

15



Ab initio (de novo) protein structure prediction

- Lattice models

Rough approximation, with amino acid monomers occupying the discrete points in
space determined by a lattice (usually cubic). Nowadays are mostly used for testing
new ideas on folding algorithms rather than for real structure predictions.

- Off-lattice models
Low resolution models:
e.g. united residue model (UNRES), with side chain centroids.
High resolution models:

all-atom structures.



Cubic lattice models

Mostly the HP-lattice model:
- Two monomer types: H (hydrophobic) and P (polar).

- Energy is proportional to the number of H-H contacts (h) between closely
located monomers that are not sequence neighbors: E = -€ x h.

- The energy minimum is usually searched by a Monte Carlo algorithm.

Below two alternative conformations for the same HP-sequence are shown:

(Yue et al., 1995)



Monte Carlo simulations of low free energy conformations

Monte Carlo simulations are based on generation of (quasi)random
conformations. During the simulation, random changes are introduced. Lower
free energies serve as a criterion to select structures for subsequent iterations.

\
The conformational transitions are
usually rotations around some points
(chosen randomly). In this example, —_—
the rotation makes the HP-structure /7 1
more compact, changing the energy

from-4to-9: (Unger & Moult, 1993)

An example of simulation:
1. Start from a random coil conformation.

2. At every iteration: make a single change (rotation) from a conformation S+
with energy E1 to a conformation Sz with energy Eo.

3. If E2 < E1 , accept the change to conformation So.
If E> > E1 : accept with a probability criterion.
E.Q. p=exp(E1-E2/c),
where ¢ can be gradually decreased to “cool down” the simulation.



An off-lattice model: virtual bond united-residue approximation
(UNRES)

(A. Liwo et al., 1993)

- Ca - “virtual bonds” of 3.8 A, with Ca- Ca - Ca angles of 90°.
- Amino acids: approximated by “side-chain centroids” (SC).
- For each residue type, specific SC parameters (angles and centroid sizes).

- The only variables in this model are torsional angles y of rotation around virtual bonds.



ADb intio structure prediction using virtual bond united-residue
approximation (UNRES)

Low energy conformations are usually searched
by Monte Carlo (MC) algorithms in stepwise way,
moving from the low resolution in UNRES to high-
resolution all-atom structures. Energy potentials
include various interactions (hydrophobic,
hydrophilic, electrostatic) between atoms and/or
molecular groups considered at a particular step.

(A. Liwo et al., 1993)

For instance:
- Begin with UNRES approximation with interactions between SC and peptide groups

only: low energy structures can be found by MC simulation.

- The backbone atoms are introduced in these structures, and the folds are further
optimized by MC.

(An approximation with all-atom backbone and SC centroids is frequently called low-resolution reﬁnement).

- All atoms are introduced to the structures of the previous step, and MC simulation is
performed on the all-atom model (high-resolution refinement).



Variations in the algorithms for protein structure prediction

Different approaches can be combined in a single algorithm for structure prediction.

E.g. various combinations of conformational sampling (template-based or knowledge-
based) with low/high resolution refinement.

One of the most successful applications is Rosetta methodology (D. Baker & coll.).

E.qg. according to CASP, Critical Assessment of Protein Structure Prediction,
a biannual evaluation of prediction methods, carried out in a blind mode.

In Rosetta, protein folding is considered as an interplay of local interactions in the
relatively small oligopeptide fragments and global assembly of these fragments by
Monte Carlo energy minimization.

A single fragment is considered to fluctuate between several local structures. Such a
fluctuation is modeled using the distribution of conformations observed in similar
fragments of known crystal structures. In the first Rosetta stage, alternative minima of
free energy can be identified using the coarse-grained low-resolution energy function.

The second stage starts from each of the low-resolution minima and returns back the
atomic coordinates. The conformations are further optimized by a multistep Monte
Carlo energy minimization procedure.



Pairwise contacts predicted from amino acid covariations

Correlations between substitutions can be used for prediction of
interactions:

%

inference I o-c
contact in 3D

P> XRRODOD
—P> i< FHMDOOD

(DS Marks et al., 2011)

correlated

A straightforward application of Mutual Information (MI) values for
detection of monomer contacts can yield a number of correlations that are
not determined by interactions (transitive indirect correlations).

A (partial) solution for this problem can be provided by a model that is built
for the whole alignment length in order to infer maximally informative
correlations.

The growth of the sequence and structure databases may improve such
approaches in future.



A special case: coiled coil domains

Coiled coils are 2-5 a-helices wrapped around each other. They are stabilised by
heptad repeats (usually denoted with a-b-c-d-e-f-g positions). The heptads can
form a regular extended stable conformation because seven residues in a helix
make a rotation close to two turns: 7 x 100° = 720° - 20°. Stability is established
via hydrophobic (a-d) and polar (e-g) interactions.

(Mason & Arndt, 2004)

Coiled coils are predicted by special algorithms, based on the estimates of
probabilities of finding amino acid residues at specific heptad positions. For a given
sequence, a total score can be calculated. Furthermore, additional side-chain
interactions in the coiled coils can be taken into account.
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A special case: transmembrane proteins

A schematic representation of transmembrane (TM) protein with 6 TM segments:
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(Kihira et al., 2004)

Transmembrane proteins have several transmembrane (TM) a-helices. Predictions of
TM topology require special algorithms, because the lipid environment differs from
that of globular proteins. The algorithms usually calculate the most likely attributes for
all residues, classifying them in the main structural elements such as (1) TM helix; (2)
inside and (3) outside loops; (4) inside and (5) outside helix ends.



